Properties

Label 117.10.a.e.1.1
Level 117117
Weight 1010
Character 117.1
Self dual yes
Analytic conductor 60.25960.259
Analytic rank 11
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Toggle raw display
Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,10,Mod(1,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 117=3213 117 = 3^{2} \cdot 13
Weight: k k == 10 10
Character orbit: [χ][\chi] == 117.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 60.259192831260.2591928312
Analytic rank: 11
Dimension: 55
Coefficient field: Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x51438x34164x2+396957x59580 x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 223 2^{2}\cdot 3
Twist minimal: no (minimal twist has level 13)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 35.168535.1685 of defining polynomial
Character χ\chi == 117.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q38.1685q2+944.833q4+109.762q5+5947.44q716520.6q84189.45q10+25205.7q11+28561.0q13227005.q14+146811.q16109318.q17904609.q19+103707.q20962062.q22+435749.q231.94108e6q251.09013e6q26+5.61934e6q286.44791e6q29+6.62308e6q31+2.85499e6q32+4.17250e6q34+652804.q35+4.14357e6q37+3.45275e7q381.81333e6q401.49568e7q41+4.01789e7q43+2.38151e7q441.66319e7q466.30151e6q474.98153e6q49+7.40880e7q50+2.69854e7q521.53111e7q53+2.76663e6q559.82552e7q56+2.46107e8q58+1.52760e8q59+8.66321e7q612.52793e8q621.84138e8q64+3.13492e6q651.01034e8q671.03287e8q682.49165e7q704.13122e8q713.14453e8q731.58154e8q748.54704e8q76+1.49909e8q772.00580e8q79+1.61143e7q80+5.70879e8q826.34578e7q831.19990e7q851.53357e9q864.16412e8q883.47074e7q89+1.69865e8q91+4.11710e8q92+2.40519e8q949.92918e7q951.25403e9q97+1.90137e8q98+O(q100)q-38.1685 q^{2} +944.833 q^{4} +109.762 q^{5} +5947.44 q^{7} -16520.6 q^{8} -4189.45 q^{10} +25205.7 q^{11} +28561.0 q^{13} -227005. q^{14} +146811. q^{16} -109318. q^{17} -904609. q^{19} +103707. q^{20} -962062. q^{22} +435749. q^{23} -1.94108e6 q^{25} -1.09013e6 q^{26} +5.61934e6 q^{28} -6.44791e6 q^{29} +6.62308e6 q^{31} +2.85499e6 q^{32} +4.17250e6 q^{34} +652804. q^{35} +4.14357e6 q^{37} +3.45275e7 q^{38} -1.81333e6 q^{40} -1.49568e7 q^{41} +4.01789e7 q^{43} +2.38151e7 q^{44} -1.66319e7 q^{46} -6.30151e6 q^{47} -4.98153e6 q^{49} +7.40880e7 q^{50} +2.69854e7 q^{52} -1.53111e7 q^{53} +2.76663e6 q^{55} -9.82552e7 q^{56} +2.46107e8 q^{58} +1.52760e8 q^{59} +8.66321e7 q^{61} -2.52793e8 q^{62} -1.84138e8 q^{64} +3.13492e6 q^{65} -1.01034e8 q^{67} -1.03287e8 q^{68} -2.49165e7 q^{70} -4.13122e8 q^{71} -3.14453e8 q^{73} -1.58154e8 q^{74} -8.54704e8 q^{76} +1.49909e8 q^{77} -2.00580e8 q^{79} +1.61143e7 q^{80} +5.70879e8 q^{82} -6.34578e7 q^{83} -1.19990e7 q^{85} -1.53357e9 q^{86} -4.16412e8 q^{88} -3.47074e7 q^{89} +1.69865e8 q^{91} +4.11710e8 q^{92} +2.40519e8 q^{94} -9.92918e7 q^{95} -1.25403e9 q^{97} +1.90137e8 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q15q2+361q41803q5+10099q723151q8+84505q10121746q11+142805q138475q14322463q16+495669q17840738q19+1595607q202023594q22+1570614816q98+O(q100) 5 q - 15 q^{2} + 361 q^{4} - 1803 q^{5} + 10099 q^{7} - 23151 q^{8} + 84505 q^{10} - 121746 q^{11} + 142805 q^{13} - 8475 q^{14} - 322463 q^{16} + 495669 q^{17} - 840738 q^{19} + 1595607 q^{20} - 2023594 q^{22}+ \cdots - 1570614816 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −38.1685 −1.68682 −0.843412 0.537267i 0.819457π-0.819457\pi
−0.843412 + 0.537267i 0.819457π0.819457\pi
33 0 0
44 944.833 1.84538
55 109.762 0.0785394 0.0392697 0.999229i 0.487497π-0.487497\pi
0.0392697 + 0.999229i 0.487497π0.487497\pi
66 0 0
77 5947.44 0.936244 0.468122 0.883664i 0.344931π-0.344931\pi
0.468122 + 0.883664i 0.344931π0.344931\pi
88 −16520.6 −1.42600
99 0 0
1010 −4189.45 −0.132482
1111 25205.7 0.519076 0.259538 0.965733i 0.416430π-0.416430\pi
0.259538 + 0.965733i 0.416430π0.416430\pi
1212 0 0
1313 28561.0 0.277350
1414 −227005. −1.57928
1515 0 0
1616 146811. 0.560039
1717 −109318. −0.317447 −0.158724 0.987323i 0.550738π-0.550738\pi
−0.158724 + 0.987323i 0.550738π0.550738\pi
1818 0 0
1919 −904609. −1.59246 −0.796232 0.604992i 0.793176π-0.793176\pi
−0.796232 + 0.604992i 0.793176π0.793176\pi
2020 103707. 0.144935
2121 0 0
2222 −962062. −0.875590
2323 435749. 0.324684 0.162342 0.986735i 0.448095π-0.448095\pi
0.162342 + 0.986735i 0.448095π0.448095\pi
2424 0 0
2525 −1.94108e6 −0.993832
2626 −1.09013e6 −0.467841
2727 0 0
2828 5.61934e6 1.72772
2929 −6.44791e6 −1.69289 −0.846443 0.532479i 0.821260π-0.821260\pi
−0.846443 + 0.532479i 0.821260π0.821260\pi
3030 0 0
3131 6.62308e6 1.28805 0.644024 0.765005i 0.277264π-0.277264\pi
0.644024 + 0.765005i 0.277264π0.277264\pi
3232 2.85499e6 0.481315
3333 0 0
3434 4.17250e6 0.535477
3535 652804. 0.0735320
3636 0 0
3737 4.14357e6 0.363469 0.181734 0.983348i 0.441829π-0.441829\pi
0.181734 + 0.983348i 0.441829π0.441829\pi
3838 3.45275e7 2.68621
3939 0 0
4040 −1.81333e6 −0.111997
4141 −1.49568e7 −0.826632 −0.413316 0.910588i 0.635630π-0.635630\pi
−0.413316 + 0.910588i 0.635630π0.635630\pi
4242 0 0
4343 4.01789e7 1.79221 0.896107 0.443838i 0.146384π-0.146384\pi
0.896107 + 0.443838i 0.146384π0.146384\pi
4444 2.38151e7 0.957891
4545 0 0
4646 −1.66319e7 −0.547685
4747 −6.30151e6 −0.188367 −0.0941834 0.995555i 0.530024π-0.530024\pi
−0.0941834 + 0.995555i 0.530024π0.530024\pi
4848 0 0
4949 −4.98153e6 −0.123447
5050 7.40880e7 1.67642
5151 0 0
5252 2.69854e7 0.511815
5353 −1.53111e7 −0.266542 −0.133271 0.991080i 0.542548π-0.542548\pi
−0.133271 + 0.991080i 0.542548π0.542548\pi
5454 0 0
5555 2.76663e6 0.0407679
5656 −9.82552e7 −1.33509
5757 0 0
5858 2.46107e8 2.85560
5959 1.52760e8 1.64126 0.820629 0.571462i 0.193624π-0.193624\pi
0.820629 + 0.571462i 0.193624π0.193624\pi
6060 0 0
6161 8.66321e7 0.801114 0.400557 0.916272i 0.368817π-0.368817\pi
0.400557 + 0.916272i 0.368817π0.368817\pi
6262 −2.52793e8 −2.17271
6363 0 0
6464 −1.84138e8 −1.37193
6565 3.13492e6 0.0217829
6666 0 0
6767 −1.01034e8 −0.612537 −0.306268 0.951945i 0.599080π-0.599080\pi
−0.306268 + 0.951945i 0.599080π0.599080\pi
6868 −1.03287e8 −0.585809
6969 0 0
7070 −2.49165e7 −0.124036
7171 −4.13122e8 −1.92937 −0.964685 0.263406i 0.915154π-0.915154\pi
−0.964685 + 0.263406i 0.915154π0.915154\pi
7272 0 0
7373 −3.14453e8 −1.29599 −0.647997 0.761643i 0.724393π-0.724393\pi
−0.647997 + 0.761643i 0.724393π0.724393\pi
7474 −1.58154e8 −0.613108
7575 0 0
7676 −8.54704e8 −2.93870
7777 1.49909e8 0.485982
7878 0 0
7979 −2.00580e8 −0.579383 −0.289692 0.957120i 0.593553π-0.593553\pi
−0.289692 + 0.957120i 0.593553π0.593553\pi
8080 1.61143e7 0.0439851
8181 0 0
8282 5.70879e8 1.39438
8383 −6.34578e7 −0.146769 −0.0733843 0.997304i 0.523380π-0.523380\pi
−0.0733843 + 0.997304i 0.523380π0.523380\pi
8484 0 0
8585 −1.19990e7 −0.0249321
8686 −1.53357e9 −3.02315
8787 0 0
8888 −4.16412e8 −0.740204
8989 −3.47074e7 −0.0586364 −0.0293182 0.999570i 0.509334π-0.509334\pi
−0.0293182 + 0.999570i 0.509334π0.509334\pi
9090 0 0
9191 1.69865e8 0.259667
9292 4.11710e8 0.599164
9393 0 0
9494 2.40519e8 0.317742
9595 −9.92918e7 −0.125071
9696 0 0
9797 −1.25403e9 −1.43825 −0.719127 0.694879i 0.755458π-0.755458\pi
−0.719127 + 0.694879i 0.755458π0.755458\pi
9898 1.90137e8 0.208233
9999 0 0
100100 −1.83399e9 −1.83399
101101 9.06459e8 0.866766 0.433383 0.901210i 0.357320π-0.357320\pi
0.433383 + 0.901210i 0.357320π0.357320\pi
102102 0 0
103103 −4.17013e8 −0.365075 −0.182537 0.983199i 0.558431π-0.558431\pi
−0.182537 + 0.983199i 0.558431π0.558431\pi
104104 −4.71844e8 −0.395502
105105 0 0
106106 5.84402e8 0.449610
107107 −6.71636e8 −0.495344 −0.247672 0.968844i 0.579666π-0.579666\pi
−0.247672 + 0.968844i 0.579666π0.579666\pi
108108 0 0
109109 1.66748e9 1.13147 0.565734 0.824588i 0.308593π-0.308593\pi
0.565734 + 0.824588i 0.308593π0.308593\pi
110110 −1.05598e8 −0.0687683
111111 0 0
112112 8.73149e8 0.524333
113113 1.84580e9 1.06496 0.532478 0.846444i 0.321261π-0.321261\pi
0.532478 + 0.846444i 0.321261π0.321261\pi
114114 0 0
115115 4.78287e7 0.0255005
116116 −6.09219e9 −3.12401
117117 0 0
118118 −5.83063e9 −2.76851
119119 −6.50162e8 −0.297208
120120 0 0
121121 −1.72262e9 −0.730560
122122 −3.30661e9 −1.35134
123123 0 0
124124 6.25770e9 2.37694
125125 −4.27436e8 −0.156594
126126 0 0
127127 1.87922e9 0.641006 0.320503 0.947248i 0.396148π-0.396148\pi
0.320503 + 0.947248i 0.396148π0.396148\pi
128128 5.56650e9 1.83290
129129 0 0
130130 −1.19655e8 −0.0367439
131131 −3.46045e9 −1.02663 −0.513313 0.858201i 0.671582π-0.671582\pi
−0.513313 + 0.858201i 0.671582π0.671582\pi
132132 0 0
133133 −5.38011e9 −1.49093
134134 3.85632e9 1.03324
135135 0 0
136136 1.80600e9 0.452680
137137 −5.04786e9 −1.22424 −0.612118 0.790766i 0.709682π-0.709682\pi
−0.612118 + 0.790766i 0.709682π0.709682\pi
138138 0 0
139139 3.59716e9 0.817322 0.408661 0.912686i 0.365996π-0.365996\pi
0.408661 + 0.912686i 0.365996π0.365996\pi
140140 6.16791e8 0.135694
141141 0 0
142142 1.57682e10 3.25451
143143 7.19899e8 0.143966
144144 0 0
145145 −7.07736e8 −0.132958
146146 1.20022e10 2.18611
147147 0 0
148148 3.91498e9 0.670736
149149 −1.27561e9 −0.212022 −0.106011 0.994365i 0.533808π-0.533808\pi
−0.106011 + 0.994365i 0.533808π0.533808\pi
150150 0 0
151151 4.35273e9 0.681342 0.340671 0.940183i 0.389346π-0.389346\pi
0.340671 + 0.940183i 0.389346π0.389346\pi
152152 1.49447e10 2.27086
153153 0 0
154154 −5.72181e9 −0.819766
155155 7.26963e8 0.101163
156156 0 0
157157 −1.41002e10 −1.85215 −0.926075 0.377339i 0.876839π-0.876839\pi
−0.926075 + 0.377339i 0.876839π0.876839\pi
158158 7.65584e9 0.977318
159159 0 0
160160 3.13370e8 0.0378022
161161 2.59159e9 0.303983
162162 0 0
163163 7.24812e8 0.0804231 0.0402116 0.999191i 0.487197π-0.487197\pi
0.0402116 + 0.999191i 0.487197π0.487197\pi
164164 −1.41317e10 −1.52545
165165 0 0
166166 2.42209e9 0.247573
167167 8.33031e8 0.0828776 0.0414388 0.999141i 0.486806π-0.486806\pi
0.0414388 + 0.999141i 0.486806π0.486806\pi
168168 0 0
169169 8.15731e8 0.0769231
170170 4.57983e8 0.0420561
171171 0 0
172172 3.79623e10 3.30731
173173 −5.77955e8 −0.0490553 −0.0245277 0.999699i 0.507808π-0.507808\pi
−0.0245277 + 0.999699i 0.507808π0.507808\pi
174174 0 0
175175 −1.15444e10 −0.930469
176176 3.70046e9 0.290703
177177 0 0
178178 1.32473e9 0.0989094
179179 1.56569e10 1.13990 0.569952 0.821678i 0.306962π-0.306962\pi
0.569952 + 0.821678i 0.306962π0.306962\pi
180180 0 0
181181 −2.18552e10 −1.51356 −0.756781 0.653668i 0.773229π-0.773229\pi
−0.756781 + 0.653668i 0.773229π0.773229\pi
182182 −6.48349e9 −0.438013
183183 0 0
184184 −7.19882e9 −0.463000
185185 4.54807e8 0.0285466
186186 0 0
187187 −2.75543e9 −0.164779
188188 −5.95388e9 −0.347608
189189 0 0
190190 3.78982e9 0.210973
191191 −1.67784e10 −0.912222 −0.456111 0.889923i 0.650758π-0.650758\pi
−0.456111 + 0.889923i 0.650758π0.650758\pi
192192 0 0
193193 −2.70036e10 −1.40092 −0.700462 0.713690i 0.747023π-0.747023\pi
−0.700462 + 0.713690i 0.747023π0.747023\pi
194194 4.78645e10 2.42608
195195 0 0
196196 −4.70671e9 −0.227806
197197 −1.58277e10 −0.748720 −0.374360 0.927283i 0.622138π-0.622138\pi
−0.374360 + 0.927283i 0.622138π0.622138\pi
198198 0 0
199199 8.80397e9 0.397960 0.198980 0.980004i 0.436237π-0.436237\pi
0.198980 + 0.980004i 0.436237π0.436237\pi
200200 3.20677e10 1.41721
201201 0 0
202202 −3.45982e10 −1.46208
203203 −3.83485e10 −1.58495
204204 0 0
205205 −1.64169e9 −0.0649232
206206 1.59167e10 0.615817
207207 0 0
208208 4.19306e9 0.155327
209209 −2.28013e10 −0.826610
210210 0 0
211211 −1.82054e10 −0.632308 −0.316154 0.948708i 0.602392π-0.602392\pi
−0.316154 + 0.948708i 0.602392π0.602392\pi
212212 −1.44665e10 −0.491870
213213 0 0
214214 2.56353e10 0.835558
215215 4.41012e9 0.140759
216216 0 0
217217 3.93904e10 1.20593
218218 −6.36453e10 −1.90859
219219 0 0
220220 2.61400e9 0.0752322
221221 −3.12223e9 −0.0880440
222222 0 0
223223 1.53511e10 0.415688 0.207844 0.978162i 0.433355π-0.433355\pi
0.207844 + 0.978162i 0.433355π0.433355\pi
224224 1.69799e10 0.450628
225225 0 0
226226 −7.04514e10 −1.79639
227227 −4.20620e10 −1.05141 −0.525707 0.850666i 0.676199π-0.676199\pi
−0.525707 + 0.850666i 0.676199π0.676199\pi
228228 0 0
229229 −6.68760e10 −1.60698 −0.803490 0.595318i 0.797026π-0.797026\pi
−0.803490 + 0.595318i 0.797026π0.797026\pi
230230 −1.82555e9 −0.0430148
231231 0 0
232232 1.06523e11 2.41406
233233 5.19268e10 1.15422 0.577112 0.816665i 0.304180π-0.304180\pi
0.577112 + 0.816665i 0.304180π0.304180\pi
234234 0 0
235235 −6.91668e8 −0.0147942
236236 1.44333e11 3.02874
237237 0 0
238238 2.48157e10 0.501338
239239 −7.45881e10 −1.47870 −0.739348 0.673323i 0.764866π-0.764866\pi
−0.739348 + 0.673323i 0.764866π0.764866\pi
240240 0 0
241241 5.74852e10 1.09769 0.548845 0.835924i 0.315068π-0.315068\pi
0.548845 + 0.835924i 0.315068π0.315068\pi
242242 6.57499e10 1.23233
243243 0 0
244244 8.18528e10 1.47836
245245 −5.46784e8 −0.00969545
246246 0 0
247247 −2.58365e10 −0.441670
248248 −1.09417e11 −1.83676
249249 0 0
250250 1.63146e10 0.264147
251251 1.07873e11 1.71546 0.857732 0.514097i 0.171873π-0.171873\pi
0.857732 + 0.514097i 0.171873π0.171873\pi
252252 0 0
253253 1.09833e10 0.168536
254254 −7.17272e10 −1.08126
255255 0 0
256256 −1.18186e11 −1.71984
257257 6.64074e10 0.949550 0.474775 0.880107i 0.342530π-0.342530\pi
0.474775 + 0.880107i 0.342530π0.342530\pi
258258 0 0
259259 2.46436e10 0.340295
260260 2.96197e9 0.0401977
261261 0 0
262262 1.32080e11 1.73174
263263 8.15356e10 1.05086 0.525432 0.850836i 0.323904π-0.323904\pi
0.525432 + 0.850836i 0.323904π0.323904\pi
264264 0 0
265265 −1.68058e9 −0.0209340
266266 2.05351e11 2.51494
267267 0 0
268268 −9.54605e10 −1.13036
269269 −1.00568e11 −1.17105 −0.585523 0.810656i 0.699111π-0.699111\pi
−0.585523 + 0.810656i 0.699111π0.699111\pi
270270 0 0
271271 −2.98757e10 −0.336477 −0.168239 0.985746i 0.553808π-0.553808\pi
−0.168239 + 0.985746i 0.553808π0.553808\pi
272272 −1.60491e10 −0.177783
273273 0 0
274274 1.92669e11 2.06507
275275 −4.89261e10 −0.515874
276276 0 0
277277 −3.17195e10 −0.323718 −0.161859 0.986814i 0.551749π-0.551749\pi
−0.161859 + 0.986814i 0.551749π0.551749\pi
278278 −1.37298e11 −1.37868
279279 0 0
280280 −1.07847e10 −0.104857
281281 −9.86953e10 −0.944318 −0.472159 0.881513i 0.656525π-0.656525\pi
−0.472159 + 0.881513i 0.656525π0.656525\pi
282282 0 0
283283 −1.06164e11 −0.983871 −0.491935 0.870632i 0.663710π-0.663710\pi
−0.491935 + 0.870632i 0.663710π0.663710\pi
284284 −3.90331e11 −3.56042
285285 0 0
286286 −2.74774e10 −0.242845
287287 −8.89549e10 −0.773929
288288 0 0
289289 −1.06637e11 −0.899227
290290 2.70132e10 0.224277
291291 0 0
292292 −2.97106e11 −2.39160
293293 −2.26355e11 −1.79426 −0.897132 0.441763i 0.854353π-0.854353\pi
−0.897132 + 0.441763i 0.854353π0.854353\pi
294294 0 0
295295 1.67673e10 0.128903
296296 −6.84541e10 −0.518307
297297 0 0
298298 4.86881e10 0.357643
299299 1.24454e10 0.0900511
300300 0 0
301301 2.38962e11 1.67795
302302 −1.66137e11 −1.14930
303303 0 0
304304 −1.32806e11 −0.891841
305305 9.50892e9 0.0629190
306306 0 0
307307 −2.23009e10 −0.143285 −0.0716424 0.997430i 0.522824π-0.522824\pi
−0.0716424 + 0.997430i 0.522824π0.522824\pi
308308 1.41639e11 0.896820
309309 0 0
310310 −2.77471e10 −0.170643
311311 2.71805e11 1.64754 0.823770 0.566925i 0.191867π-0.191867\pi
0.823770 + 0.566925i 0.191867π0.191867\pi
312312 0 0
313313 −7.90775e10 −0.465697 −0.232849 0.972513i 0.574805π-0.574805\pi
−0.232849 + 0.972513i 0.574805π0.574805\pi
314314 5.38183e11 3.12425
315315 0 0
316316 −1.89515e11 −1.06918
317317 −2.03032e11 −1.12927 −0.564636 0.825340i 0.690983π-0.690983\pi
−0.564636 + 0.825340i 0.690983π0.690983\pi
318318 0 0
319319 −1.62524e11 −0.878736
320320 −2.02114e10 −0.107751
321321 0 0
322322 −9.89171e10 −0.512767
323323 9.88899e10 0.505523
324324 0 0
325325 −5.54391e10 −0.275639
326326 −2.76650e10 −0.135660
327327 0 0
328328 2.47095e11 1.17878
329329 −3.74779e10 −0.176357
330330 0 0
331331 3.24137e11 1.48424 0.742118 0.670270i 0.233822π-0.233822\pi
0.742118 + 0.670270i 0.233822π0.233822\pi
332332 −5.99570e10 −0.270844
333333 0 0
334334 −3.17955e10 −0.139800
335335 −1.10897e10 −0.0481083
336336 0 0
337337 2.68510e11 1.13403 0.567017 0.823706i 0.308097π-0.308097\pi
0.567017 + 0.823706i 0.308097π0.308097\pi
338338 −3.11352e10 −0.129756
339339 0 0
340340 −1.13370e10 −0.0460091
341341 1.66939e11 0.668595
342342 0 0
343343 −2.69628e11 −1.05182
344344 −6.63778e11 −2.55570
345345 0 0
346346 2.20597e10 0.0827478
347347 −2.74715e11 −1.01719 −0.508593 0.861007i 0.669834π-0.669834\pi
−0.508593 + 0.861007i 0.669834π0.669834\pi
348348 0 0
349349 −3.54006e11 −1.27731 −0.638655 0.769494i 0.720509π-0.720509\pi
−0.638655 + 0.769494i 0.720509π0.720509\pi
350350 4.40634e11 1.56954
351351 0 0
352352 7.19619e10 0.249839
353353 2.25650e11 0.773481 0.386741 0.922189i 0.373601π-0.373601\pi
0.386741 + 0.922189i 0.373601π0.373601\pi
354354 0 0
355355 −4.53451e10 −0.151532
356356 −3.27927e10 −0.108206
357357 0 0
358358 −5.97602e11 −1.92282
359359 −3.39022e10 −0.107722 −0.0538608 0.998548i 0.517153π-0.517153\pi
−0.0538608 + 0.998548i 0.517153π0.517153\pi
360360 0 0
361361 4.95629e11 1.53594
362362 8.34178e11 2.55312
363363 0 0
364364 1.60494e11 0.479184
365365 −3.45150e10 −0.101787
366366 0 0
367367 −7.74387e10 −0.222823 −0.111412 0.993774i 0.535537π-0.535537\pi
−0.111412 + 0.993774i 0.535537π0.535537\pi
368368 6.39726e10 0.181836
369369 0 0
370370 −1.73593e10 −0.0481531
371371 −9.10620e10 −0.249548
372372 0 0
373373 6.50821e11 1.74089 0.870446 0.492264i 0.163831π-0.163831\pi
0.870446 + 0.492264i 0.163831π0.163831\pi
374374 1.05171e11 0.277954
375375 0 0
376376 1.04105e11 0.268612
377377 −1.84159e11 −0.469522
378378 0 0
379379 1.93989e11 0.482948 0.241474 0.970407i 0.422369π-0.422369\pi
0.241474 + 0.970407i 0.422369π0.422369\pi
380380 −9.38141e10 −0.230803
381381 0 0
382382 6.40406e11 1.53876
383383 −4.44645e11 −1.05589 −0.527946 0.849278i 0.677037π-0.677037\pi
−0.527946 + 0.849278i 0.677037π0.677037\pi
384384 0 0
385385 1.64544e10 0.0381687
386386 1.03069e12 2.36311
387387 0 0
388388 −1.18485e12 −2.65412
389389 1.69623e11 0.375589 0.187794 0.982208i 0.439866π-0.439866\pi
0.187794 + 0.982208i 0.439866π0.439866\pi
390390 0 0
391391 −4.76352e10 −0.103070
392392 8.22978e10 0.176036
393393 0 0
394394 6.04119e11 1.26296
395395 −2.20161e10 −0.0455044
396396 0 0
397397 2.94468e11 0.594951 0.297476 0.954729i 0.403855π-0.403855\pi
0.297476 + 0.954729i 0.403855π0.403855\pi
398398 −3.36034e11 −0.671289
399399 0 0
400400 −2.84971e11 −0.556584
401401 −4.43362e11 −0.856265 −0.428133 0.903716i 0.640828π-0.640828\pi
−0.428133 + 0.903716i 0.640828π0.640828\pi
402402 0 0
403403 1.89162e11 0.357240
404404 8.56452e11 1.59951
405405 0 0
406406 1.46371e12 2.67354
407407 1.04441e11 0.188668
408408 0 0
409409 −1.01253e11 −0.178918 −0.0894592 0.995990i 0.528514π-0.528514\pi
−0.0894592 + 0.995990i 0.528514π0.528514\pi
410410 6.26610e10 0.109514
411411 0 0
412412 −3.94007e11 −0.673700
413413 9.08533e11 1.53662
414414 0 0
415415 −6.96526e9 −0.0115271
416416 8.15413e10 0.133493
417417 0 0
418418 8.70289e11 1.39435
419419 −7.93982e10 −0.125848 −0.0629242 0.998018i 0.520043π-0.520043\pi
−0.0629242 + 0.998018i 0.520043π0.520043\pi
420420 0 0
421421 −6.06765e11 −0.941350 −0.470675 0.882307i 0.655990π-0.655990\pi
−0.470675 + 0.882307i 0.655990π0.655990\pi
422422 6.94871e11 1.06659
423423 0 0
424424 2.52949e11 0.380089
425425 2.12195e11 0.315489
426426 0 0
427427 5.15239e11 0.750038
428428 −6.34583e11 −0.914096
429429 0 0
430430 −1.68328e11 −0.237436
431431 2.72544e11 0.380442 0.190221 0.981741i 0.439080π-0.439080\pi
0.190221 + 0.981741i 0.439080π0.439080\pi
432432 0 0
433433 −1.15522e12 −1.57931 −0.789655 0.613551i 0.789740π-0.789740\pi
−0.789655 + 0.613551i 0.789740π0.789740\pi
434434 −1.50347e12 −2.03419
435435 0 0
436436 1.57549e12 2.08799
437437 −3.94182e11 −0.517047
438438 0 0
439439 1.78053e11 0.228801 0.114401 0.993435i 0.463505π-0.463505\pi
0.114401 + 0.993435i 0.463505π0.463505\pi
440440 −4.57063e10 −0.0581351
441441 0 0
442442 1.19171e11 0.148515
443443 6.55260e10 0.0808345 0.0404173 0.999183i 0.487131π-0.487131\pi
0.0404173 + 0.999183i 0.487131π0.487131\pi
444444 0 0
445445 −3.80956e9 −0.00460527
446446 −5.85928e11 −0.701192
447447 0 0
448448 −1.09515e12 −1.28446
449449 7.98150e11 0.926779 0.463390 0.886155i 0.346633π-0.346633\pi
0.463390 + 0.886155i 0.346633π0.346633\pi
450450 0 0
451451 −3.76997e11 −0.429085
452452 1.74397e12 1.96525
453453 0 0
454454 1.60544e12 1.77355
455455 1.86447e10 0.0203941
456456 0 0
457457 −8.92736e11 −0.957415 −0.478708 0.877974i 0.658895π-0.658895\pi
−0.478708 + 0.877974i 0.658895π0.658895\pi
458458 2.55256e12 2.71069
459459 0 0
460460 4.51901e10 0.0470580
461461 −2.32490e11 −0.239745 −0.119872 0.992789i 0.538249π-0.538249\pi
−0.119872 + 0.992789i 0.538249π0.538249\pi
462462 0 0
463463 −1.54421e12 −1.56168 −0.780841 0.624730i 0.785209π-0.785209\pi
−0.780841 + 0.624730i 0.785209π0.785209\pi
464464 −9.46622e11 −0.948082
465465 0 0
466466 −1.98197e12 −1.94697
467467 −1.63317e12 −1.58893 −0.794465 0.607310i 0.792249π-0.792249\pi
−0.794465 + 0.607310i 0.792249π0.792249\pi
468468 0 0
469469 −6.00895e11 −0.573484
470470 2.63999e10 0.0249553
471471 0 0
472472 −2.52369e12 −2.34044
473473 1.01274e12 0.930295
474474 0 0
475475 1.75592e12 1.58264
476476 −6.14295e11 −0.548461
477477 0 0
478478 2.84692e12 2.49430
479479 −1.54414e12 −1.34022 −0.670112 0.742260i 0.733754π-0.733754\pi
−0.670112 + 0.742260i 0.733754π0.733754\pi
480480 0 0
481481 1.18344e11 0.100808
482482 −2.19412e12 −1.85161
483483 0 0
484484 −1.62759e12 −1.34816
485485 −1.37645e11 −0.112960
486486 0 0
487487 2.55439e11 0.205782 0.102891 0.994693i 0.467191π-0.467191\pi
0.102891 + 0.994693i 0.467191π0.467191\pi
488488 −1.43121e12 −1.14239
489489 0 0
490490 2.08699e10 0.0163545
491491 −1.58407e12 −1.23000 −0.615002 0.788526i 0.710845π-0.710845\pi
−0.615002 + 0.788526i 0.710845π0.710845\pi
492492 0 0
493493 7.04872e11 0.537402
494494 9.86141e11 0.745020
495495 0 0
496496 9.72340e11 0.721357
497497 −2.45702e12 −1.80636
498498 0 0
499499 −6.29948e11 −0.454833 −0.227417 0.973798i 0.573028π-0.573028\pi
−0.227417 + 0.973798i 0.573028π0.573028\pi
500500 −4.03856e11 −0.288976
501501 0 0
502502 −4.11736e12 −2.89369
503503 −5.49263e11 −0.382582 −0.191291 0.981533i 0.561267π-0.561267\pi
−0.191291 + 0.981533i 0.561267π0.561267\pi
504504 0 0
505505 9.94949e10 0.0680753
506506 −4.19217e11 −0.284290
507507 0 0
508508 1.77555e12 1.18290
509509 −1.36923e11 −0.0904165 −0.0452083 0.998978i 0.514395π-0.514395\pi
−0.0452083 + 0.998978i 0.514395π0.514395\pi
510510 0 0
511511 −1.87019e12 −1.21337
512512 1.66095e12 1.06817
513513 0 0
514514 −2.53467e12 −1.60172
515515 −4.57722e10 −0.0286727
516516 0 0
517517 −1.58834e11 −0.0977767
518518 −9.40610e11 −0.574018
519519 0 0
520520 −5.17906e10 −0.0310625
521521 1.66627e12 0.990779 0.495389 0.868671i 0.335025π-0.335025\pi
0.495389 + 0.868671i 0.335025π0.335025\pi
522522 0 0
523523 1.97187e12 1.15244 0.576222 0.817293i 0.304526π-0.304526\pi
0.576222 + 0.817293i 0.304526π0.304526\pi
524524 −3.26955e12 −1.89451
525525 0 0
526526 −3.11209e12 −1.77262
527527 −7.24021e11 −0.408887
528528 0 0
529529 −1.61128e12 −0.894580
530530 6.41452e10 0.0353121
531531 0 0
532532 −5.08330e12 −2.75134
533533 −4.27182e11 −0.229266
534534 0 0
535535 −7.37202e10 −0.0389040
536536 1.66914e12 0.873479
537537 0 0
538538 3.83852e12 1.97535
539539 −1.25563e11 −0.0640784
540540 0 0
541541 1.54916e12 0.777513 0.388756 0.921341i 0.372905π-0.372905\pi
0.388756 + 0.921341i 0.372905π0.372905\pi
542542 1.14031e12 0.567578
543543 0 0
544544 −3.12101e11 −0.152792
545545 1.83027e11 0.0888648
546546 0 0
547547 1.98052e12 0.945879 0.472939 0.881095i 0.343193π-0.343193\pi
0.472939 + 0.881095i 0.343193π0.343193\pi
548548 −4.76939e12 −2.25918
549549 0 0
550550 1.86744e12 0.870189
551551 5.83283e12 2.69586
552552 0 0
553553 −1.19294e12 −0.542444
554554 1.21068e12 0.546056
555555 0 0
556556 3.39871e12 1.50827
557557 −8.86577e11 −0.390273 −0.195136 0.980776i 0.562515π-0.562515\pi
−0.195136 + 0.980776i 0.562515π0.562515\pi
558558 0 0
559559 1.14755e12 0.497071
560560 9.58387e10 0.0411808
561561 0 0
562562 3.76705e12 1.59290
563563 −3.89786e12 −1.63508 −0.817539 0.575873i 0.804662π-0.804662\pi
−0.817539 + 0.575873i 0.804662π0.804662\pi
564564 0 0
565565 2.02599e11 0.0836410
566566 4.05212e12 1.65962
567567 0 0
568568 6.82501e12 2.75129
569569 2.26590e12 0.906223 0.453112 0.891454i 0.350314π-0.350314\pi
0.453112 + 0.891454i 0.350314π0.350314\pi
570570 0 0
571571 −3.09546e12 −1.21860 −0.609302 0.792938i 0.708550π-0.708550\pi
−0.609302 + 0.792938i 0.708550π0.708550\pi
572572 6.80184e11 0.265671
573573 0 0
574574 3.39527e12 1.30548
575575 −8.45822e11 −0.322681
576576 0 0
577577 −3.23415e12 −1.21470 −0.607350 0.794434i 0.707767π-0.707767\pi
−0.607350 + 0.794434i 0.707767π0.707767\pi
578578 4.07019e12 1.51684
579579 0 0
580580 −6.68692e11 −0.245358
581581 −3.77411e11 −0.137411
582582 0 0
583583 −3.85927e11 −0.138356
584584 5.19495e12 1.84809
585585 0 0
586586 8.63964e12 3.02661
587587 8.78491e11 0.305398 0.152699 0.988273i 0.451204π-0.451204\pi
0.152699 + 0.988273i 0.451204π0.451204\pi
588588 0 0
589589 −5.99129e12 −2.05117
590590 −6.39983e11 −0.217437
591591 0 0
592592 6.08321e11 0.203556
593593 1.91730e12 0.636712 0.318356 0.947971i 0.396869π-0.396869\pi
0.318356 + 0.947971i 0.396869π0.396869\pi
594594 0 0
595595 −7.13632e10 −0.0233425
596596 −1.20524e12 −0.391260
597597 0 0
598598 −4.75023e11 −0.151900
599599 5.10464e12 1.62011 0.810054 0.586355i 0.199438π-0.199438\pi
0.810054 + 0.586355i 0.199438π0.199438\pi
600600 0 0
601601 3.00419e12 0.939273 0.469636 0.882860i 0.344385π-0.344385\pi
0.469636 + 0.882860i 0.344385π0.344385\pi
602602 −9.12080e12 −2.83041
603603 0 0
604604 4.11260e12 1.25733
605605 −1.89079e11 −0.0573778
606606 0 0
607607 1.18434e12 0.354101 0.177051 0.984202i 0.443344π-0.443344\pi
0.177051 + 0.984202i 0.443344π0.443344\pi
608608 −2.58265e12 −0.766477
609609 0 0
610610 −3.62941e11 −0.106133
611611 −1.79978e11 −0.0522436
612612 0 0
613613 6.42597e11 0.183809 0.0919045 0.995768i 0.470705π-0.470705\pi
0.0919045 + 0.995768i 0.470705π0.470705\pi
614614 8.51193e11 0.241696
615615 0 0
616616 −2.47659e12 −0.693011
617617 −5.05474e12 −1.40416 −0.702078 0.712100i 0.747744π-0.747744\pi
−0.702078 + 0.712100i 0.747744π0.747744\pi
618618 0 0
619619 −3.09492e11 −0.0847308 −0.0423654 0.999102i 0.513489π-0.513489\pi
−0.0423654 + 0.999102i 0.513489π0.513489\pi
620620 6.86859e11 0.186683
621621 0 0
622622 −1.03744e13 −2.77911
623623 −2.06421e11 −0.0548980
624624 0 0
625625 3.74425e12 0.981533
626626 3.01827e12 0.785549
627627 0 0
628628 −1.33223e13 −3.41792
629629 −4.52966e11 −0.115382
630630 0 0
631631 −7.94237e11 −0.199443 −0.0997214 0.995015i 0.531795π-0.531795\pi
−0.0997214 + 0.995015i 0.531795π0.531795\pi
632632 3.31370e12 0.826202
633633 0 0
634634 7.74944e12 1.90488
635635 2.06268e11 0.0503442
636636 0 0
637637 −1.42278e11 −0.0342380
638638 6.20328e12 1.48227
639639 0 0
640640 6.10991e11 0.143954
641641 −2.30298e12 −0.538802 −0.269401 0.963028i 0.586826π-0.586826\pi
−0.269401 + 0.963028i 0.586826π0.586826\pi
642642 0 0
643643 −2.54593e12 −0.587350 −0.293675 0.955905i 0.594878π-0.594878\pi
−0.293675 + 0.955905i 0.594878π0.594878\pi
644644 2.44862e12 0.560964
645645 0 0
646646 −3.77448e12 −0.852728
647647 2.74568e11 0.0616001 0.0308000 0.999526i 0.490194π-0.490194\pi
0.0308000 + 0.999526i 0.490194π0.490194\pi
648648 0 0
649649 3.85043e12 0.851937
650650 2.11603e12 0.464955
651651 0 0
652652 6.84826e11 0.148411
653653 6.05719e12 1.30365 0.651826 0.758369i 0.274003π-0.274003\pi
0.651826 + 0.758369i 0.274003π0.274003\pi
654654 0 0
655655 −3.79827e11 −0.0806306
656656 −2.19582e12 −0.462946
657657 0 0
658658 1.43047e12 0.297484
659659 −4.97718e12 −1.02801 −0.514007 0.857786i 0.671840π-0.671840\pi
−0.514007 + 0.857786i 0.671840π0.671840\pi
660660 0 0
661661 1.79834e12 0.366409 0.183204 0.983075i 0.441353π-0.441353\pi
0.183204 + 0.983075i 0.441353π0.441353\pi
662662 −1.23718e13 −2.50364
663663 0 0
664664 1.04836e12 0.209292
665665 −5.90532e11 −0.117097
666666 0 0
667667 −2.80967e12 −0.549653
668668 7.87076e11 0.152940
669669 0 0
670670 4.23278e11 0.0811502
671671 2.18362e12 0.415839
672672 0 0
673673 1.37693e12 0.258728 0.129364 0.991597i 0.458706π-0.458706\pi
0.129364 + 0.991597i 0.458706π0.458706\pi
674674 −1.02486e13 −1.91292
675675 0 0
676676 7.70729e11 0.141952
677677 −6.49642e11 −0.118857 −0.0594285 0.998233i 0.518928π-0.518928\pi
−0.0594285 + 0.998233i 0.518928π0.518928\pi
678678 0 0
679679 −7.45828e12 −1.34656
680680 1.98230e11 0.0355532
681681 0 0
682682 −6.37181e12 −1.12780
683683 1.10011e12 0.193438 0.0967190 0.995312i 0.469165π-0.469165\pi
0.0967190 + 0.995312i 0.469165π0.469165\pi
684684 0 0
685685 −5.54064e11 −0.0961507
686686 1.02913e13 1.77424
687687 0 0
688688 5.89869e12 1.00371
689689 −4.37301e11 −0.0739254
690690 0 0
691691 7.72289e12 1.28863 0.644315 0.764760i 0.277142π-0.277142\pi
0.644315 + 0.764760i 0.277142π0.277142\pi
692692 −5.46071e11 −0.0905256
693693 0 0
694694 1.04855e13 1.71581
695695 3.94832e11 0.0641920
696696 0 0
697697 1.63505e12 0.262412
698698 1.35119e13 2.15460
699699 0 0
700700 −1.09076e13 −1.71707
701701 −1.40436e12 −0.219658 −0.109829 0.993950i 0.535030π-0.535030\pi
−0.109829 + 0.993950i 0.535030π0.535030\pi
702702 0 0
703703 −3.74831e12 −0.578810
704704 −4.64131e12 −0.712137
705705 0 0
706706 −8.61273e12 −1.30473
707707 5.39111e12 0.811505
708708 0 0
709709 5.19764e12 0.772499 0.386250 0.922394i 0.373770π-0.373770\pi
0.386250 + 0.922394i 0.373770π0.373770\pi
710710 1.73075e12 0.255607
711711 0 0
712712 5.73387e11 0.0836157
713713 2.88600e12 0.418209
714714 0 0
715715 7.90176e10 0.0113070
716716 1.47932e13 2.10355
717717 0 0
718718 1.29400e12 0.181707
719719 1.27042e13 1.77284 0.886418 0.462886i 0.153186π-0.153186\pi
0.886418 + 0.462886i 0.153186π0.153186\pi
720720 0 0
721721 −2.48016e12 −0.341799
722722 −1.89174e13 −2.59086
723723 0 0
724724 −2.06495e13 −2.79309
725725 1.25159e13 1.68244
726726 0 0
727727 9.91998e11 0.131706 0.0658531 0.997829i 0.479023π-0.479023\pi
0.0658531 + 0.997829i 0.479023π0.479023\pi
728728 −2.80627e12 −0.370286
729729 0 0
730730 1.31739e12 0.171696
731731 −4.39227e12 −0.568933
732732 0 0
733733 5.54849e12 0.709916 0.354958 0.934882i 0.384495π-0.384495\pi
0.354958 + 0.934882i 0.384495π0.384495\pi
734734 2.95572e12 0.375864
735735 0 0
736736 1.24406e12 0.156275
737737 −2.54663e12 −0.317953
738738 0 0
739739 8.78597e12 1.08365 0.541826 0.840491i 0.317733π-0.317733\pi
0.541826 + 0.840491i 0.317733π0.317733\pi
740740 4.29717e11 0.0526792
741741 0 0
742742 3.47570e12 0.420944
743743 −4.04326e12 −0.486724 −0.243362 0.969936i 0.578250π-0.578250\pi
−0.243362 + 0.969936i 0.578250π0.578250\pi
744744 0 0
745745 −1.40014e11 −0.0166521
746746 −2.48408e13 −2.93658
747747 0 0
748748 −2.60342e12 −0.304080
749749 −3.99451e12 −0.463763
750750 0 0
751751 −2.52936e11 −0.0290156 −0.0145078 0.999895i 0.504618π-0.504618\pi
−0.0145078 + 0.999895i 0.504618π0.504618\pi
752752 −9.25130e11 −0.105493
753753 0 0
754754 7.02906e12 0.792001
755755 4.77765e11 0.0535122
756756 0 0
757757 9.99638e12 1.10640 0.553199 0.833049i 0.313407π-0.313407\pi
0.553199 + 0.833049i 0.313407π0.313407\pi
758758 −7.40426e12 −0.814649
759759 0 0
760760 1.64036e12 0.178352
761761 2.98848e12 0.323013 0.161507 0.986872i 0.448365π-0.448365\pi
0.161507 + 0.986872i 0.448365π0.448365\pi
762762 0 0
763763 9.91726e12 1.05933
764764 −1.58528e13 −1.68339
765765 0 0
766766 1.69714e13 1.78110
767767 4.36299e12 0.455203
768768 0 0
769769 1.54887e13 1.59715 0.798576 0.601894i 0.205587π-0.205587\pi
0.798576 + 0.601894i 0.205587π0.205587\pi
770770 −6.28038e11 −0.0643839
771771 0 0
772772 −2.55139e13 −2.58523
773773 −1.07589e13 −1.08383 −0.541915 0.840434i 0.682300π-0.682300\pi
−0.541915 + 0.840434i 0.682300π0.682300\pi
774774 0 0
775775 −1.28559e13 −1.28010
776776 2.07173e13 2.05095
777777 0 0
778778 −6.47427e12 −0.633552
779779 1.35301e13 1.31638
780780 0 0
781781 −1.04130e13 −1.00149
782782 1.81816e12 0.173861
783783 0 0
784784 −7.31343e11 −0.0691351
785785 −1.54767e12 −0.145467
786786 0 0
787787 1.29304e13 1.20151 0.600755 0.799433i 0.294867π-0.294867\pi
0.600755 + 0.799433i 0.294867π0.294867\pi
788788 −1.49545e13 −1.38167
789789 0 0
790790 8.40321e11 0.0767579
791791 1.09778e13 0.997059
792792 0 0
793793 2.47430e12 0.222189
794794 −1.12394e13 −1.00358
795795 0 0
796796 8.31828e12 0.734387
797797 −1.24713e13 −1.09484 −0.547418 0.836859i 0.684389π-0.684389\pi
−0.547418 + 0.836859i 0.684389π0.684389\pi
798798 0 0
799799 6.88868e11 0.0597965
800800 −5.54175e12 −0.478346
801801 0 0
802802 1.69224e13 1.44437
803803 −7.92600e12 −0.672719
804804 0 0
805805 2.84459e11 0.0238747
806806 −7.22002e12 −0.602602
807807 0 0
808808 −1.49752e13 −1.23601
809809 2.40763e13 1.97616 0.988079 0.153948i 0.0491989π-0.0491989\pi
0.988079 + 0.153948i 0.0491989π0.0491989\pi
810810 0 0
811811 1.14686e13 0.930928 0.465464 0.885067i 0.345888π-0.345888\pi
0.465464 + 0.885067i 0.345888π0.345888\pi
812812 −3.62330e13 −2.92484
813813 0 0
814814 −3.98637e12 −0.318249
815815 7.95569e10 0.00631638
816816 0 0
817817 −3.63462e13 −2.85403
818818 3.86469e12 0.301804
819819 0 0
820820 −1.55113e12 −0.119808
821821 2.50113e13 1.92129 0.960643 0.277786i 0.0896005π-0.0896005\pi
0.960643 + 0.277786i 0.0896005π0.0896005\pi
822822 0 0
823823 1.29351e13 0.982808 0.491404 0.870932i 0.336484π-0.336484\pi
0.491404 + 0.870932i 0.336484π0.336484\pi
824824 6.88929e12 0.520597
825825 0 0
826826 −3.46773e13 −2.59200
827827 −1.00464e13 −0.746851 −0.373425 0.927660i 0.621817π-0.621817\pi
−0.373425 + 0.927660i 0.621817π0.621817\pi
828828 0 0
829829 8.77304e12 0.645141 0.322570 0.946545i 0.395453π-0.395453\pi
0.322570 + 0.946545i 0.395453π0.395453\pi
830830 2.65853e11 0.0194442
831831 0 0
832832 −5.25916e12 −0.380506
833833 5.44571e11 0.0391879
834834 0 0
835835 9.14353e10 0.00650916
836836 −2.15434e13 −1.52541
837837 0 0
838838 3.03051e12 0.212284
839839 1.54259e13 1.07478 0.537392 0.843332i 0.319410π-0.319410\pi
0.537392 + 0.843332i 0.319410π0.319410\pi
840840 0 0
841841 2.70683e13 1.86586
842842 2.31593e13 1.58789
843843 0 0
844844 −1.72010e13 −1.16685
845845 8.95364e10 0.00604149
846846 0 0
847847 −1.02452e13 −0.683983
848848 −2.24784e12 −0.149274
849849 0 0
850850 −8.09914e12 −0.532174
851851 1.80556e12 0.118012
852852 0 0
853853 −1.84928e12 −0.119600 −0.0598002 0.998210i 0.519046π-0.519046\pi
−0.0598002 + 0.998210i 0.519046π0.519046\pi
854854 −1.96659e13 −1.26518
855855 0 0
856856 1.10958e13 0.706361
857857 2.34715e13 1.48637 0.743185 0.669086i 0.233314π-0.233314\pi
0.743185 + 0.669086i 0.233314π0.233314\pi
858858 0 0
859859 1.25121e12 0.0784079 0.0392039 0.999231i 0.487518π-0.487518\pi
0.0392039 + 0.999231i 0.487518π0.487518\pi
860860 4.16683e12 0.259754
861861 0 0
862862 −1.04026e13 −0.641739
863863 −2.38217e13 −1.46192 −0.730961 0.682419i 0.760928π-0.760928\pi
−0.730961 + 0.682419i 0.760928π0.760928\pi
864864 0 0
865865 −6.34375e10 −0.00385278
866866 4.40928e13 2.66402
867867 0 0
868868 3.72173e13 2.22539
869869 −5.05575e12 −0.300744
870870 0 0
871871 −2.88564e12 −0.169887
872872 −2.75478e13 −1.61348
873873 0 0
874874 1.50453e13 0.872168
875875 −2.54215e12 −0.146611
876876 0 0
877877 −1.35717e13 −0.774707 −0.387353 0.921931i 0.626611π-0.626611\pi
−0.387353 + 0.921931i 0.626611π0.626611\pi
878878 −6.79601e12 −0.385948
879879 0 0
880880 4.06171e11 0.0228316
881881 −2.38436e12 −0.133346 −0.0666730 0.997775i 0.521238π-0.521238\pi
−0.0666730 + 0.997775i 0.521238π0.521238\pi
882882 0 0
883883 −5.99779e11 −0.0332023 −0.0166011 0.999862i 0.505285π-0.505285\pi
−0.0166011 + 0.999862i 0.505285π0.505285\pi
884884 −2.94999e12 −0.162474
885885 0 0
886886 −2.50103e12 −0.136354
887887 −1.02483e13 −0.555897 −0.277949 0.960596i 0.589654π-0.589654\pi
−0.277949 + 0.960596i 0.589654π0.589654\pi
888888 0 0
889889 1.11766e13 0.600138
890890 1.45405e11 0.00776828
891891 0 0
892892 1.45042e13 0.767101
893893 5.70040e12 0.299967
894894 0 0
895895 1.71854e12 0.0895274
896896 3.31065e13 1.71604
897897 0 0
898898 −3.04642e13 −1.56331
899899 −4.27050e13 −2.18052
900900 0 0
901901 1.67378e12 0.0846130
902902 1.43894e13 0.723791
903903 0 0
904904 −3.04937e13 −1.51863
905905 −2.39887e12 −0.118874
906906 0 0
907907 −2.43855e13 −1.19646 −0.598231 0.801323i 0.704130π-0.704130\pi
−0.598231 + 0.801323i 0.704130π0.704130\pi
908908 −3.97416e13 −1.94026
909909 0 0
910910 −7.11641e11 −0.0344013
911911 −2.90386e13 −1.39683 −0.698415 0.715693i 0.746111π-0.746111\pi
−0.698415 + 0.715693i 0.746111π0.746111\pi
912912 0 0
913913 −1.59949e12 −0.0761841
914914 3.40744e13 1.61499
915915 0 0
916916 −6.31867e13 −2.96549
917917 −2.05809e13 −0.961173
918918 0 0
919919 −1.41793e13 −0.655746 −0.327873 0.944722i 0.606332π-0.606332\pi
−0.327873 + 0.944722i 0.606332π0.606332\pi
920920 −7.90158e11 −0.0363638
921921 0 0
922922 8.87378e12 0.404408
923923 −1.17992e13 −0.535111
924924 0 0
925925 −8.04299e12 −0.361226
926926 5.89402e13 2.63428
927927 0 0
928928 −1.84087e13 −0.814812
929929 3.56246e13 1.56920 0.784601 0.620001i 0.212868π-0.212868\pi
0.784601 + 0.620001i 0.212868π0.212868\pi
930930 0 0
931931 4.50634e12 0.196585
932932 4.90621e13 2.12998
933933 0 0
934934 6.23355e13 2.68025
935935 −3.02442e11 −0.0129417
936936 0 0
937937 9.35575e12 0.396506 0.198253 0.980151i 0.436473π-0.436473\pi
0.198253 + 0.980151i 0.436473π0.436473\pi
938938 2.29353e13 0.967366
939939 0 0
940940 −6.53510e11 −0.0273009
941941 −1.23413e13 −0.513106 −0.256553 0.966530i 0.582587π-0.582587\pi
−0.256553 + 0.966530i 0.582587π0.582587\pi
942942 0 0
943943 −6.51742e12 −0.268394
944944 2.24269e13 0.919168
945945 0 0
946946 −3.86546e13 −1.56924
947947 −2.93722e12 −0.118676 −0.0593379 0.998238i 0.518899π-0.518899\pi
−0.0593379 + 0.998238i 0.518899π0.518899\pi
948948 0 0
949949 −8.98110e12 −0.359444
950950 −6.70206e13 −2.66964
951951 0 0
952952 1.07411e13 0.423819
953953 3.90544e12 0.153374 0.0766870 0.997055i 0.475566π-0.475566\pi
0.0766870 + 0.997055i 0.475566π0.475566\pi
954954 0 0
955955 −1.84163e12 −0.0716454
956956 −7.04733e13 −2.72875
957957 0 0
958958 5.89375e13 2.26072
959959 −3.00219e13 −1.14618
960960 0 0
961961 1.74255e13 0.659069
962962 −4.51703e12 −0.170045
963963 0 0
964964 5.43139e13 2.02565
965965 −2.96398e12 −0.110028
966966 0 0
967967 −1.06697e13 −0.392405 −0.196203 0.980563i 0.562861π-0.562861\pi
−0.196203 + 0.980563i 0.562861π0.562861\pi
968968 2.84587e13 1.04178
969969 0 0
970970 5.25371e12 0.190543
971971 3.10264e12 0.112007 0.0560034 0.998431i 0.482164π-0.482164\pi
0.0560034 + 0.998431i 0.482164π0.482164\pi
972972 0 0
973973 2.13939e13 0.765213
974974 −9.74972e12 −0.347118
975975 0 0
976976 1.27185e13 0.448655
977977 4.66167e13 1.63688 0.818438 0.574594i 0.194840π-0.194840\pi
0.818438 + 0.574594i 0.194840π0.194840\pi
978978 0 0
979979 −8.74824e11 −0.0304368
980980 −5.16619e11 −0.0178918
981981 0 0
982982 6.04614e13 2.07480
983983 3.22316e13 1.10101 0.550505 0.834832i 0.314435π-0.314435\pi
0.550505 + 0.834832i 0.314435π0.314435\pi
984984 0 0
985985 −1.73728e12 −0.0588040
986986 −2.69039e13 −0.906502
987987 0 0
988988 −2.44112e13 −0.815047
989989 1.75079e13 0.581903
990990 0 0
991991 −2.25008e13 −0.741081 −0.370540 0.928816i 0.620828π-0.620828\pi
−0.370540 + 0.928816i 0.620828π0.620828\pi
992992 1.89088e13 0.619957
993993 0 0
994994 9.37807e13 3.04701
995995 9.66342e11 0.0312556
996996 0 0
997997 −3.13756e13 −1.00569 −0.502844 0.864377i 0.667713π-0.667713\pi
−0.502844 + 0.864377i 0.667713π0.667713\pi
998998 2.40442e13 0.767224
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.10.a.e.1.1 5
3.2 odd 2 13.10.a.b.1.5 5
12.11 even 2 208.10.a.h.1.3 5
15.14 odd 2 325.10.a.b.1.1 5
39.38 odd 2 169.10.a.b.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.b.1.5 5 3.2 odd 2
117.10.a.e.1.1 5 1.1 even 1 trivial
169.10.a.b.1.1 5 39.38 odd 2
208.10.a.h.1.3 5 12.11 even 2
325.10.a.b.1.1 5 15.14 odd 2