Properties

Label 1160.4.a.h.1.7
Level $1160$
Weight $4$
Character 1160.1
Self dual yes
Analytic conductor $68.442$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1160,4,Mod(1,1160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1160.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.4422156067\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 3 x^{10} - 200 x^{9} + 418 x^{8} + 13211 x^{7} - 14353 x^{6} - 314463 x^{5} + 64817 x^{4} + \cdots + 712233 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{9}\cdot 3^{3}\cdot 43 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-1.72995\) of defining polynomial
Character \(\chi\) \(=\) 1160.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.72995 q^{3} -5.00000 q^{5} +32.6348 q^{7} -19.5474 q^{9} -33.7286 q^{11} +23.4245 q^{13} -13.6498 q^{15} +17.6536 q^{17} +86.2042 q^{19} +89.0915 q^{21} -22.6763 q^{23} +25.0000 q^{25} -127.072 q^{27} +29.0000 q^{29} +28.2772 q^{31} -92.0775 q^{33} -163.174 q^{35} +119.089 q^{37} +63.9476 q^{39} -112.751 q^{41} +223.122 q^{43} +97.7369 q^{45} +190.126 q^{47} +722.033 q^{49} +48.1936 q^{51} +755.034 q^{53} +168.643 q^{55} +235.333 q^{57} -718.755 q^{59} +371.250 q^{61} -637.925 q^{63} -117.122 q^{65} -437.836 q^{67} -61.9052 q^{69} +198.752 q^{71} -89.4919 q^{73} +68.2488 q^{75} -1100.73 q^{77} +878.612 q^{79} +180.879 q^{81} -224.981 q^{83} -88.2682 q^{85} +79.1686 q^{87} +692.859 q^{89} +764.453 q^{91} +77.1954 q^{93} -431.021 q^{95} -1208.80 q^{97} +659.306 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 8 q^{3} - 55 q^{5} + 16 q^{7} + 117 q^{9} + 26 q^{11} + 52 q^{13} - 40 q^{15} + 14 q^{17} + 146 q^{19} - 288 q^{21} - 80 q^{23} + 275 q^{25} + 224 q^{27} + 319 q^{29} - 38 q^{31} - 152 q^{33} - 80 q^{35}+ \cdots + 4690 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.72995 0.525379 0.262690 0.964880i \(-0.415390\pi\)
0.262690 + 0.964880i \(0.415390\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 32.6348 1.76212 0.881058 0.473008i \(-0.156832\pi\)
0.881058 + 0.473008i \(0.156832\pi\)
\(8\) 0 0
\(9\) −19.5474 −0.723977
\(10\) 0 0
\(11\) −33.7286 −0.924506 −0.462253 0.886748i \(-0.652959\pi\)
−0.462253 + 0.886748i \(0.652959\pi\)
\(12\) 0 0
\(13\) 23.4245 0.499752 0.249876 0.968278i \(-0.419610\pi\)
0.249876 + 0.968278i \(0.419610\pi\)
\(14\) 0 0
\(15\) −13.6498 −0.234957
\(16\) 0 0
\(17\) 17.6536 0.251861 0.125930 0.992039i \(-0.459808\pi\)
0.125930 + 0.992039i \(0.459808\pi\)
\(18\) 0 0
\(19\) 86.2042 1.04087 0.520437 0.853900i \(-0.325769\pi\)
0.520437 + 0.853900i \(0.325769\pi\)
\(20\) 0 0
\(21\) 89.0915 0.925779
\(22\) 0 0
\(23\) −22.6763 −0.205580 −0.102790 0.994703i \(-0.532777\pi\)
−0.102790 + 0.994703i \(0.532777\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −127.072 −0.905741
\(28\) 0 0
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) 28.2772 0.163830 0.0819152 0.996639i \(-0.473896\pi\)
0.0819152 + 0.996639i \(0.473896\pi\)
\(32\) 0 0
\(33\) −92.0775 −0.485716
\(34\) 0 0
\(35\) −163.174 −0.788042
\(36\) 0 0
\(37\) 119.089 0.529136 0.264568 0.964367i \(-0.414771\pi\)
0.264568 + 0.964367i \(0.414771\pi\)
\(38\) 0 0
\(39\) 63.9476 0.262559
\(40\) 0 0
\(41\) −112.751 −0.429483 −0.214741 0.976671i \(-0.568891\pi\)
−0.214741 + 0.976671i \(0.568891\pi\)
\(42\) 0 0
\(43\) 223.122 0.791299 0.395649 0.918402i \(-0.370520\pi\)
0.395649 + 0.918402i \(0.370520\pi\)
\(44\) 0 0
\(45\) 97.7369 0.323772
\(46\) 0 0
\(47\) 190.126 0.590058 0.295029 0.955488i \(-0.404671\pi\)
0.295029 + 0.955488i \(0.404671\pi\)
\(48\) 0 0
\(49\) 722.033 2.10505
\(50\) 0 0
\(51\) 48.1936 0.132323
\(52\) 0 0
\(53\) 755.034 1.95683 0.978415 0.206652i \(-0.0662567\pi\)
0.978415 + 0.206652i \(0.0662567\pi\)
\(54\) 0 0
\(55\) 168.643 0.413452
\(56\) 0 0
\(57\) 235.333 0.546854
\(58\) 0 0
\(59\) −718.755 −1.58600 −0.792999 0.609223i \(-0.791482\pi\)
−0.792999 + 0.609223i \(0.791482\pi\)
\(60\) 0 0
\(61\) 371.250 0.779240 0.389620 0.920976i \(-0.372606\pi\)
0.389620 + 0.920976i \(0.372606\pi\)
\(62\) 0 0
\(63\) −637.925 −1.27573
\(64\) 0 0
\(65\) −117.122 −0.223496
\(66\) 0 0
\(67\) −437.836 −0.798362 −0.399181 0.916872i \(-0.630705\pi\)
−0.399181 + 0.916872i \(0.630705\pi\)
\(68\) 0 0
\(69\) −61.9052 −0.108007
\(70\) 0 0
\(71\) 198.752 0.332218 0.166109 0.986107i \(-0.446880\pi\)
0.166109 + 0.986107i \(0.446880\pi\)
\(72\) 0 0
\(73\) −89.4919 −0.143483 −0.0717414 0.997423i \(-0.522856\pi\)
−0.0717414 + 0.997423i \(0.522856\pi\)
\(74\) 0 0
\(75\) 68.2488 0.105076
\(76\) 0 0
\(77\) −1100.73 −1.62909
\(78\) 0 0
\(79\) 878.612 1.25129 0.625643 0.780109i \(-0.284837\pi\)
0.625643 + 0.780109i \(0.284837\pi\)
\(80\) 0 0
\(81\) 180.879 0.248119
\(82\) 0 0
\(83\) −224.981 −0.297529 −0.148765 0.988873i \(-0.547530\pi\)
−0.148765 + 0.988873i \(0.547530\pi\)
\(84\) 0 0
\(85\) −88.2682 −0.112636
\(86\) 0 0
\(87\) 79.1686 0.0975605
\(88\) 0 0
\(89\) 692.859 0.825202 0.412601 0.910912i \(-0.364620\pi\)
0.412601 + 0.910912i \(0.364620\pi\)
\(90\) 0 0
\(91\) 764.453 0.880621
\(92\) 0 0
\(93\) 77.1954 0.0860730
\(94\) 0 0
\(95\) −431.021 −0.465493
\(96\) 0 0
\(97\) −1208.80 −1.26531 −0.632657 0.774432i \(-0.718036\pi\)
−0.632657 + 0.774432i \(0.718036\pi\)
\(98\) 0 0
\(99\) 659.306 0.669321
\(100\) 0 0
\(101\) 913.612 0.900077 0.450039 0.893009i \(-0.351410\pi\)
0.450039 + 0.893009i \(0.351410\pi\)
\(102\) 0 0
\(103\) −1052.21 −1.00657 −0.503286 0.864120i \(-0.667876\pi\)
−0.503286 + 0.864120i \(0.667876\pi\)
\(104\) 0 0
\(105\) −445.458 −0.414021
\(106\) 0 0
\(107\) −646.549 −0.584152 −0.292076 0.956395i \(-0.594346\pi\)
−0.292076 + 0.956395i \(0.594346\pi\)
\(108\) 0 0
\(109\) 2032.35 1.78591 0.892955 0.450145i \(-0.148628\pi\)
0.892955 + 0.450145i \(0.148628\pi\)
\(110\) 0 0
\(111\) 325.106 0.277997
\(112\) 0 0
\(113\) 477.038 0.397133 0.198566 0.980087i \(-0.436372\pi\)
0.198566 + 0.980087i \(0.436372\pi\)
\(114\) 0 0
\(115\) 113.382 0.0919382
\(116\) 0 0
\(117\) −457.887 −0.361809
\(118\) 0 0
\(119\) 576.124 0.443808
\(120\) 0 0
\(121\) −193.379 −0.145288
\(122\) 0 0
\(123\) −307.806 −0.225641
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1773.25 1.23898 0.619490 0.785005i \(-0.287339\pi\)
0.619490 + 0.785005i \(0.287339\pi\)
\(128\) 0 0
\(129\) 609.113 0.415732
\(130\) 0 0
\(131\) 1351.25 0.901213 0.450607 0.892723i \(-0.351208\pi\)
0.450607 + 0.892723i \(0.351208\pi\)
\(132\) 0 0
\(133\) 2813.26 1.83414
\(134\) 0 0
\(135\) 635.360 0.405060
\(136\) 0 0
\(137\) −617.025 −0.384788 −0.192394 0.981318i \(-0.561625\pi\)
−0.192394 + 0.981318i \(0.561625\pi\)
\(138\) 0 0
\(139\) 2756.09 1.68179 0.840894 0.541200i \(-0.182030\pi\)
0.840894 + 0.541200i \(0.182030\pi\)
\(140\) 0 0
\(141\) 519.035 0.310004
\(142\) 0 0
\(143\) −790.075 −0.462024
\(144\) 0 0
\(145\) −145.000 −0.0830455
\(146\) 0 0
\(147\) 1971.11 1.10595
\(148\) 0 0
\(149\) −1893.20 −1.04092 −0.520460 0.853886i \(-0.674240\pi\)
−0.520460 + 0.853886i \(0.674240\pi\)
\(150\) 0 0
\(151\) 2412.29 1.30006 0.650031 0.759907i \(-0.274756\pi\)
0.650031 + 0.759907i \(0.274756\pi\)
\(152\) 0 0
\(153\) −345.082 −0.182341
\(154\) 0 0
\(155\) −141.386 −0.0732671
\(156\) 0 0
\(157\) −2563.89 −1.30332 −0.651659 0.758512i \(-0.725927\pi\)
−0.651659 + 0.758512i \(0.725927\pi\)
\(158\) 0 0
\(159\) 2061.21 1.02808
\(160\) 0 0
\(161\) −740.038 −0.362256
\(162\) 0 0
\(163\) 2798.75 1.34488 0.672438 0.740154i \(-0.265247\pi\)
0.672438 + 0.740154i \(0.265247\pi\)
\(164\) 0 0
\(165\) 460.388 0.217219
\(166\) 0 0
\(167\) 459.740 0.213029 0.106514 0.994311i \(-0.466031\pi\)
0.106514 + 0.994311i \(0.466031\pi\)
\(168\) 0 0
\(169\) −1648.29 −0.750248
\(170\) 0 0
\(171\) −1685.07 −0.753569
\(172\) 0 0
\(173\) 1683.90 0.740028 0.370014 0.929026i \(-0.379353\pi\)
0.370014 + 0.929026i \(0.379353\pi\)
\(174\) 0 0
\(175\) 815.871 0.352423
\(176\) 0 0
\(177\) −1962.16 −0.833251
\(178\) 0 0
\(179\) −797.438 −0.332979 −0.166490 0.986043i \(-0.553243\pi\)
−0.166490 + 0.986043i \(0.553243\pi\)
\(180\) 0 0
\(181\) 3746.24 1.53843 0.769215 0.638990i \(-0.220648\pi\)
0.769215 + 0.638990i \(0.220648\pi\)
\(182\) 0 0
\(183\) 1013.49 0.409397
\(184\) 0 0
\(185\) −595.443 −0.236637
\(186\) 0 0
\(187\) −595.433 −0.232847
\(188\) 0 0
\(189\) −4146.98 −1.59602
\(190\) 0 0
\(191\) 296.879 0.112468 0.0562340 0.998418i \(-0.482091\pi\)
0.0562340 + 0.998418i \(0.482091\pi\)
\(192\) 0 0
\(193\) 15.7419 0.00587113 0.00293556 0.999996i \(-0.499066\pi\)
0.00293556 + 0.999996i \(0.499066\pi\)
\(194\) 0 0
\(195\) −319.738 −0.117420
\(196\) 0 0
\(197\) 2936.29 1.06194 0.530970 0.847391i \(-0.321828\pi\)
0.530970 + 0.847391i \(0.321828\pi\)
\(198\) 0 0
\(199\) 3514.81 1.25205 0.626026 0.779802i \(-0.284680\pi\)
0.626026 + 0.779802i \(0.284680\pi\)
\(200\) 0 0
\(201\) −1195.27 −0.419443
\(202\) 0 0
\(203\) 946.410 0.327217
\(204\) 0 0
\(205\) 563.757 0.192071
\(206\) 0 0
\(207\) 443.262 0.148835
\(208\) 0 0
\(209\) −2907.55 −0.962295
\(210\) 0 0
\(211\) 3702.46 1.20800 0.604000 0.796984i \(-0.293573\pi\)
0.604000 + 0.796984i \(0.293573\pi\)
\(212\) 0 0
\(213\) 542.582 0.174540
\(214\) 0 0
\(215\) −1115.61 −0.353880
\(216\) 0 0
\(217\) 922.823 0.288688
\(218\) 0 0
\(219\) −244.309 −0.0753828
\(220\) 0 0
\(221\) 413.527 0.125868
\(222\) 0 0
\(223\) −3026.88 −0.908945 −0.454472 0.890761i \(-0.650172\pi\)
−0.454472 + 0.890761i \(0.650172\pi\)
\(224\) 0 0
\(225\) −488.684 −0.144795
\(226\) 0 0
\(227\) −1610.29 −0.470833 −0.235416 0.971895i \(-0.575645\pi\)
−0.235416 + 0.971895i \(0.575645\pi\)
\(228\) 0 0
\(229\) −3605.34 −1.04038 −0.520191 0.854050i \(-0.674139\pi\)
−0.520191 + 0.854050i \(0.674139\pi\)
\(230\) 0 0
\(231\) −3004.94 −0.855888
\(232\) 0 0
\(233\) 1434.83 0.403428 0.201714 0.979444i \(-0.435349\pi\)
0.201714 + 0.979444i \(0.435349\pi\)
\(234\) 0 0
\(235\) −950.630 −0.263882
\(236\) 0 0
\(237\) 2398.57 0.657400
\(238\) 0 0
\(239\) −3834.69 −1.03785 −0.518924 0.854821i \(-0.673667\pi\)
−0.518924 + 0.854821i \(0.673667\pi\)
\(240\) 0 0
\(241\) −2395.09 −0.640171 −0.320086 0.947389i \(-0.603712\pi\)
−0.320086 + 0.947389i \(0.603712\pi\)
\(242\) 0 0
\(243\) 3924.73 1.03610
\(244\) 0 0
\(245\) −3610.17 −0.941408
\(246\) 0 0
\(247\) 2019.29 0.520179
\(248\) 0 0
\(249\) −614.188 −0.156316
\(250\) 0 0
\(251\) 965.099 0.242695 0.121348 0.992610i \(-0.461278\pi\)
0.121348 + 0.992610i \(0.461278\pi\)
\(252\) 0 0
\(253\) 764.842 0.190060
\(254\) 0 0
\(255\) −240.968 −0.0591764
\(256\) 0 0
\(257\) 563.104 0.136675 0.0683374 0.997662i \(-0.478231\pi\)
0.0683374 + 0.997662i \(0.478231\pi\)
\(258\) 0 0
\(259\) 3886.43 0.932399
\(260\) 0 0
\(261\) −566.874 −0.134439
\(262\) 0 0
\(263\) −4475.58 −1.04934 −0.524670 0.851306i \(-0.675811\pi\)
−0.524670 + 0.851306i \(0.675811\pi\)
\(264\) 0 0
\(265\) −3775.17 −0.875121
\(266\) 0 0
\(267\) 1891.47 0.433544
\(268\) 0 0
\(269\) 4577.98 1.03764 0.518819 0.854884i \(-0.326372\pi\)
0.518819 + 0.854884i \(0.326372\pi\)
\(270\) 0 0
\(271\) 1874.58 0.420194 0.210097 0.977681i \(-0.432622\pi\)
0.210097 + 0.977681i \(0.432622\pi\)
\(272\) 0 0
\(273\) 2086.92 0.462660
\(274\) 0 0
\(275\) −843.216 −0.184901
\(276\) 0 0
\(277\) 8294.65 1.79920 0.899598 0.436720i \(-0.143860\pi\)
0.899598 + 0.436720i \(0.143860\pi\)
\(278\) 0 0
\(279\) −552.745 −0.118609
\(280\) 0 0
\(281\) −4941.27 −1.04901 −0.524504 0.851408i \(-0.675749\pi\)
−0.524504 + 0.851408i \(0.675749\pi\)
\(282\) 0 0
\(283\) −7227.68 −1.51817 −0.759083 0.650994i \(-0.774352\pi\)
−0.759083 + 0.650994i \(0.774352\pi\)
\(284\) 0 0
\(285\) −1176.67 −0.244560
\(286\) 0 0
\(287\) −3679.62 −0.756799
\(288\) 0 0
\(289\) −4601.35 −0.936566
\(290\) 0 0
\(291\) −3299.98 −0.664770
\(292\) 0 0
\(293\) −1597.35 −0.318492 −0.159246 0.987239i \(-0.550906\pi\)
−0.159246 + 0.987239i \(0.550906\pi\)
\(294\) 0 0
\(295\) 3593.77 0.709280
\(296\) 0 0
\(297\) 4285.97 0.837364
\(298\) 0 0
\(299\) −531.181 −0.102739
\(300\) 0 0
\(301\) 7281.56 1.39436
\(302\) 0 0
\(303\) 2494.12 0.472882
\(304\) 0 0
\(305\) −1856.25 −0.348487
\(306\) 0 0
\(307\) 5345.70 0.993796 0.496898 0.867809i \(-0.334472\pi\)
0.496898 + 0.867809i \(0.334472\pi\)
\(308\) 0 0
\(309\) −2872.47 −0.528832
\(310\) 0 0
\(311\) 2835.51 0.517000 0.258500 0.966011i \(-0.416772\pi\)
0.258500 + 0.966011i \(0.416772\pi\)
\(312\) 0 0
\(313\) 5953.26 1.07507 0.537537 0.843240i \(-0.319355\pi\)
0.537537 + 0.843240i \(0.319355\pi\)
\(314\) 0 0
\(315\) 3189.63 0.570524
\(316\) 0 0
\(317\) −567.775 −0.100598 −0.0502988 0.998734i \(-0.516017\pi\)
−0.0502988 + 0.998734i \(0.516017\pi\)
\(318\) 0 0
\(319\) −978.131 −0.171676
\(320\) 0 0
\(321\) −1765.05 −0.306901
\(322\) 0 0
\(323\) 1521.82 0.262156
\(324\) 0 0
\(325\) 585.611 0.0999504
\(326\) 0 0
\(327\) 5548.23 0.938280
\(328\) 0 0
\(329\) 6204.73 1.03975
\(330\) 0 0
\(331\) 3185.67 0.529005 0.264502 0.964385i \(-0.414792\pi\)
0.264502 + 0.964385i \(0.414792\pi\)
\(332\) 0 0
\(333\) −2327.87 −0.383082
\(334\) 0 0
\(335\) 2189.18 0.357038
\(336\) 0 0
\(337\) −2751.11 −0.444696 −0.222348 0.974967i \(-0.571372\pi\)
−0.222348 + 0.974967i \(0.571372\pi\)
\(338\) 0 0
\(339\) 1302.29 0.208645
\(340\) 0 0
\(341\) −953.752 −0.151462
\(342\) 0 0
\(343\) 12369.7 1.94723
\(344\) 0 0
\(345\) 309.526 0.0483024
\(346\) 0 0
\(347\) 8556.93 1.32380 0.661902 0.749590i \(-0.269749\pi\)
0.661902 + 0.749590i \(0.269749\pi\)
\(348\) 0 0
\(349\) −3333.95 −0.511353 −0.255676 0.966762i \(-0.582298\pi\)
−0.255676 + 0.966762i \(0.582298\pi\)
\(350\) 0 0
\(351\) −2976.59 −0.452646
\(352\) 0 0
\(353\) 8870.01 1.33740 0.668701 0.743531i \(-0.266851\pi\)
0.668701 + 0.743531i \(0.266851\pi\)
\(354\) 0 0
\(355\) −993.758 −0.148572
\(356\) 0 0
\(357\) 1572.79 0.233168
\(358\) 0 0
\(359\) −5849.66 −0.859981 −0.429991 0.902833i \(-0.641483\pi\)
−0.429991 + 0.902833i \(0.641483\pi\)
\(360\) 0 0
\(361\) 572.172 0.0834192
\(362\) 0 0
\(363\) −527.914 −0.0763315
\(364\) 0 0
\(365\) 447.460 0.0641674
\(366\) 0 0
\(367\) 1155.43 0.164340 0.0821701 0.996618i \(-0.473815\pi\)
0.0821701 + 0.996618i \(0.473815\pi\)
\(368\) 0 0
\(369\) 2203.99 0.310936
\(370\) 0 0
\(371\) 24640.4 3.44816
\(372\) 0 0
\(373\) −12296.8 −1.70698 −0.853490 0.521110i \(-0.825518\pi\)
−0.853490 + 0.521110i \(0.825518\pi\)
\(374\) 0 0
\(375\) −341.244 −0.0469913
\(376\) 0 0
\(377\) 679.309 0.0928016
\(378\) 0 0
\(379\) −2947.56 −0.399488 −0.199744 0.979848i \(-0.564011\pi\)
−0.199744 + 0.979848i \(0.564011\pi\)
\(380\) 0 0
\(381\) 4840.88 0.650934
\(382\) 0 0
\(383\) −3141.44 −0.419112 −0.209556 0.977797i \(-0.567202\pi\)
−0.209556 + 0.977797i \(0.567202\pi\)
\(384\) 0 0
\(385\) 5503.64 0.728550
\(386\) 0 0
\(387\) −4361.46 −0.572882
\(388\) 0 0
\(389\) −14731.3 −1.92006 −0.960032 0.279890i \(-0.909702\pi\)
−0.960032 + 0.279890i \(0.909702\pi\)
\(390\) 0 0
\(391\) −400.320 −0.0517776
\(392\) 0 0
\(393\) 3688.83 0.473479
\(394\) 0 0
\(395\) −4393.06 −0.559592
\(396\) 0 0
\(397\) −6458.07 −0.816426 −0.408213 0.912887i \(-0.633848\pi\)
−0.408213 + 0.912887i \(0.633848\pi\)
\(398\) 0 0
\(399\) 7680.07 0.963620
\(400\) 0 0
\(401\) −3418.40 −0.425703 −0.212852 0.977085i \(-0.568275\pi\)
−0.212852 + 0.977085i \(0.568275\pi\)
\(402\) 0 0
\(403\) 662.379 0.0818745
\(404\) 0 0
\(405\) −904.394 −0.110962
\(406\) 0 0
\(407\) −4016.69 −0.489189
\(408\) 0 0
\(409\) −13983.1 −1.69051 −0.845255 0.534362i \(-0.820552\pi\)
−0.845255 + 0.534362i \(0.820552\pi\)
\(410\) 0 0
\(411\) −1684.45 −0.202160
\(412\) 0 0
\(413\) −23456.5 −2.79471
\(414\) 0 0
\(415\) 1124.91 0.133059
\(416\) 0 0
\(417\) 7523.99 0.883576
\(418\) 0 0
\(419\) 14577.2 1.69962 0.849810 0.527089i \(-0.176716\pi\)
0.849810 + 0.527089i \(0.176716\pi\)
\(420\) 0 0
\(421\) −10189.3 −1.17956 −0.589781 0.807563i \(-0.700786\pi\)
−0.589781 + 0.807563i \(0.700786\pi\)
\(422\) 0 0
\(423\) −3716.46 −0.427188
\(424\) 0 0
\(425\) 441.341 0.0503722
\(426\) 0 0
\(427\) 12115.7 1.37311
\(428\) 0 0
\(429\) −2156.87 −0.242738
\(430\) 0 0
\(431\) 1454.83 0.162591 0.0812954 0.996690i \(-0.474094\pi\)
0.0812954 + 0.996690i \(0.474094\pi\)
\(432\) 0 0
\(433\) −5813.61 −0.645229 −0.322615 0.946530i \(-0.604562\pi\)
−0.322615 + 0.946530i \(0.604562\pi\)
\(434\) 0 0
\(435\) −395.843 −0.0436304
\(436\) 0 0
\(437\) −1954.80 −0.213983
\(438\) 0 0
\(439\) −16307.4 −1.77291 −0.886456 0.462813i \(-0.846840\pi\)
−0.886456 + 0.462813i \(0.846840\pi\)
\(440\) 0 0
\(441\) −14113.8 −1.52401
\(442\) 0 0
\(443\) −14548.1 −1.56028 −0.780138 0.625607i \(-0.784851\pi\)
−0.780138 + 0.625607i \(0.784851\pi\)
\(444\) 0 0
\(445\) −3464.30 −0.369041
\(446\) 0 0
\(447\) −5168.35 −0.546878
\(448\) 0 0
\(449\) −2528.57 −0.265769 −0.132885 0.991132i \(-0.542424\pi\)
−0.132885 + 0.991132i \(0.542424\pi\)
\(450\) 0 0
\(451\) 3802.95 0.397060
\(452\) 0 0
\(453\) 6585.44 0.683026
\(454\) 0 0
\(455\) −3822.27 −0.393826
\(456\) 0 0
\(457\) 10161.9 1.04016 0.520082 0.854116i \(-0.325901\pi\)
0.520082 + 0.854116i \(0.325901\pi\)
\(458\) 0 0
\(459\) −2243.28 −0.228121
\(460\) 0 0
\(461\) −242.986 −0.0245488 −0.0122744 0.999925i \(-0.503907\pi\)
−0.0122744 + 0.999925i \(0.503907\pi\)
\(462\) 0 0
\(463\) 1821.44 0.182828 0.0914141 0.995813i \(-0.470861\pi\)
0.0914141 + 0.995813i \(0.470861\pi\)
\(464\) 0 0
\(465\) −385.977 −0.0384930
\(466\) 0 0
\(467\) 5999.05 0.594439 0.297219 0.954809i \(-0.403941\pi\)
0.297219 + 0.954809i \(0.403941\pi\)
\(468\) 0 0
\(469\) −14288.7 −1.40681
\(470\) 0 0
\(471\) −6999.30 −0.684736
\(472\) 0 0
\(473\) −7525.61 −0.731560
\(474\) 0 0
\(475\) 2155.11 0.208175
\(476\) 0 0
\(477\) −14758.9 −1.41670
\(478\) 0 0
\(479\) −19125.1 −1.82431 −0.912156 0.409842i \(-0.865584\pi\)
−0.912156 + 0.409842i \(0.865584\pi\)
\(480\) 0 0
\(481\) 2789.58 0.264437
\(482\) 0 0
\(483\) −2020.27 −0.190322
\(484\) 0 0
\(485\) 6044.02 0.565866
\(486\) 0 0
\(487\) −2143.13 −0.199414 −0.0997071 0.995017i \(-0.531791\pi\)
−0.0997071 + 0.995017i \(0.531791\pi\)
\(488\) 0 0
\(489\) 7640.44 0.706570
\(490\) 0 0
\(491\) −14070.1 −1.29323 −0.646615 0.762817i \(-0.723816\pi\)
−0.646615 + 0.762817i \(0.723816\pi\)
\(492\) 0 0
\(493\) 511.956 0.0467694
\(494\) 0 0
\(495\) −3296.53 −0.299329
\(496\) 0 0
\(497\) 6486.23 0.585406
\(498\) 0 0
\(499\) 3549.57 0.318438 0.159219 0.987243i \(-0.449102\pi\)
0.159219 + 0.987243i \(0.449102\pi\)
\(500\) 0 0
\(501\) 1255.07 0.111921
\(502\) 0 0
\(503\) 2006.06 0.177824 0.0889122 0.996039i \(-0.471661\pi\)
0.0889122 + 0.996039i \(0.471661\pi\)
\(504\) 0 0
\(505\) −4568.06 −0.402527
\(506\) 0 0
\(507\) −4499.76 −0.394165
\(508\) 0 0
\(509\) −16187.3 −1.40961 −0.704803 0.709403i \(-0.748965\pi\)
−0.704803 + 0.709403i \(0.748965\pi\)
\(510\) 0 0
\(511\) −2920.56 −0.252833
\(512\) 0 0
\(513\) −10954.1 −0.942763
\(514\) 0 0
\(515\) 5261.03 0.450153
\(516\) 0 0
\(517\) −6412.69 −0.545512
\(518\) 0 0
\(519\) 4596.97 0.388795
\(520\) 0 0
\(521\) 9262.91 0.778916 0.389458 0.921044i \(-0.372662\pi\)
0.389458 + 0.921044i \(0.372662\pi\)
\(522\) 0 0
\(523\) −1666.98 −0.139373 −0.0696865 0.997569i \(-0.522200\pi\)
−0.0696865 + 0.997569i \(0.522200\pi\)
\(524\) 0 0
\(525\) 2227.29 0.185156
\(526\) 0 0
\(527\) 499.196 0.0412625
\(528\) 0 0
\(529\) −11652.8 −0.957737
\(530\) 0 0
\(531\) 14049.8 1.14823
\(532\) 0 0
\(533\) −2641.14 −0.214635
\(534\) 0 0
\(535\) 3232.74 0.261241
\(536\) 0 0
\(537\) −2176.97 −0.174940
\(538\) 0 0
\(539\) −24353.2 −1.94613
\(540\) 0 0
\(541\) −18376.9 −1.46042 −0.730208 0.683225i \(-0.760577\pi\)
−0.730208 + 0.683225i \(0.760577\pi\)
\(542\) 0 0
\(543\) 10227.0 0.808259
\(544\) 0 0
\(545\) −10161.8 −0.798684
\(546\) 0 0
\(547\) −19500.6 −1.52428 −0.762142 0.647409i \(-0.775852\pi\)
−0.762142 + 0.647409i \(0.775852\pi\)
\(548\) 0 0
\(549\) −7256.95 −0.564152
\(550\) 0 0
\(551\) 2499.92 0.193285
\(552\) 0 0
\(553\) 28673.4 2.20491
\(554\) 0 0
\(555\) −1625.53 −0.124324
\(556\) 0 0
\(557\) −10162.4 −0.773058 −0.386529 0.922277i \(-0.626326\pi\)
−0.386529 + 0.922277i \(0.626326\pi\)
\(558\) 0 0
\(559\) 5226.52 0.395453
\(560\) 0 0
\(561\) −1625.50 −0.122333
\(562\) 0 0
\(563\) 11988.9 0.897465 0.448732 0.893666i \(-0.351876\pi\)
0.448732 + 0.893666i \(0.351876\pi\)
\(564\) 0 0
\(565\) −2385.19 −0.177603
\(566\) 0 0
\(567\) 5902.95 0.437214
\(568\) 0 0
\(569\) 15529.6 1.14418 0.572088 0.820192i \(-0.306133\pi\)
0.572088 + 0.820192i \(0.306133\pi\)
\(570\) 0 0
\(571\) 22574.2 1.65447 0.827233 0.561858i \(-0.189913\pi\)
0.827233 + 0.561858i \(0.189913\pi\)
\(572\) 0 0
\(573\) 810.464 0.0590883
\(574\) 0 0
\(575\) −566.908 −0.0411160
\(576\) 0 0
\(577\) −19424.8 −1.40150 −0.700750 0.713407i \(-0.747151\pi\)
−0.700750 + 0.713407i \(0.747151\pi\)
\(578\) 0 0
\(579\) 42.9746 0.00308457
\(580\) 0 0
\(581\) −7342.23 −0.524281
\(582\) 0 0
\(583\) −25466.3 −1.80910
\(584\) 0 0
\(585\) 2289.43 0.161806
\(586\) 0 0
\(587\) −15690.8 −1.10329 −0.551643 0.834081i \(-0.685999\pi\)
−0.551643 + 0.834081i \(0.685999\pi\)
\(588\) 0 0
\(589\) 2437.62 0.170527
\(590\) 0 0
\(591\) 8015.93 0.557921
\(592\) 0 0
\(593\) 17116.3 1.18530 0.592648 0.805461i \(-0.298082\pi\)
0.592648 + 0.805461i \(0.298082\pi\)
\(594\) 0 0
\(595\) −2880.62 −0.198477
\(596\) 0 0
\(597\) 9595.26 0.657802
\(598\) 0 0
\(599\) 320.621 0.0218701 0.0109351 0.999940i \(-0.496519\pi\)
0.0109351 + 0.999940i \(0.496519\pi\)
\(600\) 0 0
\(601\) 12826.3 0.870541 0.435270 0.900300i \(-0.356653\pi\)
0.435270 + 0.900300i \(0.356653\pi\)
\(602\) 0 0
\(603\) 8558.55 0.577995
\(604\) 0 0
\(605\) 966.894 0.0649749
\(606\) 0 0
\(607\) −18810.9 −1.25784 −0.628922 0.777468i \(-0.716503\pi\)
−0.628922 + 0.777468i \(0.716503\pi\)
\(608\) 0 0
\(609\) 2583.65 0.171913
\(610\) 0 0
\(611\) 4453.60 0.294883
\(612\) 0 0
\(613\) 5563.73 0.366586 0.183293 0.983058i \(-0.441324\pi\)
0.183293 + 0.983058i \(0.441324\pi\)
\(614\) 0 0
\(615\) 1539.03 0.100910
\(616\) 0 0
\(617\) −13275.1 −0.866186 −0.433093 0.901349i \(-0.642578\pi\)
−0.433093 + 0.901349i \(0.642578\pi\)
\(618\) 0 0
\(619\) −28067.6 −1.82251 −0.911254 0.411846i \(-0.864884\pi\)
−0.911254 + 0.411846i \(0.864884\pi\)
\(620\) 0 0
\(621\) 2881.53 0.186202
\(622\) 0 0
\(623\) 22611.4 1.45410
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −7937.47 −0.505570
\(628\) 0 0
\(629\) 2102.35 0.133269
\(630\) 0 0
\(631\) −6859.00 −0.432730 −0.216365 0.976313i \(-0.569420\pi\)
−0.216365 + 0.976313i \(0.569420\pi\)
\(632\) 0 0
\(633\) 10107.5 0.634658
\(634\) 0 0
\(635\) −8866.25 −0.554089
\(636\) 0 0
\(637\) 16913.2 1.05200
\(638\) 0 0
\(639\) −3885.07 −0.240518
\(640\) 0 0
\(641\) −19465.6 −1.19945 −0.599724 0.800207i \(-0.704723\pi\)
−0.599724 + 0.800207i \(0.704723\pi\)
\(642\) 0 0
\(643\) 26696.9 1.63736 0.818682 0.574247i \(-0.194705\pi\)
0.818682 + 0.574247i \(0.194705\pi\)
\(644\) 0 0
\(645\) −3045.56 −0.185921
\(646\) 0 0
\(647\) 8412.89 0.511197 0.255599 0.966783i \(-0.417727\pi\)
0.255599 + 0.966783i \(0.417727\pi\)
\(648\) 0 0
\(649\) 24242.6 1.46627
\(650\) 0 0
\(651\) 2519.26 0.151671
\(652\) 0 0
\(653\) 7334.94 0.439569 0.219784 0.975548i \(-0.429465\pi\)
0.219784 + 0.975548i \(0.429465\pi\)
\(654\) 0 0
\(655\) −6756.23 −0.403035
\(656\) 0 0
\(657\) 1749.33 0.103878
\(658\) 0 0
\(659\) −4799.57 −0.283709 −0.141855 0.989887i \(-0.545307\pi\)
−0.141855 + 0.989887i \(0.545307\pi\)
\(660\) 0 0
\(661\) 1557.26 0.0916343 0.0458171 0.998950i \(-0.485411\pi\)
0.0458171 + 0.998950i \(0.485411\pi\)
\(662\) 0 0
\(663\) 1128.91 0.0661284
\(664\) 0 0
\(665\) −14066.3 −0.820253
\(666\) 0 0
\(667\) −657.613 −0.0381752
\(668\) 0 0
\(669\) −8263.22 −0.477541
\(670\) 0 0
\(671\) −12521.7 −0.720412
\(672\) 0 0
\(673\) −11532.0 −0.660515 −0.330257 0.943891i \(-0.607136\pi\)
−0.330257 + 0.943891i \(0.607136\pi\)
\(674\) 0 0
\(675\) −3176.80 −0.181148
\(676\) 0 0
\(677\) 5681.03 0.322511 0.161255 0.986913i \(-0.448446\pi\)
0.161255 + 0.986913i \(0.448446\pi\)
\(678\) 0 0
\(679\) −39449.2 −2.22963
\(680\) 0 0
\(681\) −4396.02 −0.247366
\(682\) 0 0
\(683\) −10410.0 −0.583203 −0.291601 0.956540i \(-0.594188\pi\)
−0.291601 + 0.956540i \(0.594188\pi\)
\(684\) 0 0
\(685\) 3085.12 0.172082
\(686\) 0 0
\(687\) −9842.40 −0.546595
\(688\) 0 0
\(689\) 17686.3 0.977929
\(690\) 0 0
\(691\) 23408.8 1.28873 0.644366 0.764717i \(-0.277121\pi\)
0.644366 + 0.764717i \(0.277121\pi\)
\(692\) 0 0
\(693\) 21516.4 1.17942
\(694\) 0 0
\(695\) −13780.4 −0.752118
\(696\) 0 0
\(697\) −1990.47 −0.108170
\(698\) 0 0
\(699\) 3917.01 0.211953
\(700\) 0 0
\(701\) 25111.5 1.35299 0.676497 0.736445i \(-0.263497\pi\)
0.676497 + 0.736445i \(0.263497\pi\)
\(702\) 0 0
\(703\) 10265.9 0.550764
\(704\) 0 0
\(705\) −2595.17 −0.138638
\(706\) 0 0
\(707\) 29815.6 1.58604
\(708\) 0 0
\(709\) 13621.7 0.721543 0.360771 0.932654i \(-0.382513\pi\)
0.360771 + 0.932654i \(0.382513\pi\)
\(710\) 0 0
\(711\) −17174.6 −0.905902
\(712\) 0 0
\(713\) −641.224 −0.0336802
\(714\) 0 0
\(715\) 3950.38 0.206623
\(716\) 0 0
\(717\) −10468.5 −0.545263
\(718\) 0 0
\(719\) 21520.2 1.11623 0.558115 0.829764i \(-0.311525\pi\)
0.558115 + 0.829764i \(0.311525\pi\)
\(720\) 0 0
\(721\) −34338.6 −1.77370
\(722\) 0 0
\(723\) −6538.48 −0.336333
\(724\) 0 0
\(725\) 725.000 0.0371391
\(726\) 0 0
\(727\) −13731.8 −0.700530 −0.350265 0.936651i \(-0.613908\pi\)
−0.350265 + 0.936651i \(0.613908\pi\)
\(728\) 0 0
\(729\) 5830.60 0.296225
\(730\) 0 0
\(731\) 3938.92 0.199297
\(732\) 0 0
\(733\) 14047.1 0.707833 0.353916 0.935277i \(-0.384850\pi\)
0.353916 + 0.935277i \(0.384850\pi\)
\(734\) 0 0
\(735\) −9855.57 −0.494596
\(736\) 0 0
\(737\) 14767.6 0.738090
\(738\) 0 0
\(739\) −17818.9 −0.886982 −0.443491 0.896279i \(-0.646260\pi\)
−0.443491 + 0.896279i \(0.646260\pi\)
\(740\) 0 0
\(741\) 5512.55 0.273291
\(742\) 0 0
\(743\) 3761.53 0.185730 0.0928649 0.995679i \(-0.470398\pi\)
0.0928649 + 0.995679i \(0.470398\pi\)
\(744\) 0 0
\(745\) 9466.01 0.465514
\(746\) 0 0
\(747\) 4397.79 0.215404
\(748\) 0 0
\(749\) −21100.0 −1.02934
\(750\) 0 0
\(751\) 9764.67 0.474458 0.237229 0.971454i \(-0.423761\pi\)
0.237229 + 0.971454i \(0.423761\pi\)
\(752\) 0 0
\(753\) 2634.67 0.127507
\(754\) 0 0
\(755\) −12061.5 −0.581406
\(756\) 0 0
\(757\) −23780.7 −1.14178 −0.570888 0.821028i \(-0.693401\pi\)
−0.570888 + 0.821028i \(0.693401\pi\)
\(758\) 0 0
\(759\) 2087.98 0.0998536
\(760\) 0 0
\(761\) 6342.11 0.302104 0.151052 0.988526i \(-0.451734\pi\)
0.151052 + 0.988526i \(0.451734\pi\)
\(762\) 0 0
\(763\) 66325.6 3.14698
\(764\) 0 0
\(765\) 1725.41 0.0815456
\(766\) 0 0
\(767\) −16836.4 −0.792606
\(768\) 0 0
\(769\) 4968.25 0.232977 0.116489 0.993192i \(-0.462836\pi\)
0.116489 + 0.993192i \(0.462836\pi\)
\(770\) 0 0
\(771\) 1537.25 0.0718061
\(772\) 0 0
\(773\) 22348.5 1.03987 0.519934 0.854206i \(-0.325957\pi\)
0.519934 + 0.854206i \(0.325957\pi\)
\(774\) 0 0
\(775\) 706.931 0.0327661
\(776\) 0 0
\(777\) 10609.8 0.489863
\(778\) 0 0
\(779\) −9719.64 −0.447038
\(780\) 0 0
\(781\) −6703.62 −0.307137
\(782\) 0 0
\(783\) −3685.09 −0.168192
\(784\) 0 0
\(785\) 12819.5 0.582862
\(786\) 0 0
\(787\) −6726.01 −0.304646 −0.152323 0.988331i \(-0.548675\pi\)
−0.152323 + 0.988331i \(0.548675\pi\)
\(788\) 0 0
\(789\) −12218.1 −0.551301
\(790\) 0 0
\(791\) 15568.1 0.699794
\(792\) 0 0
\(793\) 8696.32 0.389427
\(794\) 0 0
\(795\) −10306.0 −0.459770
\(796\) 0 0
\(797\) −25298.1 −1.12435 −0.562174 0.827019i \(-0.690035\pi\)
−0.562174 + 0.827019i \(0.690035\pi\)
\(798\) 0 0
\(799\) 3356.42 0.148613
\(800\) 0 0
\(801\) −13543.6 −0.597427
\(802\) 0 0
\(803\) 3018.44 0.132651
\(804\) 0 0
\(805\) 3700.19 0.162006
\(806\) 0 0
\(807\) 12497.7 0.545153
\(808\) 0 0
\(809\) −25540.5 −1.10996 −0.554979 0.831865i \(-0.687274\pi\)
−0.554979 + 0.831865i \(0.687274\pi\)
\(810\) 0 0
\(811\) −20640.1 −0.893677 −0.446839 0.894615i \(-0.647450\pi\)
−0.446839 + 0.894615i \(0.647450\pi\)
\(812\) 0 0
\(813\) 5117.50 0.220761
\(814\) 0 0
\(815\) −13993.7 −0.601447
\(816\) 0 0
\(817\) 19234.1 0.823642
\(818\) 0 0
\(819\) −14943.1 −0.637549
\(820\) 0 0
\(821\) 21932.8 0.932349 0.466175 0.884693i \(-0.345632\pi\)
0.466175 + 0.884693i \(0.345632\pi\)
\(822\) 0 0
\(823\) −9930.66 −0.420609 −0.210304 0.977636i \(-0.567445\pi\)
−0.210304 + 0.977636i \(0.567445\pi\)
\(824\) 0 0
\(825\) −2301.94 −0.0971433
\(826\) 0 0
\(827\) −24065.8 −1.01191 −0.505956 0.862559i \(-0.668860\pi\)
−0.505956 + 0.862559i \(0.668860\pi\)
\(828\) 0 0
\(829\) 29885.6 1.25208 0.626038 0.779793i \(-0.284676\pi\)
0.626038 + 0.779793i \(0.284676\pi\)
\(830\) 0 0
\(831\) 22644.0 0.945260
\(832\) 0 0
\(833\) 12746.5 0.530181
\(834\) 0 0
\(835\) −2298.70 −0.0952693
\(836\) 0 0
\(837\) −3593.24 −0.148388
\(838\) 0 0
\(839\) 3525.59 0.145074 0.0725370 0.997366i \(-0.476890\pi\)
0.0725370 + 0.997366i \(0.476890\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 0 0
\(843\) −13489.4 −0.551127
\(844\) 0 0
\(845\) 8241.47 0.335521
\(846\) 0 0
\(847\) −6310.89 −0.256015
\(848\) 0 0
\(849\) −19731.2 −0.797613
\(850\) 0 0
\(851\) −2700.49 −0.108780
\(852\) 0 0
\(853\) −32471.5 −1.30340 −0.651701 0.758476i \(-0.725944\pi\)
−0.651701 + 0.758476i \(0.725944\pi\)
\(854\) 0 0
\(855\) 8425.33 0.337006
\(856\) 0 0
\(857\) 17181.3 0.684833 0.342417 0.939548i \(-0.388755\pi\)
0.342417 + 0.939548i \(0.388755\pi\)
\(858\) 0 0
\(859\) −4979.08 −0.197769 −0.0988847 0.995099i \(-0.531528\pi\)
−0.0988847 + 0.995099i \(0.531528\pi\)
\(860\) 0 0
\(861\) −10045.2 −0.397606
\(862\) 0 0
\(863\) 4517.03 0.178171 0.0890854 0.996024i \(-0.471606\pi\)
0.0890854 + 0.996024i \(0.471606\pi\)
\(864\) 0 0
\(865\) −8419.52 −0.330950
\(866\) 0 0
\(867\) −12561.5 −0.492052
\(868\) 0 0
\(869\) −29634.4 −1.15682
\(870\) 0 0
\(871\) −10256.1 −0.398983
\(872\) 0 0
\(873\) 23629.0 0.916058
\(874\) 0 0
\(875\) −4079.36 −0.157608
\(876\) 0 0
\(877\) −6452.68 −0.248451 −0.124225 0.992254i \(-0.539645\pi\)
−0.124225 + 0.992254i \(0.539645\pi\)
\(878\) 0 0
\(879\) −4360.69 −0.167329
\(880\) 0 0
\(881\) 2837.29 0.108502 0.0542512 0.998527i \(-0.482723\pi\)
0.0542512 + 0.998527i \(0.482723\pi\)
\(882\) 0 0
\(883\) −11073.2 −0.422018 −0.211009 0.977484i \(-0.567675\pi\)
−0.211009 + 0.977484i \(0.567675\pi\)
\(884\) 0 0
\(885\) 9810.82 0.372641
\(886\) 0 0
\(887\) −30442.7 −1.15238 −0.576192 0.817314i \(-0.695462\pi\)
−0.576192 + 0.817314i \(0.695462\pi\)
\(888\) 0 0
\(889\) 57869.7 2.18323
\(890\) 0 0
\(891\) −6100.79 −0.229388
\(892\) 0 0
\(893\) 16389.7 0.614176
\(894\) 0 0
\(895\) 3987.19 0.148913
\(896\) 0 0
\(897\) −1450.10 −0.0539769
\(898\) 0 0
\(899\) 820.040 0.0304225
\(900\) 0 0
\(901\) 13329.1 0.492849
\(902\) 0 0
\(903\) 19878.3 0.732568
\(904\) 0 0
\(905\) −18731.2 −0.688007
\(906\) 0 0
\(907\) 33276.0 1.21820 0.609102 0.793092i \(-0.291530\pi\)
0.609102 + 0.793092i \(0.291530\pi\)
\(908\) 0 0
\(909\) −17858.7 −0.651635
\(910\) 0 0
\(911\) 31871.2 1.15910 0.579550 0.814936i \(-0.303228\pi\)
0.579550 + 0.814936i \(0.303228\pi\)
\(912\) 0 0
\(913\) 7588.32 0.275067
\(914\) 0 0
\(915\) −5067.47 −0.183088
\(916\) 0 0
\(917\) 44097.7 1.58804
\(918\) 0 0
\(919\) −14502.6 −0.520562 −0.260281 0.965533i \(-0.583815\pi\)
−0.260281 + 0.965533i \(0.583815\pi\)
\(920\) 0 0
\(921\) 14593.5 0.522119
\(922\) 0 0
\(923\) 4655.65 0.166027
\(924\) 0 0
\(925\) 2977.21 0.105827
\(926\) 0 0
\(927\) 20567.9 0.728734
\(928\) 0 0
\(929\) −30601.2 −1.08072 −0.540362 0.841433i \(-0.681713\pi\)
−0.540362 + 0.841433i \(0.681713\pi\)
\(930\) 0 0
\(931\) 62242.3 2.19110
\(932\) 0 0
\(933\) 7740.80 0.271621
\(934\) 0 0
\(935\) 2977.17 0.104132
\(936\) 0 0
\(937\) −16692.8 −0.581995 −0.290998 0.956724i \(-0.593987\pi\)
−0.290998 + 0.956724i \(0.593987\pi\)
\(938\) 0 0
\(939\) 16252.1 0.564822
\(940\) 0 0
\(941\) 32223.3 1.11631 0.558155 0.829737i \(-0.311509\pi\)
0.558155 + 0.829737i \(0.311509\pi\)
\(942\) 0 0
\(943\) 2556.79 0.0882931
\(944\) 0 0
\(945\) 20734.9 0.713763
\(946\) 0 0
\(947\) 39876.1 1.36832 0.684159 0.729333i \(-0.260169\pi\)
0.684159 + 0.729333i \(0.260169\pi\)
\(948\) 0 0
\(949\) −2096.30 −0.0717058
\(950\) 0 0
\(951\) −1550.00 −0.0528519
\(952\) 0 0
\(953\) −23616.0 −0.802726 −0.401363 0.915919i \(-0.631463\pi\)
−0.401363 + 0.915919i \(0.631463\pi\)
\(954\) 0 0
\(955\) −1484.39 −0.0502972
\(956\) 0 0
\(957\) −2670.25 −0.0901953
\(958\) 0 0
\(959\) −20136.5 −0.678041
\(960\) 0 0
\(961\) −28991.4 −0.973160
\(962\) 0 0
\(963\) 12638.3 0.422912
\(964\) 0 0
\(965\) −78.7096 −0.00262565
\(966\) 0 0
\(967\) −38203.8 −1.27048 −0.635238 0.772316i \(-0.719098\pi\)
−0.635238 + 0.772316i \(0.719098\pi\)
\(968\) 0 0
\(969\) 4154.49 0.137731
\(970\) 0 0
\(971\) 490.958 0.0162262 0.00811308 0.999967i \(-0.497417\pi\)
0.00811308 + 0.999967i \(0.497417\pi\)
\(972\) 0 0
\(973\) 89944.5 2.96350
\(974\) 0 0
\(975\) 1598.69 0.0525119
\(976\) 0 0
\(977\) −1628.73 −0.0533342 −0.0266671 0.999644i \(-0.508489\pi\)
−0.0266671 + 0.999644i \(0.508489\pi\)
\(978\) 0 0
\(979\) −23369.2 −0.762904
\(980\) 0 0
\(981\) −39727.2 −1.29296
\(982\) 0 0
\(983\) −9795.97 −0.317846 −0.158923 0.987291i \(-0.550802\pi\)
−0.158923 + 0.987291i \(0.550802\pi\)
\(984\) 0 0
\(985\) −14681.5 −0.474914
\(986\) 0 0
\(987\) 16938.6 0.546263
\(988\) 0 0
\(989\) −5059.59 −0.162675
\(990\) 0 0
\(991\) 37700.6 1.20847 0.604237 0.796805i \(-0.293478\pi\)
0.604237 + 0.796805i \(0.293478\pi\)
\(992\) 0 0
\(993\) 8696.73 0.277928
\(994\) 0 0
\(995\) −17574.1 −0.559935
\(996\) 0 0
\(997\) 7451.87 0.236713 0.118357 0.992971i \(-0.462237\pi\)
0.118357 + 0.992971i \(0.462237\pi\)
\(998\) 0 0
\(999\) −15132.8 −0.479260
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1160.4.a.h.1.7 11
4.3 odd 2 2320.4.a.z.1.5 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.4.a.h.1.7 11 1.1 even 1 trivial
2320.4.a.z.1.5 11 4.3 odd 2