Properties

Label 117.10.a.e.1.4
Level 117117
Weight 1010
Character 117.1
Self dual yes
Analytic conductor 60.25960.259
Analytic rank 11
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,10,Mod(1,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 117=3213 117 = 3^{2} \cdot 13
Weight: k k == 10 10
Character orbit: [χ][\chi] == 117.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 60.259192831260.2591928312
Analytic rank: 11
Dimension: 55
Coefficient field: Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x51438x34164x2+396957x59580 x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 223 2^{2}\cdot 3
Twist minimal: no (minimal twist has level 13)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.4
Root 24.3176-24.3176 of defining polynomial
Character χ\chi == 117.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+21.3176q257.5590q4+1277.14q52277.98q712141.6q8+27225.6q10+7177.94q11+28561.0q1348561.1q14229361.q16+447890.q17528333.q1973510.8q20+153017.q222.24354e6q23322041.q25+608853.q26+131118.q285.98542e6q29+169630.q31+1.32709e6q32+9.54795e6q342.90930e6q35+1.26336e7q371.12628e7q381.55066e7q40+2.76549e7q412.27606e7q43413155.q444.78270e7q465.32103e7q473.51644e7q496.86516e6q501.64394e6q523.18756e7q53+9.16722e6q55+2.76584e7q561.27595e8q581.14800e8q597.80352e7q61+3.61610e6q62+1.45723e8q64+3.64764e7q65+8.40538e7q672.57801e7q686.20193e7q701.25752e8q711.88250e8q73+2.69318e8q74+3.04103e7q761.63512e7q774.28673e8q792.92926e8q80+5.89536e8q822.43067e8q83+5.72018e8q854.85202e8q868.71520e7q882.92716e8q896.50614e7q91+1.29136e8q921.13432e9q946.74754e8q95+1.14275e9q977.49622e8q98+O(q100)q+21.3176 q^{2} -57.5590 q^{4} +1277.14 q^{5} -2277.98 q^{7} -12141.6 q^{8} +27225.6 q^{10} +7177.94 q^{11} +28561.0 q^{13} -48561.1 q^{14} -229361. q^{16} +447890. q^{17} -528333. q^{19} -73510.8 q^{20} +153017. q^{22} -2.24354e6 q^{23} -322041. q^{25} +608853. q^{26} +131118. q^{28} -5.98542e6 q^{29} +169630. q^{31} +1.32709e6 q^{32} +9.54795e6 q^{34} -2.90930e6 q^{35} +1.26336e7 q^{37} -1.12628e7 q^{38} -1.55066e7 q^{40} +2.76549e7 q^{41} -2.27606e7 q^{43} -413155. q^{44} -4.78270e7 q^{46} -5.32103e7 q^{47} -3.51644e7 q^{49} -6.86516e6 q^{50} -1.64394e6 q^{52} -3.18756e7 q^{53} +9.16722e6 q^{55} +2.76584e7 q^{56} -1.27595e8 q^{58} -1.14800e8 q^{59} -7.80352e7 q^{61} +3.61610e6 q^{62} +1.45723e8 q^{64} +3.64764e7 q^{65} +8.40538e7 q^{67} -2.57801e7 q^{68} -6.20193e7 q^{70} -1.25752e8 q^{71} -1.88250e8 q^{73} +2.69318e8 q^{74} +3.04103e7 q^{76} -1.63512e7 q^{77} -4.28673e8 q^{79} -2.92926e8 q^{80} +5.89536e8 q^{82} -2.43067e8 q^{83} +5.72018e8 q^{85} -4.85202e8 q^{86} -8.71520e7 q^{88} -2.92716e8 q^{89} -6.50614e7 q^{91} +1.29136e8 q^{92} -1.13432e9 q^{94} -6.74754e8 q^{95} +1.14275e9 q^{97} -7.49622e8 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q15q2+361q41803q5+10099q723151q8+84505q10121746q11+142805q138475q14322463q16+495669q17840738q19+1595607q202023594q22+1570614816q98+O(q100) 5 q - 15 q^{2} + 361 q^{4} - 1803 q^{5} + 10099 q^{7} - 23151 q^{8} + 84505 q^{10} - 121746 q^{11} + 142805 q^{13} - 8475 q^{14} - 322463 q^{16} + 495669 q^{17} - 840738 q^{19} + 1595607 q^{20} - 2023594 q^{22}+ \cdots - 1570614816 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 21.3176 0.942115 0.471057 0.882103i 0.343872π-0.343872\pi
0.471057 + 0.882103i 0.343872π0.343872\pi
33 0 0
44 −57.5590 −0.112420
55 1277.14 0.913846 0.456923 0.889506i 0.348951π-0.348951\pi
0.456923 + 0.889506i 0.348951π0.348951\pi
66 0 0
77 −2277.98 −0.358599 −0.179299 0.983795i 0.557383π-0.557383\pi
−0.179299 + 0.983795i 0.557383π0.557383\pi
88 −12141.6 −1.04803
99 0 0
1010 27225.6 0.860948
1111 7177.94 0.147820 0.0739099 0.997265i 0.476452π-0.476452\pi
0.0739099 + 0.997265i 0.476452π0.476452\pi
1212 0 0
1313 28561.0 0.277350
1414 −48561.1 −0.337841
1515 0 0
1616 −229361. −0.874942
1717 447890. 1.30062 0.650311 0.759668i 0.274639π-0.274639\pi
0.650311 + 0.759668i 0.274639π0.274639\pi
1818 0 0
1919 −528333. −0.930071 −0.465036 0.885292i 0.653959π-0.653959\pi
−0.465036 + 0.885292i 0.653959π0.653959\pi
2020 −73510.8 −0.102734
2121 0 0
2222 153017. 0.139263
2323 −2.24354e6 −1.67170 −0.835851 0.548957i 0.815025π-0.815025\pi
−0.835851 + 0.548957i 0.815025π0.815025\pi
2424 0 0
2525 −322041. −0.164885
2626 608853. 0.261296
2727 0 0
2828 131118. 0.0403136
2929 −5.98542e6 −1.57146 −0.785730 0.618569i 0.787713π-0.787713\pi
−0.785730 + 0.618569i 0.787713π0.787713\pi
3030 0 0
3131 169630. 0.0329894 0.0164947 0.999864i 0.494749π-0.494749\pi
0.0164947 + 0.999864i 0.494749π0.494749\pi
3232 1.32709e6 0.223731
3333 0 0
3434 9.54795e6 1.22534
3535 −2.90930e6 −0.327704
3636 0 0
3737 1.26336e7 1.10820 0.554100 0.832450i 0.313062π-0.313062\pi
0.554100 + 0.832450i 0.313062π0.313062\pi
3838 −1.12628e7 −0.876234
3939 0 0
4040 −1.55066e7 −0.957736
4141 2.76549e7 1.52843 0.764213 0.644964i 0.223128π-0.223128\pi
0.764213 + 0.644964i 0.223128π0.223128\pi
4242 0 0
4343 −2.27606e7 −1.01526 −0.507628 0.861576i 0.669478π-0.669478\pi
−0.507628 + 0.861576i 0.669478π0.669478\pi
4444 −413155. −0.0166179
4545 0 0
4646 −4.78270e7 −1.57493
4747 −5.32103e7 −1.59058 −0.795289 0.606230i 0.792681π-0.792681\pi
−0.795289 + 0.606230i 0.792681π0.792681\pi
4848 0 0
4949 −3.51644e7 −0.871407
5050 −6.86516e6 −0.155341
5151 0 0
5252 −1.64394e6 −0.0311797
5353 −3.18756e7 −0.554904 −0.277452 0.960740i 0.589490π-0.589490\pi
−0.277452 + 0.960740i 0.589490π0.589490\pi
5454 0 0
5555 9.16722e6 0.135085
5656 2.76584e7 0.375821
5757 0 0
5858 −1.27595e8 −1.48050
5959 −1.14800e8 −1.23341 −0.616705 0.787194i 0.711533π-0.711533\pi
−0.616705 + 0.787194i 0.711533π0.711533\pi
6060 0 0
6161 −7.80352e7 −0.721616 −0.360808 0.932640i 0.617499π-0.617499\pi
−0.360808 + 0.932640i 0.617499π0.617499\pi
6262 3.61610e6 0.0310798
6363 0 0
6464 1.45723e8 1.08572
6565 3.64764e7 0.253455
6666 0 0
6767 8.40538e7 0.509590 0.254795 0.966995i 0.417992π-0.417992\pi
0.254795 + 0.966995i 0.417992π0.417992\pi
6868 −2.57801e7 −0.146216
6969 0 0
7070 −6.20193e7 −0.308735
7171 −1.25752e8 −0.587288 −0.293644 0.955915i 0.594868π-0.594868\pi
−0.293644 + 0.955915i 0.594868π0.594868\pi
7272 0 0
7373 −1.88250e8 −0.775859 −0.387929 0.921689i 0.626810π-0.626810\pi
−0.387929 + 0.921689i 0.626810π0.626810\pi
7474 2.69318e8 1.04405
7575 0 0
7676 3.04103e7 0.104558
7777 −1.63512e7 −0.0530080
7878 0 0
7979 −4.28673e8 −1.23824 −0.619120 0.785297i 0.712510π-0.712510\pi
−0.619120 + 0.785297i 0.712510π0.712510\pi
8080 −2.92926e8 −0.799562
8181 0 0
8282 5.89536e8 1.43995
8383 −2.43067e8 −0.562180 −0.281090 0.959681i 0.590696π-0.590696\pi
−0.281090 + 0.959681i 0.590696π0.590696\pi
8484 0 0
8585 5.72018e8 1.18857
8686 −4.85202e8 −0.956488
8787 0 0
8888 −8.71520e7 −0.154919
8989 −2.92716e8 −0.494529 −0.247265 0.968948i 0.579532π-0.579532\pi
−0.247265 + 0.968948i 0.579532π0.579532\pi
9090 0 0
9191 −6.50614e7 −0.0994573
9292 1.29136e8 0.187932
9393 0 0
9494 −1.13432e9 −1.49851
9595 −6.74754e8 −0.849942
9696 0 0
9797 1.14275e9 1.31063 0.655313 0.755358i 0.272537π-0.272537\pi
0.655313 + 0.755358i 0.272537π0.272537\pi
9898 −7.49622e8 −0.820965
9999 0 0
100100 1.85364e7 0.0185364
101101 8.98629e8 0.859279 0.429640 0.903000i 0.358641π-0.358641\pi
0.429640 + 0.903000i 0.358641π0.358641\pi
102102 0 0
103103 6.13518e8 0.537106 0.268553 0.963265i 0.413455π-0.413455\pi
0.268553 + 0.963265i 0.413455π0.413455\pi
104104 −3.46777e8 −0.290670
105105 0 0
106106 −6.79513e8 −0.522783
107107 −1.46257e9 −1.07868 −0.539338 0.842090i 0.681325π-0.681325\pi
−0.539338 + 0.842090i 0.681325π0.681325\pi
108108 0 0
109109 7.17715e8 0.487005 0.243502 0.969900i 0.421704π-0.421704\pi
0.243502 + 0.969900i 0.421704π0.421704\pi
110110 1.95423e8 0.127265
111111 0 0
112112 5.22479e8 0.313753
113113 −9.27444e7 −0.0535099 −0.0267550 0.999642i 0.508517π-0.508517\pi
−0.0267550 + 0.999642i 0.508517π0.508517\pi
114114 0 0
115115 −2.86531e9 −1.52768
116116 3.44514e8 0.176663
117117 0 0
118118 −2.44726e9 −1.16201
119119 −1.02028e9 −0.466401
120120 0 0
121121 −2.30642e9 −0.978149
122122 −1.66352e9 −0.679845
123123 0 0
124124 −9.76371e6 −0.00370866
125125 −2.90570e9 −1.06453
126126 0 0
127127 4.40060e9 1.50105 0.750524 0.660843i 0.229801π-0.229801\pi
0.750524 + 0.660843i 0.229801π0.229801\pi
128128 2.42700e9 0.799144
129129 0 0
130130 7.77589e8 0.238784
131131 1.21951e9 0.361798 0.180899 0.983502i 0.442099π-0.442099\pi
0.180899 + 0.983502i 0.442099π0.442099\pi
132132 0 0
133133 1.20353e9 0.333522
134134 1.79183e9 0.480092
135135 0 0
136136 −5.43812e9 −1.36309
137137 6.73258e9 1.63282 0.816411 0.577472i 0.195961π-0.195961\pi
0.816411 + 0.577472i 0.195961π0.195961\pi
138138 0 0
139139 4.12694e8 0.0937695 0.0468847 0.998900i 0.485071π-0.485071\pi
0.0468847 + 0.998900i 0.485071π0.485071\pi
140140 1.67456e8 0.0368404
141141 0 0
142142 −2.68073e9 −0.553293
143143 2.05009e8 0.0409978
144144 0 0
145145 −7.64421e9 −1.43607
146146 −4.01305e9 −0.730948
147147 0 0
148148 −7.27175e8 −0.124584
149149 −7.17339e9 −1.19230 −0.596151 0.802872i 0.703304π-0.703304\pi
−0.596151 + 0.802872i 0.703304π0.703304\pi
150150 0 0
151151 9.30445e9 1.45645 0.728223 0.685340i 0.240346π-0.240346\pi
0.728223 + 0.685340i 0.240346π0.240346\pi
152152 6.41483e9 0.974740
153153 0 0
154154 −3.48569e8 −0.0499396
155155 2.16641e8 0.0301472
156156 0 0
157157 −5.86131e9 −0.769921 −0.384961 0.922933i 0.625785π-0.625785\pi
−0.384961 + 0.922933i 0.625785π0.625785\pi
158158 −9.13830e9 −1.16656
159159 0 0
160160 1.69488e9 0.204456
161161 5.11074e9 0.599470
162162 0 0
163163 1.60676e10 1.78282 0.891409 0.453199i 0.149717π-0.149717\pi
0.891409 + 0.453199i 0.149717π0.149717\pi
164164 −1.59179e9 −0.171825
165165 0 0
166166 −5.18162e9 −0.529638
167167 1.49042e9 0.148281 0.0741404 0.997248i 0.476379π-0.476379\pi
0.0741404 + 0.997248i 0.476379π0.476379\pi
168168 0 0
169169 8.15731e8 0.0769231
170170 1.21941e10 1.11977
171171 0 0
172172 1.31008e9 0.114135
173173 6.62250e9 0.562101 0.281050 0.959693i 0.409317π-0.409317\pi
0.281050 + 0.959693i 0.409317π0.409317\pi
174174 0 0
175175 7.33604e8 0.0591276
176176 −1.64634e9 −0.129334
177177 0 0
178178 −6.24002e9 −0.465903
179179 −1.41019e10 −1.02669 −0.513344 0.858183i 0.671594π-0.671594\pi
−0.513344 + 0.858183i 0.671594π0.671594\pi
180180 0 0
181181 2.38898e10 1.65447 0.827234 0.561857i 0.189913π-0.189913\pi
0.827234 + 0.561857i 0.189913π0.189913\pi
182182 −1.38695e9 −0.0937002
183183 0 0
184184 2.72403e10 1.75199
185185 1.61348e10 1.01272
186186 0 0
187187 3.21493e9 0.192258
188188 3.06273e9 0.178813
189189 0 0
190190 −1.43842e10 −0.800743
191191 2.32674e10 1.26502 0.632509 0.774553i 0.282025π-0.282025\pi
0.632509 + 0.774553i 0.282025π0.282025\pi
192192 0 0
193193 8.87539e9 0.460447 0.230224 0.973138i 0.426054π-0.426054\pi
0.230224 + 0.973138i 0.426054π0.426054\pi
194194 2.43607e10 1.23476
195195 0 0
196196 2.02403e9 0.0979634
197197 9.96936e9 0.471595 0.235798 0.971802i 0.424230π-0.424230\pi
0.235798 + 0.971802i 0.424230π0.424230\pi
198198 0 0
199199 −5.92044e9 −0.267618 −0.133809 0.991007i 0.542721π-0.542721\pi
−0.133809 + 0.991007i 0.542721π0.542721\pi
200200 3.91011e9 0.172804
201201 0 0
202202 1.91566e10 0.809540
203203 1.36347e10 0.563524
204204 0 0
205205 3.53191e10 1.39675
206206 1.30787e10 0.506015
207207 0 0
208208 −6.55077e9 −0.242665
209209 −3.79234e9 −0.137483
210210 0 0
211211 −3.18290e10 −1.10548 −0.552741 0.833353i 0.686418π-0.686418\pi
−0.552741 + 0.833353i 0.686418π0.686418\pi
212212 1.83473e9 0.0623822
213213 0 0
214214 −3.11786e10 −1.01624
215215 −2.90685e10 −0.927788
216216 0 0
217217 −3.86413e8 −0.0118300
218218 1.53000e10 0.458814
219219 0 0
220220 −5.27656e8 −0.0151862
221221 1.27922e10 0.360728
222222 0 0
223223 −2.33567e10 −0.632470 −0.316235 0.948681i 0.602419π-0.602419\pi
−0.316235 + 0.948681i 0.602419π0.602419\pi
224224 −3.02309e9 −0.0802298
225225 0 0
226226 −1.97709e9 −0.0504125
227227 −2.96928e10 −0.742223 −0.371112 0.928588i 0.621023π-0.621023\pi
−0.371112 + 0.928588i 0.621023π0.621023\pi
228228 0 0
229229 4.24937e10 1.02109 0.510546 0.859850i 0.329443π-0.329443\pi
0.510546 + 0.859850i 0.329443π0.329443\pi
230230 −6.10817e10 −1.43925
231231 0 0
232232 7.26728e10 1.64693
233233 3.84693e10 0.855092 0.427546 0.903994i 0.359378π-0.359378\pi
0.427546 + 0.903994i 0.359378π0.359378\pi
234234 0 0
235235 −6.79569e10 −1.45354
236236 6.60776e9 0.138660
237237 0 0
238238 −2.17500e10 −0.439403
239239 1.98946e10 0.394407 0.197203 0.980363i 0.436814π-0.436814\pi
0.197203 + 0.980363i 0.436814π0.436814\pi
240240 0 0
241241 −5.31240e10 −1.01441 −0.507206 0.861825i 0.669322π-0.669322\pi
−0.507206 + 0.861825i 0.669322π0.669322\pi
242242 −4.91675e10 −0.921529
243243 0 0
244244 4.49162e9 0.0811240
245245 −4.49098e10 −0.796332
246246 0 0
247247 −1.50897e10 −0.257955
248248 −2.05958e9 −0.0345738
249249 0 0
250250 −6.19427e10 −1.00291
251251 −1.26269e10 −0.200801 −0.100400 0.994947i 0.532012π-0.532012\pi
−0.100400 + 0.994947i 0.532012π0.532012\pi
252252 0 0
253253 −1.61040e10 −0.247111
254254 9.38102e10 1.41416
255255 0 0
256256 −2.28724e10 −0.332837
257257 −1.11000e11 −1.58717 −0.793583 0.608461i 0.791787π-0.791787\pi
−0.793583 + 0.608461i 0.791787π0.791787\pi
258258 0 0
259259 −2.87790e10 −0.397399
260260 −2.09954e9 −0.0284934
261261 0 0
262262 2.59971e10 0.340855
263263 −7.01020e10 −0.903503 −0.451752 0.892144i 0.649201π-0.649201\pi
−0.451752 + 0.892144i 0.649201π0.649201\pi
264264 0 0
265265 −4.07096e10 −0.507097
266266 2.56564e10 0.314216
267267 0 0
268268 −4.83805e9 −0.0572880
269269 −7.41364e10 −0.863269 −0.431635 0.902049i 0.642063π-0.642063\pi
−0.431635 + 0.902049i 0.642063π0.642063\pi
270270 0 0
271271 8.92477e10 1.00516 0.502580 0.864531i 0.332384π-0.332384\pi
0.502580 + 0.864531i 0.332384π0.332384\pi
272272 −1.02728e11 −1.13797
273273 0 0
274274 1.43523e11 1.53831
275275 −2.31159e9 −0.0243733
276276 0 0
277277 −6.68313e10 −0.682057 −0.341028 0.940053i 0.610775π-0.610775\pi
−0.341028 + 0.940053i 0.610775π0.610775\pi
278278 8.79765e9 0.0883416
279279 0 0
280280 3.53236e10 0.343443
281281 8.13670e10 0.778520 0.389260 0.921128i 0.372731π-0.372731\pi
0.389260 + 0.921128i 0.372731π0.372731\pi
282282 0 0
283283 −1.19236e11 −1.10502 −0.552508 0.833507i 0.686329π-0.686329\pi
−0.552508 + 0.833507i 0.686329π0.686329\pi
284284 7.23814e9 0.0660229
285285 0 0
286286 4.37031e9 0.0386247
287287 −6.29972e10 −0.548091
288288 0 0
289289 8.20174e10 0.691617
290290 −1.62956e11 −1.35295
291291 0 0
292292 1.08355e10 0.0872219
293293 6.95594e10 0.551381 0.275690 0.961246i 0.411094π-0.411094\pi
0.275690 + 0.961246i 0.411094π0.411094\pi
294294 0 0
295295 −1.46615e11 −1.12715
296296 −1.53392e11 −1.16142
297297 0 0
298298 −1.52920e11 −1.12328
299299 −6.40778e10 −0.463647
300300 0 0
301301 5.18482e10 0.364069
302302 1.98349e11 1.37214
303303 0 0
304304 1.21179e11 0.813759
305305 −9.96618e10 −0.659446
306306 0 0
307307 −4.02660e10 −0.258711 −0.129356 0.991598i 0.541291π-0.541291\pi
−0.129356 + 0.991598i 0.541291π0.541291\pi
308308 9.41157e8 0.00595915
309309 0 0
310310 4.61827e9 0.0284022
311311 1.78556e11 1.08231 0.541157 0.840921i 0.317986π-0.317986\pi
0.541157 + 0.840921i 0.317986π0.317986\pi
312312 0 0
313313 9.44550e9 0.0556257 0.0278128 0.999613i 0.491146π-0.491146\pi
0.0278128 + 0.999613i 0.491146π0.491146\pi
314314 −1.24949e11 −0.725354
315315 0 0
316316 2.46740e10 0.139203
317317 −5.42593e10 −0.301792 −0.150896 0.988550i 0.548216π-0.548216\pi
−0.150896 + 0.988550i 0.548216π0.548216\pi
318318 0 0
319319 −4.29630e10 −0.232293
320320 1.86109e11 0.992183
321321 0 0
322322 1.08949e11 0.564769
323323 −2.36635e11 −1.20967
324324 0 0
325325 −9.19783e9 −0.0457309
326326 3.42523e11 1.67962
327327 0 0
328328 −3.35776e11 −1.60183
329329 1.21212e11 0.570379
330330 0 0
331331 6.66790e10 0.305325 0.152663 0.988278i 0.451215π-0.451215\pi
0.152663 + 0.988278i 0.451215π0.451215\pi
332332 1.39907e10 0.0632001
333333 0 0
334334 3.17722e10 0.139697
335335 1.07348e11 0.465687
336336 0 0
337337 2.13457e11 0.901522 0.450761 0.892645i 0.351153π-0.351153\pi
0.450761 + 0.892645i 0.351153π0.351153\pi
338338 1.73894e10 0.0724704
339339 0 0
340340 −3.29247e10 −0.133619
341341 1.21759e9 0.00487649
342342 0 0
343343 1.72028e11 0.671084
344344 2.76351e11 1.06402
345345 0 0
346346 1.41176e11 0.529564
347347 9.49978e10 0.351748 0.175874 0.984413i 0.443725π-0.443725\pi
0.175874 + 0.984413i 0.443725π0.443725\pi
348348 0 0
349349 2.52647e11 0.911590 0.455795 0.890085i 0.349355π-0.349355\pi
0.455795 + 0.890085i 0.349355π0.349355\pi
350350 1.56387e10 0.0557050
351351 0 0
352352 9.52580e9 0.0330719
353353 −4.50376e11 −1.54379 −0.771896 0.635749i 0.780691π-0.780691\pi
−0.771896 + 0.635749i 0.780691π0.780691\pi
354354 0 0
355355 −1.60602e11 −0.536691
356356 1.68485e10 0.0555949
357357 0 0
358358 −3.00619e11 −0.967258
359359 −3.93740e11 −1.25108 −0.625539 0.780193i 0.715121π-0.715121\pi
−0.625539 + 0.780193i 0.715121π0.715121\pi
360360 0 0
361361 −4.35522e10 −0.134967
362362 5.09273e11 1.55870
363363 0 0
364364 3.74486e9 0.0111810
365365 −2.40422e11 −0.709015
366366 0 0
367367 −2.26305e11 −0.651173 −0.325586 0.945512i 0.605562π-0.605562\pi
−0.325586 + 0.945512i 0.605562π0.605562\pi
368368 5.14580e11 1.46264
369369 0 0
370370 3.43956e11 0.954103
371371 7.26120e10 0.198988
372372 0 0
373373 4.75023e11 1.27065 0.635323 0.772246i 0.280867π-0.280867\pi
0.635323 + 0.772246i 0.280867π0.280867\pi
374374 6.85346e10 0.181129
375375 0 0
376376 6.46060e11 1.66697
377377 −1.70950e11 −0.435845
378378 0 0
379379 −1.67293e11 −0.416486 −0.208243 0.978077i 0.566775π-0.566775\pi
−0.208243 + 0.978077i 0.566775π0.566775\pi
380380 3.88381e10 0.0955504
381381 0 0
382382 4.96005e11 1.19179
383383 5.36589e11 1.27423 0.637114 0.770769i 0.280128π-0.280128\pi
0.637114 + 0.770769i 0.280128π0.280128\pi
384384 0 0
385385 −2.08827e10 −0.0484411
386386 1.89202e11 0.433794
387387 0 0
388388 −6.57755e10 −0.147340
389389 −5.95613e11 −1.31884 −0.659418 0.751776i 0.729197π-0.729197\pi
−0.659418 + 0.751776i 0.729197π0.729197\pi
390390 0 0
391391 −1.00486e12 −2.17425
392392 4.26954e11 0.913258
393393 0 0
394394 2.12523e11 0.444297
395395 −5.47475e11 −1.13156
396396 0 0
397397 −6.68797e11 −1.35125 −0.675627 0.737243i 0.736127π-0.736127\pi
−0.675627 + 0.737243i 0.736127π0.736127\pi
398398 −1.26210e11 −0.252127
399399 0 0
400400 7.38637e10 0.144265
401401 −4.27579e11 −0.825785 −0.412892 0.910780i 0.635481π-0.635481\pi
−0.412892 + 0.910780i 0.635481π0.635481\pi
402402 0 0
403403 4.84480e9 0.00914962
404404 −5.17241e10 −0.0966000
405405 0 0
406406 2.90658e11 0.530904
407407 9.06830e10 0.163814
408408 0 0
409409 −4.37893e10 −0.0773772 −0.0386886 0.999251i 0.512318π-0.512318\pi
−0.0386886 + 0.999251i 0.512318π0.512318\pi
410410 7.52919e11 1.31589
411411 0 0
412412 −3.53135e10 −0.0603813
413413 2.61512e11 0.442299
414414 0 0
415415 −3.10431e11 −0.513746
416416 3.79031e10 0.0620519
417417 0 0
418418 −8.08437e10 −0.129525
419419 1.14243e11 0.181079 0.0905395 0.995893i 0.471141π-0.471141\pi
0.0905395 + 0.995893i 0.471141π0.471141\pi
420420 0 0
421421 −5.06520e11 −0.785828 −0.392914 0.919575i 0.628533π-0.628533\pi
−0.392914 + 0.919575i 0.628533π0.628533\pi
422422 −6.78518e11 −1.04149
423423 0 0
424424 3.87023e11 0.581554
425425 −1.44239e11 −0.214453
426426 0 0
427427 1.77763e11 0.258770
428428 8.41842e10 0.121264
429429 0 0
430430 −6.19670e11 −0.874083
431431 1.32605e11 0.185103 0.0925513 0.995708i 0.470498π-0.470498\pi
0.0925513 + 0.995708i 0.470498π0.470498\pi
432432 0 0
433433 1.21346e12 1.65894 0.829469 0.558553i 0.188643π-0.188643\pi
0.829469 + 0.558553i 0.188643π0.188643\pi
434434 −8.23741e9 −0.0111452
435435 0 0
436436 −4.13110e10 −0.0547490
437437 1.18534e12 1.55480
438438 0 0
439439 −7.26961e11 −0.934159 −0.467079 0.884215i 0.654694π-0.654694\pi
−0.467079 + 0.884215i 0.654694π0.654694\pi
440440 −1.11305e11 −0.141572
441441 0 0
442442 2.72699e11 0.339847
443443 1.02161e12 1.26028 0.630142 0.776480i 0.282997π-0.282997\pi
0.630142 + 0.776480i 0.282997π0.282997\pi
444444 0 0
445445 −3.73840e11 −0.451924
446446 −4.97910e11 −0.595859
447447 0 0
448448 −3.31954e11 −0.389339
449449 −5.91722e11 −0.687083 −0.343542 0.939137i 0.611627π-0.611627\pi
−0.343542 + 0.939137i 0.611627π0.611627\pi
450450 0 0
451451 1.98505e11 0.225932
452452 5.33827e9 0.00601558
453453 0 0
454454 −6.32979e11 −0.699259
455455 −8.30924e10 −0.0908887
456456 0 0
457457 −8.30664e11 −0.890845 −0.445423 0.895320i 0.646947π-0.646947\pi
−0.445423 + 0.895320i 0.646947π0.646947\pi
458458 9.05865e11 0.961986
459459 0 0
460460 1.64924e11 0.171741
461461 −8.73246e11 −0.900497 −0.450249 0.892903i 0.648665π-0.648665\pi
−0.450249 + 0.892903i 0.648665π0.648665\pi
462462 0 0
463463 7.70415e11 0.779130 0.389565 0.920999i 0.372625π-0.372625\pi
0.389565 + 0.920999i 0.372625π0.372625\pi
464464 1.37282e12 1.37494
465465 0 0
466466 8.20074e11 0.805595
467467 −4.50995e11 −0.438779 −0.219390 0.975637i 0.570407π-0.570407\pi
−0.219390 + 0.975637i 0.570407π0.570407\pi
468468 0 0
469469 −1.91473e11 −0.182738
470470 −1.44868e12 −1.36940
471471 0 0
472472 1.39386e12 1.29265
473473 −1.63374e11 −0.150075
474474 0 0
475475 1.70145e11 0.153355
476476 5.87265e10 0.0524327
477477 0 0
478478 4.24105e11 0.371576
479479 5.26966e11 0.457376 0.228688 0.973500i 0.426556π-0.426556\pi
0.228688 + 0.973500i 0.426556π0.426556\pi
480480 0 0
481481 3.60827e11 0.307360
482482 −1.13248e12 −0.955692
483483 0 0
484484 1.32755e11 0.109963
485485 1.45945e12 1.19771
486486 0 0
487487 1.88076e12 1.51514 0.757570 0.652754i 0.226386π-0.226386\pi
0.757570 + 0.652754i 0.226386π0.226386\pi
488488 9.47475e11 0.756273
489489 0 0
490490 −9.57371e11 −0.750236
491491 −1.68889e12 −1.31140 −0.655699 0.755022i 0.727626π-0.727626\pi
−0.655699 + 0.755022i 0.727626π0.727626\pi
492492 0 0
493493 −2.68081e12 −2.04388
494494 −3.21677e11 −0.243024
495495 0 0
496496 −3.89064e10 −0.0288638
497497 2.86460e11 0.210601
498498 0 0
499499 1.60699e12 1.16027 0.580137 0.814519i 0.302999π-0.302999\pi
0.580137 + 0.814519i 0.302999π0.302999\pi
500500 1.67249e11 0.119674
501501 0 0
502502 −2.69176e11 −0.189177
503503 −2.73565e12 −1.90548 −0.952740 0.303786i 0.901749π-0.901749\pi
−0.952740 + 0.303786i 0.901749π0.901749\pi
504504 0 0
505505 1.14767e12 0.785249
506506 −3.43299e11 −0.232807
507507 0 0
508508 −2.53294e11 −0.168748
509509 −7.49256e11 −0.494766 −0.247383 0.968918i 0.579571π-0.579571\pi
−0.247383 + 0.968918i 0.579571π0.579571\pi
510510 0 0
511511 4.28830e11 0.278222
512512 −1.73021e12 −1.11271
513513 0 0
514514 −2.36625e12 −1.49529
515515 7.83548e11 0.490832
516516 0 0
517517 −3.81940e11 −0.235119
518518 −6.13500e11 −0.374396
519519 0 0
520520 −4.42883e11 −0.265628
521521 −1.07862e12 −0.641355 −0.320678 0.947188i 0.603911π-0.603911\pi
−0.320678 + 0.947188i 0.603911π0.603911\pi
522522 0 0
523523 −2.69236e12 −1.57353 −0.786765 0.617253i 0.788246π-0.788246\pi
−0.786765 + 0.617253i 0.788246π0.788246\pi
524524 −7.01939e10 −0.0406732
525525 0 0
526526 −1.49441e12 −0.851204
527527 7.59755e10 0.0429067
528528 0 0
529529 3.23232e12 1.79459
530530 −8.67832e11 −0.477743
531531 0 0
532532 −6.92740e10 −0.0374945
533533 7.89851e11 0.423909
534534 0 0
535535 −1.86791e12 −0.985743
536536 −1.02055e12 −0.534064
537537 0 0
538538 −1.58041e12 −0.813299
539539 −2.52408e11 −0.128811
540540 0 0
541541 1.94584e12 0.976604 0.488302 0.872675i 0.337616π-0.337616\pi
0.488302 + 0.872675i 0.337616π0.337616\pi
542542 1.90255e12 0.946976
543543 0 0
544544 5.94392e11 0.290990
545545 9.16622e11 0.445047
546546 0 0
547547 −7.49274e11 −0.357847 −0.178924 0.983863i 0.557261π-0.557261\pi
−0.178924 + 0.983863i 0.557261π0.557261\pi
548548 −3.87520e11 −0.183562
549549 0 0
550550 −4.92777e10 −0.0229625
551551 3.16229e12 1.46157
552552 0 0
553553 9.76509e11 0.444031
554554 −1.42468e12 −0.642576
555555 0 0
556556 −2.37542e10 −0.0105415
557557 −2.43252e12 −1.07080 −0.535399 0.844599i 0.679839π-0.679839\pi
−0.535399 + 0.844599i 0.679839π0.679839\pi
558558 0 0
559559 −6.50066e11 −0.281581
560560 6.67278e11 0.286722
561561 0 0
562562 1.73455e12 0.733455
563563 2.26566e12 0.950401 0.475200 0.879878i 0.342376π-0.342376\pi
0.475200 + 0.879878i 0.342376π0.342376\pi
564564 0 0
565565 −1.18447e11 −0.0488999
566566 −2.54183e12 −1.04105
567567 0 0
568568 1.52683e12 0.615494
569569 −4.39567e12 −1.75800 −0.879002 0.476817i 0.841790π-0.841790\pi
−0.879002 + 0.476817i 0.841790π0.841790\pi
570570 0 0
571571 2.81010e12 1.10626 0.553132 0.833094i 0.313433π-0.313433\pi
0.553132 + 0.833094i 0.313433π0.313433\pi
572572 −1.18001e10 −0.00460897
573573 0 0
574574 −1.34295e12 −0.516365
575575 7.22513e11 0.275639
576576 0 0
577577 −3.06576e12 −1.15146 −0.575728 0.817642i 0.695281π-0.695281\pi
−0.575728 + 0.817642i 0.695281π0.695281\pi
578578 1.74842e12 0.651583
579579 0 0
580580 4.39993e11 0.161443
581581 5.53702e11 0.201597
582582 0 0
583583 −2.28801e11 −0.0820257
584584 2.28567e12 0.813121
585585 0 0
586586 1.48284e12 0.519464
587587 −1.53677e12 −0.534240 −0.267120 0.963663i 0.586072π-0.586072\pi
−0.267120 + 0.963663i 0.586072π0.586072\pi
588588 0 0
589589 −8.96210e10 −0.0306825
590590 −3.12549e12 −1.06190
591591 0 0
592592 −2.89765e12 −0.969611
593593 3.34336e12 1.11029 0.555146 0.831753i 0.312662π-0.312662\pi
0.555146 + 0.831753i 0.312662π0.312662\pi
594594 0 0
595595 −1.30304e12 −0.426219
596596 4.12893e11 0.134038
597597 0 0
598598 −1.36599e12 −0.436808
599599 9.97101e11 0.316460 0.158230 0.987402i 0.449421π-0.449421\pi
0.158230 + 0.987402i 0.449421π0.449421\pi
600600 0 0
601601 −2.24332e12 −0.701386 −0.350693 0.936491i 0.614054π-0.614054\pi
−0.350693 + 0.936491i 0.614054π0.614054\pi
602602 1.10528e12 0.342995
603603 0 0
604604 −5.35555e11 −0.163733
605605 −2.94562e12 −0.893878
606606 0 0
607607 −5.75690e12 −1.72123 −0.860617 0.509253i 0.829922π-0.829922\pi
−0.860617 + 0.509253i 0.829922π0.829922\pi
608608 −7.01147e11 −0.208086
609609 0 0
610610 −2.12455e12 −0.621274
611611 −1.51974e12 −0.441147
612612 0 0
613613 3.44873e12 0.986479 0.493239 0.869894i 0.335813π-0.335813\pi
0.493239 + 0.869894i 0.335813π0.335813\pi
614614 −8.58375e11 −0.243736
615615 0 0
616616 1.98530e11 0.0555538
617617 5.13402e12 1.42618 0.713089 0.701073i 0.247295π-0.247295\pi
0.713089 + 0.701073i 0.247295π0.247295\pi
618618 0 0
619619 1.83851e12 0.503336 0.251668 0.967814i 0.419021π-0.419021\pi
0.251668 + 0.967814i 0.419021π0.419021\pi
620620 −1.24696e10 −0.00338915
621621 0 0
622622 3.80640e12 1.01966
623623 6.66802e11 0.177338
624624 0 0
625625 −3.08200e12 −0.807928
626626 2.01356e11 0.0524058
627627 0 0
628628 3.37371e11 0.0865544
629629 5.65845e12 1.44135
630630 0 0
631631 3.01780e12 0.757805 0.378903 0.925437i 0.376301π-0.376301\pi
0.378903 + 0.925437i 0.376301π0.376301\pi
632632 5.20480e12 1.29771
633633 0 0
634634 −1.15668e12 −0.284322
635635 5.62017e12 1.37173
636636 0 0
637637 −1.00433e12 −0.241685
638638 −9.15868e11 −0.218847
639639 0 0
640640 3.09962e12 0.730295
641641 −2.47728e12 −0.579580 −0.289790 0.957090i 0.593585π-0.593585\pi
−0.289790 + 0.957090i 0.593585π0.593585\pi
642642 0 0
643643 5.96725e12 1.37665 0.688327 0.725401i 0.258346π-0.258346\pi
0.688327 + 0.725401i 0.258346π0.258346\pi
644644 −2.94169e11 −0.0673923
645645 0 0
646646 −5.04449e12 −1.13965
647647 4.85153e12 1.08845 0.544227 0.838938i 0.316823π-0.316823\pi
0.544227 + 0.838938i 0.316823π0.316823\pi
648648 0 0
649649 −8.24027e11 −0.182322
650650 −1.96076e11 −0.0430838
651651 0 0
652652 −9.24835e11 −0.200424
653653 1.50523e12 0.323961 0.161980 0.986794i 0.448212π-0.448212\pi
0.161980 + 0.986794i 0.448212π0.448212\pi
654654 0 0
655655 1.55749e12 0.330628
656656 −6.34294e12 −1.33728
657657 0 0
658658 2.58395e12 0.537362
659659 3.29009e12 0.679552 0.339776 0.940506i 0.389649π-0.389649\pi
0.339776 + 0.940506i 0.389649π0.389649\pi
660660 0 0
661661 7.79224e12 1.58765 0.793827 0.608144i 0.208086π-0.208086\pi
0.793827 + 0.608144i 0.208086π0.208086\pi
662662 1.42144e12 0.287652
663663 0 0
664664 2.95124e12 0.589179
665665 1.53708e12 0.304788
666666 0 0
667667 1.34285e13 2.62701
668668 −8.57871e10 −0.0166697
669669 0 0
670670 2.28841e12 0.438730
671671 −5.60132e11 −0.106669
672672 0 0
673673 −6.76161e12 −1.27052 −0.635261 0.772297i 0.719108π-0.719108\pi
−0.635261 + 0.772297i 0.719108π0.719108\pi
674674 4.55040e12 0.849337
675675 0 0
676676 −4.69526e10 −0.00864768
677677 −6.04459e12 −1.10590 −0.552952 0.833213i 0.686499π-0.686499\pi
−0.552952 + 0.833213i 0.686499π0.686499\pi
678678 0 0
679679 −2.60316e12 −0.469988
680680 −6.94523e12 −1.24565
681681 0 0
682682 2.59562e10 0.00459421
683683 −3.24587e12 −0.570740 −0.285370 0.958417i 0.592116π-0.592116\pi
−0.285370 + 0.958417i 0.592116π0.592116\pi
684684 0 0
685685 8.59843e12 1.49215
686686 3.66724e12 0.632238
687687 0 0
688688 5.22039e12 0.888290
689689 −9.10400e11 −0.153903
690690 0 0
691691 −4.14584e12 −0.691769 −0.345885 0.938277i 0.612421π-0.612421\pi
−0.345885 + 0.938277i 0.612421π0.612421\pi
692692 −3.81184e11 −0.0631913
693693 0 0
694694 2.02513e12 0.331387
695695 5.27067e11 0.0856908
696696 0 0
697697 1.23863e13 1.98790
698698 5.38583e12 0.858822
699699 0 0
700700 −4.22255e10 −0.00664711
701701 5.47240e12 0.855947 0.427974 0.903791i 0.359228π-0.359228\pi
0.427974 + 0.903791i 0.359228π0.359228\pi
702702 0 0
703703 −6.67473e12 −1.03071
704704 1.04599e12 0.160491
705705 0 0
706706 −9.60094e12 −1.45443
707707 −2.04706e12 −0.308136
708708 0 0
709709 1.68810e12 0.250895 0.125447 0.992100i 0.459963π-0.459963\pi
0.125447 + 0.992100i 0.459963π0.459963\pi
710710 −3.42366e12 −0.505625
711711 0 0
712712 3.55406e12 0.518280
713713 −3.80571e11 −0.0551484
714714 0 0
715715 2.61825e11 0.0374657
716716 8.11690e11 0.115420
717717 0 0
718718 −8.39360e12 −1.17866
719719 3.99409e12 0.557363 0.278681 0.960384i 0.410103π-0.410103\pi
0.278681 + 0.960384i 0.410103π0.410103\pi
720720 0 0
721721 −1.39758e12 −0.192605
722722 −9.28430e11 −0.127154
723723 0 0
724724 −1.37507e12 −0.185995
725725 1.92755e12 0.259111
726726 0 0
727727 −1.96928e12 −0.261459 −0.130730 0.991418i 0.541732π-0.541732\pi
−0.130730 + 0.991418i 0.541732π0.541732\pi
728728 7.89952e11 0.104234
729729 0 0
730730 −5.12522e12 −0.667974
731731 −1.01942e13 −1.32046
732732 0 0
733733 2.48265e12 0.317649 0.158825 0.987307i 0.449230π-0.449230\pi
0.158825 + 0.987307i 0.449230π0.449230\pi
734734 −4.82428e12 −0.613479
735735 0 0
736736 −2.97739e12 −0.374012
737737 6.03333e11 0.0753275
738738 0 0
739739 −8.83198e12 −1.08933 −0.544664 0.838655i 0.683343π-0.683343\pi
−0.544664 + 0.838655i 0.683343π0.683343\pi
740740 −9.28704e11 −0.113850
741741 0 0
742742 1.54792e12 0.187469
743743 −5.88065e12 −0.707906 −0.353953 0.935263i 0.615163π-0.615163\pi
−0.353953 + 0.935263i 0.615163π0.615163\pi
744744 0 0
745745 −9.16141e12 −1.08958
746746 1.01264e13 1.19710
747747 0 0
748748 −1.85048e11 −0.0216136
749749 3.33171e12 0.386811
750750 0 0
751751 −9.39265e12 −1.07748 −0.538739 0.842473i 0.681099π-0.681099\pi
−0.538739 + 0.842473i 0.681099π0.681099\pi
752752 1.22043e13 1.39166
753753 0 0
754754 −3.64424e12 −0.410616
755755 1.18831e13 1.33097
756756 0 0
757757 1.20690e13 1.33579 0.667897 0.744254i 0.267195π-0.267195\pi
0.667897 + 0.744254i 0.267195π0.267195\pi
758758 −3.56628e12 −0.392378
759759 0 0
760760 8.19263e12 0.890762
761761 −1.73414e12 −0.187436 −0.0937182 0.995599i 0.529875π-0.529875\pi
−0.0937182 + 0.995599i 0.529875π0.529875\pi
762762 0 0
763763 −1.63494e12 −0.174639
764764 −1.33924e12 −0.142213
765765 0 0
766766 1.14388e13 1.20047
767767 −3.27880e12 −0.342086
768768 0 0
769769 −1.87490e13 −1.93335 −0.966675 0.256006i 0.917593π-0.917593\pi
−0.966675 + 0.256006i 0.917593π0.917593\pi
770770 −4.45170e11 −0.0456371
771771 0 0
772772 −5.10858e11 −0.0517634
773773 2.23308e12 0.224956 0.112478 0.993654i 0.464121π-0.464121\pi
0.112478 + 0.993654i 0.464121π0.464121\pi
774774 0 0
775775 −5.46278e10 −0.00543947
776776 −1.38749e13 −1.37357
777777 0 0
778778 −1.26971e13 −1.24250
779779 −1.46110e13 −1.42154
780780 0 0
781781 −9.02638e11 −0.0868129
782782 −2.14212e13 −2.04839
783783 0 0
784784 8.06534e12 0.762431
785785 −7.48571e12 −0.703590
786786 0 0
787787 7.05497e12 0.655555 0.327777 0.944755i 0.393700π-0.393700\pi
0.327777 + 0.944755i 0.393700π0.393700\pi
788788 −5.73826e11 −0.0530166
789789 0 0
790790 −1.16709e13 −1.06606
791791 2.11270e11 0.0191886
792792 0 0
793793 −2.22876e12 −0.200140
794794 −1.42572e13 −1.27304
795795 0 0
796796 3.40774e11 0.0300855
797797 −1.16654e13 −1.02409 −0.512045 0.858959i 0.671112π-0.671112\pi
−0.512045 + 0.858959i 0.671112π0.671112\pi
798798 0 0
799799 −2.38323e13 −2.06874
800800 −4.27379e11 −0.0368900
801801 0 0
802802 −9.11497e12 −0.777984
803803 −1.35125e12 −0.114687
804804 0 0
805805 6.52712e12 0.547823
806806 1.03280e11 0.00861999
807807 0 0
808808 −1.09108e13 −0.900548
809809 1.37043e13 1.12483 0.562415 0.826855i 0.309872π-0.309872\pi
0.562415 + 0.826855i 0.309872π0.309872\pi
810810 0 0
811811 2.07440e12 0.168383 0.0841917 0.996450i 0.473169π-0.473169\pi
0.0841917 + 0.996450i 0.473169π0.473169\pi
812812 −7.84797e11 −0.0633512
813813 0 0
814814 1.93315e12 0.154332
815815 2.05206e13 1.62922
816816 0 0
817817 1.20252e13 0.944261
818818 −9.33483e11 −0.0728982
819819 0 0
820820 −2.03293e12 −0.157022
821821 1.51952e13 1.16724 0.583622 0.812026i 0.301635π-0.301635\pi
0.583622 + 0.812026i 0.301635π0.301635\pi
822822 0 0
823823 8.32881e12 0.632825 0.316412 0.948622i 0.397522π-0.397522\pi
0.316412 + 0.948622i 0.397522π0.397522\pi
824824 −7.44912e12 −0.562901
825825 0 0
826826 5.57481e12 0.416697
827827 1.50997e13 1.12252 0.561258 0.827641i 0.310317π-0.310317\pi
0.561258 + 0.827641i 0.310317π0.310317\pi
828828 0 0
829829 −9.65383e12 −0.709912 −0.354956 0.934883i 0.615504π-0.615504\pi
−0.354956 + 0.934883i 0.615504π0.615504\pi
830830 −6.61764e12 −0.484007
831831 0 0
832832 4.16200e12 0.301125
833833 −1.57498e13 −1.13337
834834 0 0
835835 1.90347e12 0.135506
836836 2.18283e11 0.0154558
837837 0 0
838838 2.43540e12 0.170597
839839 −1.96235e13 −1.36725 −0.683623 0.729835i 0.739597π-0.739597\pi
−0.683623 + 0.729835i 0.739597π0.739597\pi
840840 0 0
841841 2.13181e13 1.46949
842842 −1.07978e13 −0.740340
843843 0 0
844844 1.83204e12 0.124278
845845 1.04180e12 0.0702959
846846 0 0
847847 5.25399e12 0.350763
848848 7.31102e12 0.485508
849849 0 0
850850 −3.07483e12 −0.202040
851851 −2.83439e13 −1.85258
852852 0 0
853853 −1.66671e13 −1.07793 −0.538963 0.842329i 0.681184π-0.681184\pi
−0.538963 + 0.842329i 0.681184π0.681184\pi
854854 3.78947e12 0.243791
855855 0 0
856856 1.77580e13 1.13048
857857 8.56434e12 0.542351 0.271175 0.962530i 0.412588π-0.412588\pi
0.271175 + 0.962530i 0.412588π0.412588\pi
858858 0 0
859859 1.87649e12 0.117592 0.0587958 0.998270i 0.481274π-0.481274\pi
0.0587958 + 0.998270i 0.481274π0.481274\pi
860860 1.67315e12 0.104302
861861 0 0
862862 2.82683e12 0.174388
863863 −2.54184e11 −0.0155991 −0.00779956 0.999970i 0.502483π-0.502483\pi
−0.00779956 + 0.999970i 0.502483π0.502483\pi
864864 0 0
865865 8.45785e12 0.513674
866866 2.58681e13 1.56291
867867 0 0
868868 2.22415e10 0.00132992
869869 −3.07699e12 −0.183036
870870 0 0
871871 2.40066e12 0.141335
872872 −8.71425e12 −0.510394
873873 0 0
874874 2.52685e13 1.46480
875875 6.61913e12 0.381737
876876 0 0
877877 −2.88730e13 −1.64814 −0.824069 0.566490i 0.808301π-0.808301\pi
−0.824069 + 0.566490i 0.808301π0.808301\pi
878878 −1.54971e13 −0.880085
879879 0 0
880880 −2.10260e12 −0.118191
881881 1.43284e13 0.801317 0.400659 0.916227i 0.368781π-0.368781\pi
0.400659 + 0.916227i 0.368781π0.368781\pi
882882 0 0
883883 3.54065e12 0.196001 0.0980007 0.995186i 0.468755π-0.468755\pi
0.0980007 + 0.995186i 0.468755π0.468755\pi
884884 −7.36305e11 −0.0405529
885885 0 0
886886 2.17783e13 1.18733
887887 −1.07018e13 −0.580497 −0.290249 0.956951i 0.593738π-0.593738\pi
−0.290249 + 0.956951i 0.593738π0.593738\pi
888888 0 0
889889 −1.00245e13 −0.538274
890890 −7.96937e12 −0.425764
891891 0 0
892892 1.34439e12 0.0711022
893893 2.81127e13 1.47935
894894 0 0
895895 −1.80101e13 −0.938235
896896 −5.52866e12 −0.286572
897897 0 0
898898 −1.26141e13 −0.647311
899899 −1.01531e12 −0.0518416
900900 0 0
901901 −1.42768e13 −0.721720
902902 4.23165e12 0.212853
903903 0 0
904904 1.12607e12 0.0560799
905905 3.05106e13 1.51193
906906 0 0
907907 2.74516e13 1.34690 0.673448 0.739234i 0.264812π-0.264812\pi
0.673448 + 0.739234i 0.264812π0.264812\pi
908908 1.70909e12 0.0834406
909909 0 0
910910 −1.77133e12 −0.0856276
911911 −1.57903e13 −0.759550 −0.379775 0.925079i 0.623999π-0.623999\pi
−0.379775 + 0.925079i 0.623999π0.623999\pi
912912 0 0
913913 −1.74472e12 −0.0831013
914914 −1.77078e13 −0.839279
915915 0 0
916916 −2.44589e12 −0.114791
917917 −2.77803e12 −0.129740
918918 0 0
919919 3.33575e13 1.54267 0.771335 0.636429i 0.219589π-0.219589\pi
0.771335 + 0.636429i 0.219589π0.219589\pi
920920 3.47896e13 1.60105
921921 0 0
922922 −1.86155e13 −0.848372
923923 −3.59160e12 −0.162885
924924 0 0
925925 −4.06853e12 −0.182726
926926 1.64234e13 0.734030
927927 0 0
928928 −7.94322e12 −0.351585
929929 5.90953e12 0.260305 0.130152 0.991494i 0.458453π-0.458453\pi
0.130152 + 0.991494i 0.458453π0.458453\pi
930930 0 0
931931 1.85785e13 0.810471
932932 −2.21425e12 −0.0961293
933933 0 0
934934 −9.61415e12 −0.413380
935935 4.10591e12 0.175694
936936 0 0
937937 2.94135e13 1.24657 0.623287 0.781993i 0.285797π-0.285797\pi
0.623287 + 0.781993i 0.285797π0.285797\pi
938938 −4.08175e12 −0.172160
939939 0 0
940940 3.91153e12 0.163407
941941 1.78277e13 0.741212 0.370606 0.928790i 0.379150π-0.379150\pi
0.370606 + 0.928790i 0.379150π0.379150\pi
942942 0 0
943943 −6.20448e13 −2.55507
944944 2.63306e13 1.07916
945945 0 0
946946 −3.48275e12 −0.141388
947947 2.20380e13 0.890427 0.445213 0.895425i 0.353128π-0.353128\pi
0.445213 + 0.895425i 0.353128π0.353128\pi
948948 0 0
949949 −5.37661e12 −0.215184
950950 3.62709e12 0.144478
951951 0 0
952952 1.23879e13 0.488801
953953 −3.10318e13 −1.21868 −0.609340 0.792909i 0.708565π-0.708565\pi
−0.609340 + 0.792909i 0.708565π0.708565\pi
954954 0 0
955955 2.97156e13 1.15603
956956 −1.14511e12 −0.0443391
957957 0 0
958958 1.12337e13 0.430900
959959 −1.53367e13 −0.585527
960960 0 0
961961 −2.64108e13 −0.998912
962962 7.69198e12 0.289568
963963 0 0
964964 3.05776e12 0.114040
965965 1.13351e13 0.420778
966966 0 0
967967 3.86641e13 1.42196 0.710982 0.703210i 0.248251π-0.248251\pi
0.710982 + 0.703210i 0.248251π0.248251\pi
968968 2.80038e13 1.02513
969969 0 0
970970 3.11120e13 1.12838
971971 −2.91204e13 −1.05126 −0.525631 0.850713i 0.676171π-0.676171\pi
−0.525631 + 0.850713i 0.676171π0.676171\pi
972972 0 0
973973 −9.40108e11 −0.0336256
974974 4.00933e13 1.42744
975975 0 0
976976 1.78982e13 0.631372
977977 2.43957e13 0.856618 0.428309 0.903632i 0.359109π-0.359109\pi
0.428309 + 0.903632i 0.359109π0.359109\pi
978978 0 0
979979 −2.10110e12 −0.0731012
980980 2.58496e12 0.0895235
981981 0 0
982982 −3.60031e13 −1.23549
983983 −1.65480e13 −0.565268 −0.282634 0.959228i 0.591208π-0.591208\pi
−0.282634 + 0.959228i 0.591208π0.591208\pi
984984 0 0
985985 1.27323e13 0.430965
986986 −5.71485e13 −1.92557
987987 0 0
988988 8.68548e11 0.0289993
989989 5.10643e13 1.69721
990990 0 0
991991 −6.37548e12 −0.209982 −0.104991 0.994473i 0.533481π-0.533481\pi
−0.104991 + 0.994473i 0.533481π0.533481\pi
992992 2.25115e11 0.00738077
993993 0 0
994994 6.10664e12 0.198410
995995 −7.56122e12 −0.244561
996996 0 0
997997 1.52049e13 0.487366 0.243683 0.969855i 0.421644π-0.421644\pi
0.243683 + 0.969855i 0.421644π0.421644\pi
998998 3.42572e13 1.09311
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.10.a.e.1.4 5
3.2 odd 2 13.10.a.b.1.2 5
12.11 even 2 208.10.a.h.1.5 5
15.14 odd 2 325.10.a.b.1.4 5
39.38 odd 2 169.10.a.b.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.b.1.2 5 3.2 odd 2
117.10.a.e.1.4 5 1.1 even 1 trivial
169.10.a.b.1.4 5 39.38 odd 2
208.10.a.h.1.5 5 12.11 even 2
325.10.a.b.1.4 5 15.14 odd 2