Properties

Label 117.2.f.a.61.4
Level $117$
Weight $2$
Character 117.61
Analytic conductor $0.934$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,2,Mod(61,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.61");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 117.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.934249703649\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 61.4
Character \(\chi\) \(=\) 117.61
Dual form 117.2.f.a.94.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.567922 - 0.983670i) q^{2} +(-0.529547 - 1.64911i) q^{3} +(0.354929 - 0.614756i) q^{4} +(-0.0587384 - 0.101738i) q^{5} +(-1.32144 + 1.45747i) q^{6} +0.849445 q^{7} -3.07798 q^{8} +(-2.43916 + 1.74657i) q^{9} +(-0.0667177 + 0.115558i) q^{10} +(0.231971 + 0.401786i) q^{11} +(-1.20175 - 0.259777i) q^{12} +(1.54170 - 3.25932i) q^{13} +(-0.482419 - 0.835574i) q^{14} +(-0.136673 + 0.150741i) q^{15} +(1.03819 + 1.79820i) q^{16} +(-1.26296 - 2.18751i) q^{17} +(3.10330 + 1.40741i) q^{18} +(3.09113 + 5.35399i) q^{19} -0.0833920 q^{20} +(-0.449821 - 1.40083i) q^{21} +(0.263483 - 0.456366i) q^{22} +6.65773 q^{23} +(1.62993 + 5.07594i) q^{24} +(2.49310 - 4.31818i) q^{25} +(-4.08166 + 0.334515i) q^{26} +(4.17194 + 3.09756i) q^{27} +(0.301493 - 0.522201i) q^{28} +(-0.952265 - 1.64937i) q^{29} +(0.225899 + 0.0488315i) q^{30} +(0.657577 + 1.13896i) q^{31} +(-1.89875 + 3.28874i) q^{32} +(0.539751 - 0.595312i) q^{33} +(-1.43452 + 2.48467i) q^{34} +(-0.0498951 - 0.0864208i) q^{35} +(0.207983 + 2.11940i) q^{36} +(-2.01347 + 3.48743i) q^{37} +(3.51104 - 6.08129i) q^{38} +(-6.19139 - 0.816478i) q^{39} +(0.180795 + 0.313147i) q^{40} +9.68663 q^{41} +(-1.12249 + 1.23804i) q^{42} -4.20953 q^{43} +0.329333 q^{44} +(0.320965 + 0.145564i) q^{45} +(-3.78107 - 6.54901i) q^{46} +(1.34586 - 2.33109i) q^{47} +(2.41567 - 2.66433i) q^{48} -6.27844 q^{49} -5.66354 q^{50} +(-2.93865 + 3.24115i) q^{51} +(-1.45649 - 2.10460i) q^{52} -0.389682 q^{53} +(0.677644 - 5.86299i) q^{54} +(0.0272512 - 0.0472005i) q^{55} -2.61457 q^{56} +(7.19244 - 7.93281i) q^{57} +(-1.08162 + 1.87343i) q^{58} +(-5.53661 + 9.58969i) q^{59} +(0.0441600 + 0.137523i) q^{60} -7.76759 q^{61} +(0.746905 - 1.29368i) q^{62} +(-2.07193 + 1.48361i) q^{63} +8.46614 q^{64} +(-0.422153 + 0.0345978i) q^{65} +(-0.892126 - 0.192846i) q^{66} -1.02270 q^{67} -1.79304 q^{68} +(-3.52558 - 10.9794i) q^{69} +(-0.0566730 + 0.0981605i) q^{70} +(3.61012 + 6.25291i) q^{71} +(7.50768 - 5.37589i) q^{72} -3.31321 q^{73} +4.57397 q^{74} +(-8.44138 - 1.82473i) q^{75} +4.38853 q^{76} +(0.197047 + 0.341295i) q^{77} +(2.71308 + 6.55398i) q^{78} +(-4.41302 + 7.64357i) q^{79} +(0.121963 - 0.211247i) q^{80} +(2.89900 - 8.52032i) q^{81} +(-5.50125 - 9.52844i) q^{82} +(1.75800 - 3.04495i) q^{83} +(-1.02082 - 0.220667i) q^{84} +(-0.148368 + 0.256981i) q^{85} +(2.39069 + 4.14079i) q^{86} +(-2.21573 + 2.44382i) q^{87} +(-0.714002 - 1.23669i) q^{88} +(-6.62760 + 11.4793i) q^{89} +(-0.0390955 - 0.398392i) q^{90} +(1.30959 - 2.76861i) q^{91} +(2.36303 - 4.09288i) q^{92} +(1.53005 - 1.68755i) q^{93} -3.05736 q^{94} +(0.363136 - 0.628970i) q^{95} +(6.42898 + 1.38972i) q^{96} +15.7455 q^{97} +(3.56567 + 6.17591i) q^{98} +(-1.26756 - 0.574866i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} - q^{3} - 9 q^{4} - 2 q^{5} + 9 q^{6} - 6 q^{7} - 18 q^{8} - 3 q^{9} - 3 q^{11} - 3 q^{12} + 2 q^{14} + 8 q^{15} - 3 q^{16} + 6 q^{17} - 8 q^{18} - 3 q^{19} + 22 q^{20} - 25 q^{21} + 9 q^{22}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.567922 0.983670i −0.401581 0.695559i 0.592336 0.805691i \(-0.298206\pi\)
−0.993917 + 0.110132i \(0.964873\pi\)
\(3\) −0.529547 1.64911i −0.305734 0.952117i
\(4\) 0.354929 0.614756i 0.177465 0.307378i
\(5\) −0.0587384 0.101738i −0.0262686 0.0454986i 0.852592 0.522577i \(-0.175029\pi\)
−0.878861 + 0.477078i \(0.841696\pi\)
\(6\) −1.32144 + 1.45747i −0.539477 + 0.595009i
\(7\) 0.849445 0.321060 0.160530 0.987031i \(-0.448680\pi\)
0.160530 + 0.987031i \(0.448680\pi\)
\(8\) −3.07798 −1.08823
\(9\) −2.43916 + 1.74657i −0.813053 + 0.582189i
\(10\) −0.0667177 + 0.115558i −0.0210980 + 0.0365428i
\(11\) 0.231971 + 0.401786i 0.0699419 + 0.121143i 0.898876 0.438204i \(-0.144385\pi\)
−0.828934 + 0.559347i \(0.811052\pi\)
\(12\) −1.20175 0.259777i −0.346917 0.0749912i
\(13\) 1.54170 3.25932i 0.427591 0.903972i
\(14\) −0.482419 0.835574i −0.128932 0.223316i
\(15\) −0.136673 + 0.150741i −0.0352888 + 0.0389213i
\(16\) 1.03819 + 1.79820i 0.259548 + 0.449550i
\(17\) −1.26296 2.18751i −0.306312 0.530548i 0.671240 0.741240i \(-0.265762\pi\)
−0.977553 + 0.210692i \(0.932428\pi\)
\(18\) 3.10330 + 1.40741i 0.731454 + 0.331730i
\(19\) 3.09113 + 5.35399i 0.709153 + 1.22829i 0.965172 + 0.261617i \(0.0842558\pi\)
−0.256019 + 0.966672i \(0.582411\pi\)
\(20\) −0.0833920 −0.0186470
\(21\) −0.449821 1.40083i −0.0981590 0.305687i
\(22\) 0.263483 0.456366i 0.0561748 0.0972975i
\(23\) 6.65773 1.38823 0.694117 0.719862i \(-0.255795\pi\)
0.694117 + 0.719862i \(0.255795\pi\)
\(24\) 1.62993 + 5.07594i 0.332709 + 1.03612i
\(25\) 2.49310 4.31818i 0.498620 0.863635i
\(26\) −4.08166 + 0.334515i −0.800479 + 0.0656037i
\(27\) 4.17194 + 3.09756i 0.802890 + 0.596127i
\(28\) 0.301493 0.522201i 0.0569768 0.0986868i
\(29\) −0.952265 1.64937i −0.176831 0.306281i 0.763962 0.645261i \(-0.223251\pi\)
−0.940793 + 0.338980i \(0.889918\pi\)
\(30\) 0.225899 + 0.0488315i 0.0412434 + 0.00891537i
\(31\) 0.657577 + 1.13896i 0.118104 + 0.204563i 0.919016 0.394219i \(-0.128985\pi\)
−0.800912 + 0.598782i \(0.795652\pi\)
\(32\) −1.89875 + 3.28874i −0.335655 + 0.581372i
\(33\) 0.539751 0.595312i 0.0939586 0.103630i
\(34\) −1.43452 + 2.48467i −0.246019 + 0.426117i
\(35\) −0.0498951 0.0864208i −0.00843381 0.0146078i
\(36\) 0.207983 + 2.11940i 0.0346639 + 0.353233i
\(37\) −2.01347 + 3.48743i −0.331012 + 0.573330i −0.982711 0.185148i \(-0.940723\pi\)
0.651698 + 0.758478i \(0.274057\pi\)
\(38\) 3.51104 6.08129i 0.569565 0.986516i
\(39\) −6.19139 0.816478i −0.991417 0.130741i
\(40\) 0.180795 + 0.313147i 0.0285863 + 0.0495129i
\(41\) 9.68663 1.51280 0.756399 0.654111i \(-0.226957\pi\)
0.756399 + 0.654111i \(0.226957\pi\)
\(42\) −1.12249 + 1.23804i −0.173204 + 0.191034i
\(43\) −4.20953 −0.641948 −0.320974 0.947088i \(-0.604010\pi\)
−0.320974 + 0.947088i \(0.604010\pi\)
\(44\) 0.329333 0.0496489
\(45\) 0.320965 + 0.145564i 0.0478466 + 0.0216995i
\(46\) −3.78107 6.54901i −0.557489 0.965599i
\(47\) 1.34586 2.33109i 0.196313 0.340025i −0.751017 0.660283i \(-0.770436\pi\)
0.947330 + 0.320258i \(0.103770\pi\)
\(48\) 2.41567 2.66433i 0.348672 0.384563i
\(49\) −6.27844 −0.896920
\(50\) −5.66354 −0.800946
\(51\) −2.93865 + 3.24115i −0.411494 + 0.453852i
\(52\) −1.45649 2.10460i −0.201979 0.291855i
\(53\) −0.389682 −0.0535269 −0.0267634 0.999642i \(-0.508520\pi\)
−0.0267634 + 0.999642i \(0.508520\pi\)
\(54\) 0.677644 5.86299i 0.0922156 0.797851i
\(55\) 0.0272512 0.0472005i 0.00367456 0.00636452i
\(56\) −2.61457 −0.349387
\(57\) 7.19244 7.93281i 0.952662 1.05073i
\(58\) −1.08162 + 1.87343i −0.142024 + 0.245993i
\(59\) −5.53661 + 9.58969i −0.720805 + 1.24847i 0.239872 + 0.970805i \(0.422895\pi\)
−0.960677 + 0.277667i \(0.910439\pi\)
\(60\) 0.0441600 + 0.137523i 0.00570103 + 0.0177541i
\(61\) −7.76759 −0.994538 −0.497269 0.867596i \(-0.665664\pi\)
−0.497269 + 0.867596i \(0.665664\pi\)
\(62\) 0.746905 1.29368i 0.0948570 0.164297i
\(63\) −2.07193 + 1.48361i −0.261039 + 0.186918i
\(64\) 8.46614 1.05827
\(65\) −0.422153 + 0.0345978i −0.0523617 + 0.00429133i
\(66\) −0.892126 0.192846i −0.109813 0.0237378i
\(67\) −1.02270 −0.124943 −0.0624715 0.998047i \(-0.519898\pi\)
−0.0624715 + 0.998047i \(0.519898\pi\)
\(68\) −1.79304 −0.217438
\(69\) −3.52558 10.9794i −0.424430 1.32176i
\(70\) −0.0566730 + 0.0981605i −0.00677372 + 0.0117324i
\(71\) 3.61012 + 6.25291i 0.428442 + 0.742083i 0.996735 0.0807430i \(-0.0257293\pi\)
−0.568293 + 0.822826i \(0.692396\pi\)
\(72\) 7.50768 5.37589i 0.884788 0.633555i
\(73\) −3.31321 −0.387782 −0.193891 0.981023i \(-0.562111\pi\)
−0.193891 + 0.981023i \(0.562111\pi\)
\(74\) 4.57397 0.531713
\(75\) −8.44138 1.82473i −0.974727 0.210702i
\(76\) 4.38853 0.503398
\(77\) 0.197047 + 0.341295i 0.0224556 + 0.0388942i
\(78\) 2.71308 + 6.55398i 0.307196 + 0.742092i
\(79\) −4.41302 + 7.64357i −0.496503 + 0.859969i −0.999992 0.00403289i \(-0.998716\pi\)
0.503489 + 0.864002i \(0.332050\pi\)
\(80\) 0.121963 0.211247i 0.0136359 0.0236181i
\(81\) 2.89900 8.52032i 0.322111 0.946702i
\(82\) −5.50125 9.52844i −0.607511 1.05224i
\(83\) 1.75800 3.04495i 0.192966 0.334227i −0.753266 0.657716i \(-0.771523\pi\)
0.946232 + 0.323489i \(0.104856\pi\)
\(84\) −1.02082 0.220667i −0.111381 0.0240767i
\(85\) −0.148368 + 0.256981i −0.0160928 + 0.0278735i
\(86\) 2.39069 + 4.14079i 0.257794 + 0.446513i
\(87\) −2.21573 + 2.44382i −0.237552 + 0.262004i
\(88\) −0.714002 1.23669i −0.0761128 0.131831i
\(89\) −6.62760 + 11.4793i −0.702525 + 1.21681i 0.265053 + 0.964234i \(0.414611\pi\)
−0.967577 + 0.252574i \(0.918723\pi\)
\(90\) −0.0390955 0.398392i −0.00412103 0.0419942i
\(91\) 1.30959 2.76861i 0.137282 0.290230i
\(92\) 2.36303 4.09288i 0.246362 0.426712i
\(93\) 1.53005 1.68755i 0.158659 0.174991i
\(94\) −3.05736 −0.315343
\(95\) 0.363136 0.628970i 0.0372569 0.0645309i
\(96\) 6.42898 + 1.38972i 0.656155 + 0.141838i
\(97\) 15.7455 1.59871 0.799354 0.600860i \(-0.205175\pi\)
0.799354 + 0.600860i \(0.205175\pi\)
\(98\) 3.56567 + 6.17591i 0.360187 + 0.623861i
\(99\) −1.26756 0.574866i −0.127395 0.0577762i
\(100\) −1.76975 3.06529i −0.176975 0.306529i
\(101\) 7.81909 + 13.5431i 0.778028 + 1.34758i 0.933077 + 0.359677i \(0.117113\pi\)
−0.155049 + 0.987907i \(0.549553\pi\)
\(102\) 4.85715 + 1.04994i 0.480929 + 0.103960i
\(103\) 7.23270 + 12.5274i 0.712659 + 1.23436i 0.963855 + 0.266426i \(0.0858428\pi\)
−0.251196 + 0.967936i \(0.580824\pi\)
\(104\) −4.74532 + 10.0321i −0.465317 + 0.983729i
\(105\) −0.116096 + 0.128047i −0.0113298 + 0.0124961i
\(106\) 0.221309 + 0.383318i 0.0214954 + 0.0372311i
\(107\) 3.13817 5.43546i 0.303378 0.525466i −0.673521 0.739168i \(-0.735219\pi\)
0.976899 + 0.213702i \(0.0685522\pi\)
\(108\) 3.38499 1.46531i 0.325721 0.140999i
\(109\) −17.5426 −1.68028 −0.840138 0.542373i \(-0.817526\pi\)
−0.840138 + 0.542373i \(0.817526\pi\)
\(110\) −0.0619063 −0.00590253
\(111\) 6.81740 + 1.47368i 0.647079 + 0.139876i
\(112\) 0.881887 + 1.52747i 0.0833305 + 0.144333i
\(113\) 6.57492 11.3881i 0.618516 1.07130i −0.371240 0.928537i \(-0.621067\pi\)
0.989757 0.142765i \(-0.0455993\pi\)
\(114\) −11.8880 2.56977i −1.11341 0.240681i
\(115\) −0.391065 0.677344i −0.0364670 0.0631627i
\(116\) −1.35195 −0.125525
\(117\) 1.93217 + 10.6427i 0.178629 + 0.983917i
\(118\) 12.5775 1.15785
\(119\) −1.07281 1.85817i −0.0983446 0.170338i
\(120\) 0.420676 0.463979i 0.0384023 0.0423553i
\(121\) 5.39238 9.33987i 0.490216 0.849079i
\(122\) 4.41139 + 7.64075i 0.399388 + 0.691761i
\(123\) −5.12953 15.9744i −0.462514 1.44036i
\(124\) 0.933573 0.0838374
\(125\) −1.17315 −0.104929
\(126\) 2.63608 + 1.19552i 0.234841 + 0.106505i
\(127\) −4.75121 + 8.22934i −0.421602 + 0.730236i −0.996096 0.0882724i \(-0.971865\pi\)
0.574494 + 0.818509i \(0.305199\pi\)
\(128\) −1.01060 1.75041i −0.0893254 0.154716i
\(129\) 2.22915 + 6.94200i 0.196265 + 0.611209i
\(130\) 0.273783 + 0.395611i 0.0240124 + 0.0346973i
\(131\) −8.21488 14.2286i −0.717738 1.24316i −0.961894 0.273422i \(-0.911844\pi\)
0.244157 0.969736i \(-0.421489\pi\)
\(132\) −0.174398 0.543109i −0.0151794 0.0472715i
\(133\) 2.62574 + 4.54792i 0.227681 + 0.394355i
\(134\) 0.580815 + 1.00600i 0.0501748 + 0.0869052i
\(135\) 0.0700866 0.606391i 0.00603209 0.0521898i
\(136\) 3.88735 + 6.73309i 0.333338 + 0.577358i
\(137\) −19.4310 −1.66010 −0.830050 0.557689i \(-0.811688\pi\)
−0.830050 + 0.557689i \(0.811688\pi\)
\(138\) −8.79782 + 9.70343i −0.748920 + 0.826011i
\(139\) −7.53640 + 13.0534i −0.639229 + 1.10718i 0.346373 + 0.938097i \(0.387413\pi\)
−0.985602 + 0.169081i \(0.945920\pi\)
\(140\) −0.0708369 −0.00598681
\(141\) −4.55693 0.985049i −0.383763 0.0829561i
\(142\) 4.10053 7.10232i 0.344109 0.596014i
\(143\) 1.66718 0.136635i 0.139416 0.0114260i
\(144\) −5.67299 2.57283i −0.472750 0.214402i
\(145\) −0.111869 + 0.193763i −0.00929023 + 0.0160911i
\(146\) 1.88164 + 3.25910i 0.155726 + 0.269725i
\(147\) 3.32473 + 10.3539i 0.274219 + 0.853973i
\(148\) 1.42928 + 2.47558i 0.117486 + 0.203492i
\(149\) 7.05071 12.2122i 0.577616 1.00046i −0.418136 0.908385i \(-0.637316\pi\)
0.995752 0.0920762i \(-0.0293503\pi\)
\(150\) 2.99911 + 9.33983i 0.244877 + 0.762594i
\(151\) 3.33115 5.76972i 0.271085 0.469534i −0.698055 0.716044i \(-0.745951\pi\)
0.969140 + 0.246511i \(0.0792841\pi\)
\(152\) −9.51441 16.4794i −0.771721 1.33666i
\(153\) 6.90118 + 3.12984i 0.557928 + 0.253032i
\(154\) 0.223814 0.387658i 0.0180355 0.0312384i
\(155\) 0.0772501 0.133801i 0.00620487 0.0107472i
\(156\) −2.69944 + 3.51640i −0.216128 + 0.281538i
\(157\) −5.87578 10.1771i −0.468938 0.812224i 0.530432 0.847728i \(-0.322030\pi\)
−0.999370 + 0.0355033i \(0.988697\pi\)
\(158\) 10.0250 0.797546
\(159\) 0.206355 + 0.642630i 0.0163650 + 0.0509639i
\(160\) 0.446119 0.0352688
\(161\) 5.65538 0.445706
\(162\) −10.0276 + 1.98722i −0.787841 + 0.156130i
\(163\) −7.13612 12.3601i −0.558944 0.968119i −0.997585 0.0694568i \(-0.977873\pi\)
0.438641 0.898662i \(-0.355460\pi\)
\(164\) 3.43807 5.95491i 0.268468 0.465000i
\(165\) −0.0922699 0.0199455i −0.00718320 0.00155276i
\(166\) −3.99363 −0.309966
\(167\) −11.1708 −0.864419 −0.432210 0.901773i \(-0.642266\pi\)
−0.432210 + 0.901773i \(0.642266\pi\)
\(168\) 1.38454 + 4.31173i 0.106820 + 0.332657i
\(169\) −8.24632 10.0498i −0.634332 0.773061i
\(170\) 0.337046 0.0258503
\(171\) −16.8909 7.66037i −1.29168 0.585803i
\(172\) −1.49409 + 2.58783i −0.113923 + 0.197320i
\(173\) −12.3831 −0.941467 −0.470734 0.882275i \(-0.656011\pi\)
−0.470734 + 0.882275i \(0.656011\pi\)
\(174\) 3.66227 + 0.791655i 0.277636 + 0.0600152i
\(175\) 2.11775 3.66805i 0.160087 0.277279i
\(176\) −0.481661 + 0.834261i −0.0363066 + 0.0628848i
\(177\) 18.7464 + 4.05232i 1.40907 + 0.304591i
\(178\) 15.0558 1.12848
\(179\) 12.0175 20.8149i 0.898230 1.55578i 0.0684753 0.997653i \(-0.478187\pi\)
0.829755 0.558128i \(-0.188480\pi\)
\(180\) 0.203406 0.145650i 0.0151610 0.0108561i
\(181\) 21.6433 1.60873 0.804366 0.594135i \(-0.202505\pi\)
0.804366 + 0.594135i \(0.202505\pi\)
\(182\) −3.46715 + 0.284152i −0.257002 + 0.0210627i
\(183\) 4.11331 + 12.8097i 0.304064 + 0.946917i
\(184\) −20.4923 −1.51072
\(185\) 0.473072 0.0347809
\(186\) −2.52894 0.546669i −0.185431 0.0400837i
\(187\) 0.585939 1.01488i 0.0428481 0.0742151i
\(188\) −0.955368 1.65475i −0.0696773 0.120685i
\(189\) 3.54384 + 2.63121i 0.257776 + 0.191392i
\(190\) −0.824931 −0.0598468
\(191\) 5.49494 0.397600 0.198800 0.980040i \(-0.436296\pi\)
0.198800 + 0.980040i \(0.436296\pi\)
\(192\) −4.48322 13.9616i −0.323549 1.00759i
\(193\) 0.128719 0.00926538 0.00463269 0.999989i \(-0.498525\pi\)
0.00463269 + 0.999989i \(0.498525\pi\)
\(194\) −8.94219 15.4883i −0.642012 1.11200i
\(195\) 0.280606 + 0.677858i 0.0200946 + 0.0485424i
\(196\) −2.22840 + 3.85971i −0.159172 + 0.275693i
\(197\) −1.80122 + 3.11981i −0.128332 + 0.222277i −0.923030 0.384727i \(-0.874296\pi\)
0.794699 + 0.607004i \(0.207629\pi\)
\(198\) 0.154397 + 1.57334i 0.0109725 + 0.111812i
\(199\) 10.2188 + 17.6995i 0.724394 + 1.25469i 0.959223 + 0.282650i \(0.0912135\pi\)
−0.234829 + 0.972037i \(0.575453\pi\)
\(200\) −7.67370 + 13.2912i −0.542613 + 0.939833i
\(201\) 0.541569 + 1.68655i 0.0381993 + 0.118960i
\(202\) 8.88126 15.3828i 0.624883 1.08233i
\(203\) −0.808897 1.40105i −0.0567735 0.0983345i
\(204\) 0.949500 + 2.95693i 0.0664783 + 0.207027i
\(205\) −0.568977 0.985498i −0.0397391 0.0688301i
\(206\) 8.21522 14.2292i 0.572382 0.991394i
\(207\) −16.2393 + 11.6282i −1.12871 + 0.808215i
\(208\) 7.46149 0.611511i 0.517361 0.0424006i
\(209\) −1.43410 + 2.48394i −0.0991990 + 0.171818i
\(210\) 0.191889 + 0.0414797i 0.0132416 + 0.00286237i
\(211\) 7.10204 0.488925 0.244462 0.969659i \(-0.421389\pi\)
0.244462 + 0.969659i \(0.421389\pi\)
\(212\) −0.138309 + 0.239559i −0.00949913 + 0.0164530i
\(213\) 8.40003 9.26470i 0.575561 0.634807i
\(214\) −7.12893 −0.487324
\(215\) 0.247261 + 0.428269i 0.0168631 + 0.0292077i
\(216\) −12.8411 9.53423i −0.873729 0.648722i
\(217\) 0.558576 + 0.967481i 0.0379186 + 0.0656769i
\(218\) 9.96282 + 17.2561i 0.674768 + 1.16873i
\(219\) 1.75450 + 5.46386i 0.118558 + 0.369213i
\(220\) −0.0193445 0.0335057i −0.00130421 0.00225895i
\(221\) −9.07688 + 0.743901i −0.610577 + 0.0500402i
\(222\) −2.42213 7.54300i −0.162563 0.506253i
\(223\) 7.01317 + 12.1472i 0.469636 + 0.813434i 0.999397 0.0347129i \(-0.0110517\pi\)
−0.529761 + 0.848147i \(0.677718\pi\)
\(224\) −1.61289 + 2.79360i −0.107766 + 0.186655i
\(225\) 1.46092 + 14.8871i 0.0973945 + 0.992472i
\(226\) −14.9362 −0.993539
\(227\) −13.9373 −0.925054 −0.462527 0.886605i \(-0.653057\pi\)
−0.462527 + 0.886605i \(0.653057\pi\)
\(228\) −2.32393 7.23718i −0.153906 0.479294i
\(229\) −1.62150 2.80852i −0.107152 0.185593i 0.807463 0.589918i \(-0.200840\pi\)
−0.914615 + 0.404325i \(0.867506\pi\)
\(230\) −0.444189 + 0.769357i −0.0292889 + 0.0507299i
\(231\) 0.458489 0.505685i 0.0301664 0.0332716i
\(232\) 2.93105 + 5.07673i 0.192433 + 0.333304i
\(233\) −9.70153 −0.635568 −0.317784 0.948163i \(-0.602939\pi\)
−0.317784 + 0.948163i \(0.602939\pi\)
\(234\) 9.37156 7.94483i 0.612638 0.519370i
\(235\) −0.316214 −0.0206275
\(236\) 3.93021 + 6.80733i 0.255835 + 0.443119i
\(237\) 14.9420 + 3.22994i 0.970589 + 0.209807i
\(238\) −1.21855 + 2.11059i −0.0789867 + 0.136809i
\(239\) −4.81288 8.33616i −0.311319 0.539221i 0.667329 0.744763i \(-0.267438\pi\)
−0.978648 + 0.205542i \(0.934104\pi\)
\(240\) −0.412956 0.0892666i −0.0266562 0.00576213i
\(241\) −0.286300 −0.0184422 −0.00922111 0.999957i \(-0.502935\pi\)
−0.00922111 + 0.999957i \(0.502935\pi\)
\(242\) −12.2498 −0.787447
\(243\) −15.5861 0.268877i −0.999851 0.0172485i
\(244\) −2.75695 + 4.77517i −0.176495 + 0.305699i
\(245\) 0.368786 + 0.638756i 0.0235609 + 0.0408086i
\(246\) −12.8003 + 14.1180i −0.816119 + 0.900128i
\(247\) 22.2159 1.82072i 1.41357 0.115850i
\(248\) −2.02401 3.50568i −0.128525 0.222611i
\(249\) −5.95241 1.28670i −0.377219 0.0815415i
\(250\) 0.666256 + 1.15399i 0.0421377 + 0.0729847i
\(251\) 12.2860 + 21.2800i 0.775488 + 1.34318i 0.934520 + 0.355911i \(0.115829\pi\)
−0.159032 + 0.987273i \(0.550837\pi\)
\(252\) 0.176670 + 1.80031i 0.0111292 + 0.113409i
\(253\) 1.54440 + 2.67498i 0.0970957 + 0.168175i
\(254\) 10.7933 0.677230
\(255\) 0.502360 + 0.108593i 0.0314590 + 0.00680033i
\(256\) 7.31825 12.6756i 0.457391 0.792224i
\(257\) 1.29510 0.0807861 0.0403930 0.999184i \(-0.487139\pi\)
0.0403930 + 0.999184i \(0.487139\pi\)
\(258\) 5.56266 6.13526i 0.346316 0.381965i
\(259\) −1.71033 + 2.96238i −0.106275 + 0.184073i
\(260\) −0.128565 + 0.271801i −0.00797329 + 0.0168564i
\(261\) 5.20347 + 2.35989i 0.322087 + 0.146073i
\(262\) −9.33082 + 16.1615i −0.576460 + 0.998458i
\(263\) 5.86423 + 10.1571i 0.361604 + 0.626316i 0.988225 0.153008i \(-0.0488959\pi\)
−0.626621 + 0.779324i \(0.715563\pi\)
\(264\) −1.66134 + 1.83235i −0.102249 + 0.112774i
\(265\) 0.0228893 + 0.0396454i 0.00140608 + 0.00243540i
\(266\) 2.98243 5.16573i 0.182865 0.316731i
\(267\) 22.4404 + 4.85083i 1.37333 + 0.296866i
\(268\) −0.362987 + 0.628712i −0.0221730 + 0.0384047i
\(269\) 13.4278 + 23.2576i 0.818705 + 1.41804i 0.906637 + 0.421912i \(0.138641\pi\)
−0.0879319 + 0.996126i \(0.528026\pi\)
\(270\) −0.636292 + 0.275441i −0.0387235 + 0.0167628i
\(271\) 14.1476 24.5044i 0.859408 1.48854i −0.0130858 0.999914i \(-0.504165\pi\)
0.872494 0.488625i \(-0.162501\pi\)
\(272\) 2.62238 4.54210i 0.159005 0.275405i
\(273\) −5.25925 0.693554i −0.318304 0.0419758i
\(274\) 11.0353 + 19.1137i 0.666666 + 1.15470i
\(275\) 2.31331 0.139498
\(276\) −8.00096 1.72953i −0.481601 0.104105i
\(277\) −16.6176 −0.998454 −0.499227 0.866471i \(-0.666383\pi\)
−0.499227 + 0.866471i \(0.666383\pi\)
\(278\) 17.1204 1.02681
\(279\) −3.59320 1.62959i −0.215119 0.0975613i
\(280\) 0.153576 + 0.266001i 0.00917791 + 0.0158966i
\(281\) −0.612801 + 1.06140i −0.0365567 + 0.0633180i −0.883725 0.468007i \(-0.844972\pi\)
0.847168 + 0.531325i \(0.178306\pi\)
\(282\) 1.61902 + 5.04195i 0.0964112 + 0.300243i
\(283\) 3.04077 0.180755 0.0903776 0.995908i \(-0.471193\pi\)
0.0903776 + 0.995908i \(0.471193\pi\)
\(284\) 5.12535 0.304133
\(285\) −1.22954 0.265784i −0.0728317 0.0157437i
\(286\) −1.08123 1.56235i −0.0639345 0.0923840i
\(287\) 8.22826 0.485699
\(288\) −1.11264 11.3381i −0.0655629 0.668101i
\(289\) 5.30988 9.19698i 0.312346 0.540999i
\(290\) 0.254132 0.0149231
\(291\) −8.33796 25.9661i −0.488780 1.52216i
\(292\) −1.17595 + 2.03681i −0.0688175 + 0.119195i
\(293\) −13.8021 + 23.9059i −0.806325 + 1.39660i 0.109068 + 0.994034i \(0.465213\pi\)
−0.915393 + 0.402561i \(0.868120\pi\)
\(294\) 8.29660 9.15063i 0.483868 0.533676i
\(295\) 1.30085 0.0757383
\(296\) 6.19741 10.7342i 0.360217 0.623914i
\(297\) −0.276788 + 2.39477i −0.0160608 + 0.138959i
\(298\) −16.0170 −0.927840
\(299\) 10.2642 21.6997i 0.593596 1.25492i
\(300\) −4.11786 + 4.54174i −0.237745 + 0.262217i
\(301\) −3.57577 −0.206104
\(302\) −7.56734 −0.435451
\(303\) 18.1935 20.0663i 1.04519 1.15278i
\(304\) −6.41836 + 11.1169i −0.368118 + 0.637600i
\(305\) 0.456256 + 0.790259i 0.0261252 + 0.0452501i
\(306\) −0.840608 8.56599i −0.0480544 0.489685i
\(307\) 7.74191 0.441854 0.220927 0.975290i \(-0.429092\pi\)
0.220927 + 0.975290i \(0.429092\pi\)
\(308\) 0.279751 0.0159403
\(309\) 16.8291 18.5614i 0.957373 1.05592i
\(310\) −0.175488 −0.00996705
\(311\) −4.70886 8.15598i −0.267015 0.462483i 0.701075 0.713088i \(-0.252704\pi\)
−0.968090 + 0.250605i \(0.919371\pi\)
\(312\) 19.0570 + 2.51310i 1.07889 + 0.142276i
\(313\) 6.58566 11.4067i 0.372243 0.644744i −0.617667 0.786440i \(-0.711922\pi\)
0.989910 + 0.141695i \(0.0452554\pi\)
\(314\) −6.67396 + 11.5596i −0.376634 + 0.652349i
\(315\) 0.272642 + 0.123649i 0.0153616 + 0.00696683i
\(316\) 3.13262 + 5.42586i 0.176224 + 0.305228i
\(317\) −12.5673 + 21.7671i −0.705848 + 1.22256i 0.260537 + 0.965464i \(0.416100\pi\)
−0.966385 + 0.257100i \(0.917233\pi\)
\(318\) 0.514942 0.567948i 0.0288765 0.0318490i
\(319\) 0.441796 0.765213i 0.0247358 0.0428437i
\(320\) −0.497288 0.861328i −0.0277992 0.0481497i
\(321\) −10.6255 2.29686i −0.593058 0.128198i
\(322\) −3.21181 5.56303i −0.178987 0.310015i
\(323\) 7.80792 13.5237i 0.434444 0.752480i
\(324\) −4.20897 4.80629i −0.233832 0.267016i
\(325\) −10.2307 14.7831i −0.567497 0.820021i
\(326\) −8.10551 + 14.0392i −0.448923 + 0.777557i
\(327\) 9.28963 + 28.9298i 0.513718 + 1.59982i
\(328\) −29.8152 −1.64627
\(329\) 1.14323 1.98013i 0.0630284 0.109168i
\(330\) 0.0327823 + 0.102091i 0.00180461 + 0.00561990i
\(331\) −29.1108 −1.60007 −0.800036 0.599952i \(-0.795186\pi\)
−0.800036 + 0.599952i \(0.795186\pi\)
\(332\) −1.24793 2.16148i −0.0684892 0.118627i
\(333\) −1.17986 12.0231i −0.0646560 0.658859i
\(334\) 6.34412 + 10.9883i 0.347135 + 0.601255i
\(335\) 0.0600719 + 0.104048i 0.00328208 + 0.00568473i
\(336\) 2.05198 2.26320i 0.111945 0.123468i
\(337\) −7.69878 13.3347i −0.419379 0.726386i 0.576498 0.817099i \(-0.304419\pi\)
−0.995877 + 0.0907124i \(0.971086\pi\)
\(338\) −5.20241 + 13.8191i −0.282974 + 0.751663i
\(339\) −22.2620 4.81227i −1.20911 0.261366i
\(340\) 0.105320 + 0.182420i 0.00571180 + 0.00989314i
\(341\) −0.305078 + 0.528410i −0.0165209 + 0.0286150i
\(342\) 2.05741 + 20.9655i 0.111252 + 1.13369i
\(343\) −11.2793 −0.609026
\(344\) 12.9568 0.698586
\(345\) −0.909931 + 1.00360i −0.0489890 + 0.0540318i
\(346\) 7.03262 + 12.1808i 0.378076 + 0.654847i
\(347\) −5.21428 + 9.03139i −0.279917 + 0.484831i −0.971364 0.237597i \(-0.923640\pi\)
0.691447 + 0.722427i \(0.256974\pi\)
\(348\) 0.715920 + 2.22952i 0.0383773 + 0.119515i
\(349\) −7.06904 12.2439i −0.378397 0.655403i 0.612432 0.790523i \(-0.290191\pi\)
−0.990829 + 0.135120i \(0.956858\pi\)
\(350\) −4.81087 −0.257152
\(351\) 16.5278 8.82217i 0.882191 0.470893i
\(352\) −1.76182 −0.0939055
\(353\) −7.37735 12.7779i −0.392657 0.680102i 0.600142 0.799893i \(-0.295111\pi\)
−0.992799 + 0.119792i \(0.961777\pi\)
\(354\) −6.66035 20.7417i −0.353994 1.10241i
\(355\) 0.424105 0.734572i 0.0225092 0.0389870i
\(356\) 4.70466 + 8.14871i 0.249347 + 0.431881i
\(357\) −2.49623 + 2.75318i −0.132114 + 0.145714i
\(358\) −27.3000 −1.44285
\(359\) −0.0643609 −0.00339684 −0.00169842 0.999999i \(-0.500541\pi\)
−0.00169842 + 0.999999i \(0.500541\pi\)
\(360\) −0.987922 0.448044i −0.0520680 0.0236140i
\(361\) −9.61012 + 16.6452i −0.505796 + 0.876064i
\(362\) −12.2917 21.2898i −0.646037 1.11897i
\(363\) −18.2580 3.94675i −0.958299 0.207151i
\(364\) −1.23721 1.78774i −0.0648473 0.0937030i
\(365\) 0.194613 + 0.337079i 0.0101865 + 0.0176435i
\(366\) 10.2644 11.3210i 0.536530 0.591759i
\(367\) 3.57378 + 6.18997i 0.186550 + 0.323114i 0.944098 0.329666i \(-0.106936\pi\)
−0.757548 + 0.652780i \(0.773603\pi\)
\(368\) 6.91200 + 11.9719i 0.360313 + 0.624081i
\(369\) −23.6272 + 16.9184i −1.22998 + 0.880734i
\(370\) −0.268668 0.465346i −0.0139674 0.0241922i
\(371\) −0.331013 −0.0171853
\(372\) −0.494371 1.53957i −0.0256319 0.0798230i
\(373\) −9.89911 + 17.1458i −0.512557 + 0.887774i 0.487337 + 0.873214i \(0.337968\pi\)
−0.999894 + 0.0145604i \(0.995365\pi\)
\(374\) −1.33107 −0.0688280
\(375\) 0.621237 + 1.93465i 0.0320805 + 0.0999051i
\(376\) −4.14251 + 7.17504i −0.213634 + 0.370025i
\(377\) −6.84394 + 0.560899i −0.352481 + 0.0288878i
\(378\) 0.575621 4.98029i 0.0296068 0.256158i
\(379\) 10.8356 18.7679i 0.556589 0.964041i −0.441189 0.897414i \(-0.645443\pi\)
0.997778 0.0666264i \(-0.0212236\pi\)
\(380\) −0.257775 0.446480i −0.0132236 0.0229039i
\(381\) 16.0871 + 3.47747i 0.824168 + 0.178156i
\(382\) −3.12070 5.40520i −0.159669 0.276554i
\(383\) 11.3679 19.6898i 0.580874 1.00610i −0.414502 0.910048i \(-0.636044\pi\)
0.995376 0.0960544i \(-0.0306223\pi\)
\(384\) −2.35147 + 2.59352i −0.119998 + 0.132350i
\(385\) 0.0231484 0.0400943i 0.00117975 0.00204339i
\(386\) −0.0731022 0.126617i −0.00372080 0.00644462i
\(387\) 10.2677 7.35223i 0.521938 0.373735i
\(388\) 5.58852 9.67961i 0.283714 0.491408i
\(389\) 6.49522 11.2501i 0.329321 0.570400i −0.653057 0.757309i \(-0.726514\pi\)
0.982377 + 0.186909i \(0.0598469\pi\)
\(390\) 0.507426 0.660994i 0.0256945 0.0334707i
\(391\) −8.40843 14.5638i −0.425233 0.736525i
\(392\) 19.3249 0.976055
\(393\) −19.1144 + 21.0820i −0.964195 + 1.06345i
\(394\) 4.09182 0.206143
\(395\) 1.03685 0.0521698
\(396\) −0.803297 + 0.575203i −0.0403672 + 0.0289050i
\(397\) −6.19600 10.7318i −0.310968 0.538613i 0.667604 0.744517i \(-0.267320\pi\)
−0.978572 + 0.205904i \(0.933987\pi\)
\(398\) 11.6070 20.1039i 0.581806 1.00772i
\(399\) 6.10959 6.73849i 0.305862 0.337346i
\(400\) 10.3533 0.517663
\(401\) 8.24798 0.411884 0.205942 0.978564i \(-0.433974\pi\)
0.205942 + 0.978564i \(0.433974\pi\)
\(402\) 1.35144 1.49056i 0.0674038 0.0743421i
\(403\) 4.72601 0.387323i 0.235419 0.0192939i
\(404\) 11.1009 0.552290
\(405\) −1.03712 + 0.205532i −0.0515350 + 0.0102129i
\(406\) −0.918781 + 1.59138i −0.0455983 + 0.0789786i
\(407\) −1.86827 −0.0926065
\(408\) 9.04511 9.97618i 0.447799 0.493894i
\(409\) −4.64304 + 8.04198i −0.229584 + 0.397650i −0.957685 0.287819i \(-0.907070\pi\)
0.728101 + 0.685470i \(0.240403\pi\)
\(410\) −0.646269 + 1.11937i −0.0319170 + 0.0552818i
\(411\) 10.2896 + 32.0439i 0.507549 + 1.58061i
\(412\) 10.2684 0.505887
\(413\) −4.70305 + 8.14592i −0.231422 + 0.400834i
\(414\) 20.6609 + 9.37018i 1.01543 + 0.460519i
\(415\) −0.413049 −0.0202758
\(416\) 7.79173 + 11.2589i 0.382021 + 0.552012i
\(417\) 25.5175 + 5.51599i 1.24960 + 0.270119i
\(418\) 3.25784 0.159346
\(419\) −0.305711 −0.0149349 −0.00746747 0.999972i \(-0.502377\pi\)
−0.00746747 + 0.999972i \(0.502377\pi\)
\(420\) 0.0375115 + 0.116818i 0.00183037 + 0.00570014i
\(421\) 10.2975 17.8358i 0.501869 0.869262i −0.498129 0.867103i \(-0.665979\pi\)
0.999998 0.00215912i \(-0.000687270\pi\)
\(422\) −4.03341 6.98607i −0.196343 0.340076i
\(423\) 0.788651 + 8.03653i 0.0383455 + 0.390750i
\(424\) 1.19943 0.0582495
\(425\) −12.5947 −0.610933
\(426\) −13.8840 3.00123i −0.672681 0.145410i
\(427\) −6.59814 −0.319307
\(428\) −2.22765 3.85841i −0.107678 0.186503i
\(429\) −1.10818 2.67701i −0.0535032 0.129247i
\(430\) 0.280850 0.486447i 0.0135438 0.0234586i
\(431\) −1.90600 + 3.30129i −0.0918088 + 0.159017i −0.908272 0.418380i \(-0.862598\pi\)
0.816463 + 0.577397i \(0.195932\pi\)
\(432\) −1.23877 + 10.7179i −0.0596003 + 0.515663i
\(433\) 7.23683 + 12.5346i 0.347780 + 0.602373i 0.985855 0.167602i \(-0.0536023\pi\)
−0.638075 + 0.769974i \(0.720269\pi\)
\(434\) 0.634455 1.09891i 0.0304548 0.0527493i
\(435\) 0.378777 + 0.0818784i 0.0181610 + 0.00392577i
\(436\) −6.22638 + 10.7844i −0.298190 + 0.516479i
\(437\) 20.5799 + 35.6454i 0.984470 + 1.70515i
\(438\) 4.37821 4.82889i 0.209199 0.230733i
\(439\) 4.49736 + 7.78966i 0.214647 + 0.371780i 0.953163 0.302456i \(-0.0978064\pi\)
−0.738516 + 0.674236i \(0.764473\pi\)
\(440\) −0.0838787 + 0.145282i −0.00399876 + 0.00692605i
\(441\) 15.3141 10.9657i 0.729244 0.522177i
\(442\) 5.88671 + 8.50617i 0.280002 + 0.404597i
\(443\) −0.560007 + 0.969961i −0.0266068 + 0.0460842i −0.879022 0.476781i \(-0.841804\pi\)
0.852415 + 0.522865i \(0.175137\pi\)
\(444\) 3.32565 3.66798i 0.157828 0.174075i
\(445\) 1.55718 0.0738174
\(446\) 7.96586 13.7973i 0.377195 0.653320i
\(447\) −23.8730 5.16050i −1.12915 0.244083i
\(448\) 7.19152 0.339768
\(449\) −7.92893 13.7333i −0.374189 0.648115i 0.616016 0.787734i \(-0.288746\pi\)
−0.990205 + 0.139619i \(0.955412\pi\)
\(450\) 13.8143 9.89176i 0.651212 0.466302i
\(451\) 2.24702 + 3.89195i 0.105808 + 0.183265i
\(452\) −4.66726 8.08394i −0.219530 0.380236i
\(453\) −11.2789 2.43811i −0.529931 0.114552i
\(454\) 7.91532 + 13.7097i 0.371484 + 0.643430i
\(455\) −0.358596 + 0.0293890i −0.0168113 + 0.00137778i
\(456\) −22.1382 + 24.4170i −1.03671 + 1.14343i
\(457\) 17.0421 + 29.5178i 0.797196 + 1.38078i 0.921435 + 0.388531i \(0.127017\pi\)
−0.124240 + 0.992252i \(0.539649\pi\)
\(458\) −1.84177 + 3.19005i −0.0860604 + 0.149061i
\(459\) 1.50696 13.0382i 0.0703388 0.608573i
\(460\) −0.555202 −0.0258864
\(461\) −5.12256 −0.238582 −0.119291 0.992859i \(-0.538062\pi\)
−0.119291 + 0.992859i \(0.538062\pi\)
\(462\) −0.757813 0.163813i −0.0352566 0.00762125i
\(463\) 3.59883 + 6.23335i 0.167252 + 0.289688i 0.937453 0.348113i \(-0.113177\pi\)
−0.770201 + 0.637801i \(0.779844\pi\)
\(464\) 1.97727 3.42473i 0.0917924 0.158989i
\(465\) −0.261561 0.0565403i −0.0121296 0.00262199i
\(466\) 5.50971 + 9.54310i 0.255232 + 0.442076i
\(467\) −31.2424 −1.44573 −0.722863 0.690992i \(-0.757174\pi\)
−0.722863 + 0.690992i \(0.757174\pi\)
\(468\) 7.22843 + 2.58959i 0.334134 + 0.119704i
\(469\) −0.868729 −0.0401142
\(470\) 0.179585 + 0.311050i 0.00828363 + 0.0143477i
\(471\) −13.6718 + 15.0791i −0.629962 + 0.694809i
\(472\) 17.0416 29.5168i 0.784401 1.35862i
\(473\) −0.976490 1.69133i −0.0448991 0.0777675i
\(474\) −5.30871 16.5324i −0.243837 0.759357i
\(475\) 30.8259 1.41439
\(476\) −1.52309 −0.0698108
\(477\) 0.950496 0.680605i 0.0435202 0.0311628i
\(478\) −5.46668 + 9.46857i −0.250040 + 0.433082i
\(479\) 15.2329 + 26.3841i 0.696008 + 1.20552i 0.969840 + 0.243744i \(0.0783755\pi\)
−0.273832 + 0.961778i \(0.588291\pi\)
\(480\) −0.236241 0.735701i −0.0107829 0.0335800i
\(481\) 8.26248 + 11.9391i 0.376737 + 0.544376i
\(482\) 0.162596 + 0.281625i 0.00740606 + 0.0128277i
\(483\) −2.99479 9.32637i −0.136268 0.424365i
\(484\) −3.82783 6.62999i −0.173992 0.301363i
\(485\) −0.924863 1.60191i −0.0419959 0.0727390i
\(486\) 8.58722 + 15.4843i 0.389524 + 0.702383i
\(487\) −10.3039 17.8469i −0.466914 0.808719i 0.532371 0.846511i \(-0.321301\pi\)
−0.999286 + 0.0377916i \(0.987968\pi\)
\(488\) 23.9085 1.08229
\(489\) −16.6043 + 18.3135i −0.750874 + 0.828167i
\(490\) 0.418883 0.725527i 0.0189232 0.0327760i
\(491\) −42.9735 −1.93936 −0.969682 0.244369i \(-0.921419\pi\)
−0.969682 + 0.244369i \(0.921419\pi\)
\(492\) −11.6410 2.51637i −0.524815 0.113447i
\(493\) −2.40534 + 4.16617i −0.108331 + 0.187635i
\(494\) −14.4079 20.8191i −0.648242 0.936697i
\(495\) 0.0159688 + 0.162726i 0.000717744 + 0.00731398i
\(496\) −1.36538 + 2.36491i −0.0613074 + 0.106188i
\(497\) 3.06660 + 5.31150i 0.137556 + 0.238253i
\(498\) 2.11482 + 6.58596i 0.0947672 + 0.295124i
\(499\) −2.11925 3.67064i −0.0948705 0.164321i 0.814684 0.579905i \(-0.196910\pi\)
−0.909555 + 0.415585i \(0.863577\pi\)
\(500\) −0.416384 + 0.721199i −0.0186213 + 0.0322530i
\(501\) 5.91544 + 18.4219i 0.264283 + 0.823028i
\(502\) 13.9550 24.1708i 0.622843 1.07880i
\(503\) 1.12652 + 1.95120i 0.0502292 + 0.0869995i 0.890047 0.455869i \(-0.150671\pi\)
−0.839818 + 0.542869i \(0.817338\pi\)
\(504\) 6.37736 4.56653i 0.284070 0.203409i
\(505\) 0.918562 1.59100i 0.0408755 0.0707984i
\(506\) 1.75420 3.03836i 0.0779837 0.135072i
\(507\) −12.2064 + 18.9210i −0.542107 + 0.840309i
\(508\) 3.37269 + 5.84167i 0.149639 + 0.259182i
\(509\) 14.1124 0.625522 0.312761 0.949832i \(-0.398746\pi\)
0.312761 + 0.949832i \(0.398746\pi\)
\(510\) −0.178482 0.555828i −0.00790331 0.0246125i
\(511\) −2.81439 −0.124501
\(512\) −20.6672 −0.913370
\(513\) −3.68833 + 31.9115i −0.162844 + 1.40893i
\(514\) −0.735515 1.27395i −0.0324422 0.0561915i
\(515\) 0.849675 1.47168i 0.0374412 0.0648500i
\(516\) 5.05882 + 1.09354i 0.222702 + 0.0481404i
\(517\) 1.24880 0.0549221
\(518\) 3.88534 0.170712
\(519\) 6.55742 + 20.4211i 0.287839 + 0.896387i
\(520\) 1.29938 0.106491i 0.0569815 0.00466995i
\(521\) −17.6305 −0.772405 −0.386202 0.922414i \(-0.626213\pi\)
−0.386202 + 0.922414i \(0.626213\pi\)
\(522\) −0.633815 6.45872i −0.0277413 0.282691i
\(523\) 0.106583 0.184608i 0.00466057 0.00807234i −0.863686 0.504031i \(-0.831850\pi\)
0.868346 + 0.495958i \(0.165183\pi\)
\(524\) −11.6628 −0.509492
\(525\) −7.17049 1.55001i −0.312946 0.0676479i
\(526\) 6.66085 11.5369i 0.290427 0.503034i
\(527\) 1.66098 2.87691i 0.0723536 0.125320i
\(528\) 1.63085 + 0.352534i 0.0709738 + 0.0153421i
\(529\) 21.3254 0.927192
\(530\) 0.0259987 0.0450310i 0.00112931 0.00195602i
\(531\) −3.24437 33.0609i −0.140794 1.43472i
\(532\) 3.72781 0.161621
\(533\) 14.9339 31.5718i 0.646858 1.36753i
\(534\) −7.97278 24.8288i −0.345016 1.07445i
\(535\) −0.737324 −0.0318773
\(536\) 3.14785 0.135967
\(537\) −40.6900 8.79576i −1.75590 0.379565i
\(538\) 15.2518 26.4170i 0.657553 1.13892i
\(539\) −1.45642 2.52259i −0.0627323 0.108656i
\(540\) −0.347906 0.258312i −0.0149715 0.0111160i
\(541\) −20.0920 −0.863821 −0.431910 0.901917i \(-0.642160\pi\)
−0.431910 + 0.901917i \(0.642160\pi\)
\(542\) −32.1390 −1.38049
\(543\) −11.4611 35.6922i −0.491844 1.53170i
\(544\) 9.59217 0.411261
\(545\) 1.03042 + 1.78475i 0.0441385 + 0.0764502i
\(546\) 2.30462 + 5.56725i 0.0986285 + 0.238256i
\(547\) 3.84585 6.66121i 0.164437 0.284813i −0.772018 0.635600i \(-0.780753\pi\)
0.936455 + 0.350787i \(0.114086\pi\)
\(548\) −6.89662 + 11.9453i −0.294609 + 0.510278i
\(549\) 18.9464 13.5666i 0.808613 0.579010i
\(550\) −1.31378 2.27553i −0.0560197 0.0970290i
\(551\) 5.88714 10.1968i 0.250801 0.434400i
\(552\) 10.8517 + 33.7942i 0.461877 + 1.43838i
\(553\) −3.74862 + 6.49280i −0.159407 + 0.276102i
\(554\) 9.43749 + 16.3462i 0.400960 + 0.694484i
\(555\) −0.250514 0.780150i −0.0106337 0.0331155i
\(556\) 5.34978 + 9.26609i 0.226881 + 0.392970i
\(557\) −13.4015 + 23.2121i −0.567841 + 0.983529i 0.428938 + 0.903334i \(0.358888\pi\)
−0.996779 + 0.0801952i \(0.974446\pi\)
\(558\) 0.437675 + 4.46000i 0.0185282 + 0.188807i
\(559\) −6.48984 + 13.7202i −0.274491 + 0.580303i
\(560\) 0.103601 0.179443i 0.00437795 0.00758284i
\(561\) −1.98393 0.428856i −0.0837616 0.0181063i
\(562\) 1.39209 0.0587219
\(563\) 8.81327 15.2650i 0.371435 0.643344i −0.618352 0.785902i \(-0.712199\pi\)
0.989787 + 0.142557i \(0.0455326\pi\)
\(564\) −2.22295 + 2.45178i −0.0936032 + 0.103238i
\(565\) −1.54480 −0.0649903
\(566\) −1.72692 2.99112i −0.0725879 0.125726i
\(567\) 2.46254 7.23754i 0.103417 0.303948i
\(568\) −11.1119 19.2463i −0.466243 0.807557i
\(569\) 4.51133 + 7.81385i 0.189125 + 0.327573i 0.944959 0.327190i \(-0.106102\pi\)
−0.755834 + 0.654763i \(0.772768\pi\)
\(570\) 0.436840 + 1.36041i 0.0182972 + 0.0569811i
\(571\) −0.221208 0.383144i −0.00925727 0.0160341i 0.861360 0.507996i \(-0.169613\pi\)
−0.870617 + 0.491962i \(0.836280\pi\)
\(572\) 0.507734 1.07340i 0.0212294 0.0448812i
\(573\) −2.90983 9.06178i −0.121560 0.378561i
\(574\) −4.67301 8.09389i −0.195048 0.337832i
\(575\) 16.5984 28.7493i 0.692201 1.19893i
\(576\) −20.6503 + 14.7867i −0.860428 + 0.616112i
\(577\) 26.2964 1.09474 0.547368 0.836892i \(-0.315630\pi\)
0.547368 + 0.836892i \(0.315630\pi\)
\(578\) −12.0624 −0.501729
\(579\) −0.0681626 0.212272i −0.00283274 0.00882172i
\(580\) 0.0794113 + 0.137544i 0.00329737 + 0.00571122i
\(581\) 1.49333 2.58652i 0.0619536 0.107307i
\(582\) −20.8067 + 22.9485i −0.862466 + 0.951246i
\(583\) −0.0903949 0.156569i −0.00374377 0.00648441i
\(584\) 10.1980 0.421995
\(585\) 0.969272 0.821709i 0.0400745 0.0339735i
\(586\) 31.3540 1.29522
\(587\) −15.2058 26.3372i −0.627610 1.08705i −0.988030 0.154263i \(-0.950700\pi\)
0.360420 0.932790i \(-0.382634\pi\)
\(588\) 7.54515 + 1.63100i 0.311157 + 0.0672612i
\(589\) −4.06531 + 7.04132i −0.167508 + 0.290132i
\(590\) −0.738780 1.27960i −0.0304151 0.0526805i
\(591\) 6.09876 + 1.31834i 0.250869 + 0.0542292i
\(592\) −8.36146 −0.343654
\(593\) −29.4682 −1.21011 −0.605056 0.796183i \(-0.706849\pi\)
−0.605056 + 0.796183i \(0.706849\pi\)
\(594\) 2.51286 1.08778i 0.103104 0.0446320i
\(595\) −0.126031 + 0.218292i −0.00516675 + 0.00894908i
\(596\) −5.00500 8.66892i −0.205013 0.355093i
\(597\) 23.7772 26.2248i 0.973137 1.07331i
\(598\) −27.1746 + 2.22711i −1.11125 + 0.0910733i
\(599\) 17.9709 + 31.1266i 0.734273 + 1.27180i 0.955042 + 0.296472i \(0.0958102\pi\)
−0.220768 + 0.975326i \(0.570857\pi\)
\(600\) 25.9824 + 5.61648i 1.06073 + 0.229292i
\(601\) −1.53954 2.66656i −0.0627992 0.108771i 0.832916 0.553399i \(-0.186669\pi\)
−0.895716 + 0.444627i \(0.853336\pi\)
\(602\) 2.03076 + 3.51737i 0.0827675 + 0.143357i
\(603\) 2.49453 1.78622i 0.101585 0.0727404i
\(604\) −2.36465 4.09569i −0.0962161 0.166651i
\(605\) −1.26696 −0.0515092
\(606\) −30.0710 6.50031i −1.22155 0.264057i
\(607\) −3.45276 + 5.98036i −0.140143 + 0.242735i −0.927550 0.373698i \(-0.878090\pi\)
0.787407 + 0.616433i \(0.211423\pi\)
\(608\) −23.4771 −0.952124
\(609\) −1.88215 + 2.07589i −0.0762684 + 0.0841192i
\(610\) 0.518236 0.897611i 0.0209828 0.0363432i
\(611\) −5.52286 7.98042i −0.223431 0.322853i
\(612\) 4.37352 3.13167i 0.176789 0.126590i
\(613\) 4.37980 7.58604i 0.176899 0.306397i −0.763918 0.645313i \(-0.776727\pi\)
0.940817 + 0.338916i \(0.110060\pi\)
\(614\) −4.39680 7.61548i −0.177440 0.307336i
\(615\) −1.32390 + 1.46018i −0.0533847 + 0.0588800i
\(616\) −0.606505 1.05050i −0.0244368 0.0423258i
\(617\) 9.94309 17.2219i 0.400294 0.693329i −0.593467 0.804858i \(-0.702241\pi\)
0.993761 + 0.111529i \(0.0355747\pi\)
\(618\) −27.8159 6.01282i −1.11892 0.241871i
\(619\) −1.74906 + 3.02947i −0.0703008 + 0.121765i −0.899033 0.437881i \(-0.855729\pi\)
0.828732 + 0.559645i \(0.189063\pi\)
\(620\) −0.0548366 0.0949798i −0.00220229 0.00381448i
\(621\) 27.7757 + 20.6228i 1.11460 + 0.827563i
\(622\) −5.34852 + 9.26392i −0.214456 + 0.371449i
\(623\) −5.62979 + 9.75108i −0.225553 + 0.390669i
\(624\) −4.95966 11.9810i −0.198545 0.479625i
\(625\) −12.3966 21.4715i −0.495864 0.858861i
\(626\) −14.9606 −0.597944
\(627\) 4.85573 + 1.04964i 0.193919 + 0.0419185i
\(628\) −8.34194 −0.332880
\(629\) 10.1717 0.405572
\(630\) −0.0332095 0.338413i −0.00132310 0.0134827i
\(631\) 14.5446 + 25.1919i 0.579010 + 1.00287i 0.995593 + 0.0937767i \(0.0298940\pi\)
−0.416584 + 0.909097i \(0.636773\pi\)
\(632\) 13.5832 23.5267i 0.540309 0.935843i
\(633\) −3.76087 11.7121i −0.149481 0.465514i
\(634\) 28.5489 1.13382
\(635\) 1.11632 0.0442996
\(636\) 0.468302 + 0.101230i 0.0185694 + 0.00401405i
\(637\) −9.67948 + 20.4634i −0.383515 + 0.810791i
\(638\) −1.00362 −0.0397338
\(639\) −19.7268 8.94652i −0.780379 0.353919i
\(640\) −0.118722 + 0.205633i −0.00469291 + 0.00812836i
\(641\) −11.2937 −0.446074 −0.223037 0.974810i \(-0.571597\pi\)
−0.223037 + 0.974810i \(0.571597\pi\)
\(642\) 3.77510 + 11.7564i 0.148992 + 0.463989i
\(643\) −3.84277 + 6.65588i −0.151544 + 0.262482i −0.931795 0.362984i \(-0.881758\pi\)
0.780251 + 0.625466i \(0.215091\pi\)
\(644\) 2.00726 3.47668i 0.0790972 0.137000i
\(645\) 0.575329 0.634551i 0.0226535 0.0249854i
\(646\) −17.7372 −0.697859
\(647\) 10.5548 18.2815i 0.414952 0.718718i −0.580471 0.814281i \(-0.697132\pi\)
0.995423 + 0.0955626i \(0.0304650\pi\)
\(648\) −8.92306 + 26.2253i −0.350531 + 1.03023i
\(649\) −5.13734 −0.201658
\(650\) −8.73149 + 18.4593i −0.342477 + 0.724033i
\(651\) 1.29970 1.43348i 0.0509391 0.0561826i
\(652\) −10.1313 −0.396771
\(653\) 22.4240 0.877521 0.438760 0.898604i \(-0.355418\pi\)
0.438760 + 0.898604i \(0.355418\pi\)
\(654\) 23.1815 25.5678i 0.906470 0.999779i
\(655\) −0.965058 + 1.67153i −0.0377080 + 0.0653121i
\(656\) 10.0566 + 17.4185i 0.392643 + 0.680078i
\(657\) 8.08144 5.78674i 0.315287 0.225762i
\(658\) −2.59706 −0.101244
\(659\) 49.2418 1.91819 0.959095 0.283086i \(-0.0913582\pi\)
0.959095 + 0.283086i \(0.0913582\pi\)
\(660\) −0.0450109 + 0.0496442i −0.00175205 + 0.00193240i
\(661\) −13.3963 −0.521057 −0.260528 0.965466i \(-0.583897\pi\)
−0.260528 + 0.965466i \(0.583897\pi\)
\(662\) 16.5326 + 28.6354i 0.642559 + 1.11295i
\(663\) 6.03341 + 14.5749i 0.234318 + 0.566042i
\(664\) −5.41109 + 9.37228i −0.209991 + 0.363715i
\(665\) 0.308464 0.534275i 0.0119617 0.0207183i
\(666\) −11.1566 + 7.98875i −0.432311 + 0.309558i
\(667\) −6.33993 10.9811i −0.245483 0.425189i
\(668\) −3.96483 + 6.86729i −0.153404 + 0.265703i
\(669\) 16.3183 17.9980i 0.630900 0.695843i
\(670\) 0.0682323 0.118182i 0.00263604 0.00456576i
\(671\) −1.80186 3.12091i −0.0695599 0.120481i
\(672\) 5.46107 + 1.18049i 0.210665 + 0.0455385i
\(673\) 5.42836 + 9.40220i 0.209248 + 0.362428i 0.951478 0.307717i \(-0.0995651\pi\)
−0.742230 + 0.670145i \(0.766232\pi\)
\(674\) −8.74461 + 15.1461i −0.336830 + 0.583407i
\(675\) 23.7769 10.2926i 0.915173 0.396164i
\(676\) −9.10502 + 1.50251i −0.350193 + 0.0577887i
\(677\) 13.6699 23.6769i 0.525377 0.909979i −0.474186 0.880424i \(-0.657258\pi\)
0.999563 0.0295547i \(-0.00940891\pi\)
\(678\) 7.90940 + 24.6315i 0.303759 + 0.945965i
\(679\) 13.3749 0.513282
\(680\) 0.456674 0.790982i 0.0175126 0.0303328i
\(681\) 7.38048 + 22.9843i 0.282821 + 0.880759i
\(682\) 0.693041 0.0265379
\(683\) −14.9448 25.8851i −0.571846 0.990466i −0.996376 0.0850523i \(-0.972894\pi\)
0.424531 0.905414i \(-0.360439\pi\)
\(684\) −10.7043 + 7.66486i −0.409290 + 0.293073i
\(685\) 1.14135 + 1.97687i 0.0436086 + 0.0755322i
\(686\) 6.40577 + 11.0951i 0.244573 + 0.423613i
\(687\) −3.77292 + 4.16129i −0.143946 + 0.158763i
\(688\) −4.37030 7.56958i −0.166616 0.288588i
\(689\) −0.600772 + 1.27010i −0.0228876 + 0.0483868i
\(690\) 1.50398 + 0.325107i 0.0572554 + 0.0123766i
\(691\) −11.3956 19.7378i −0.433510 0.750861i 0.563663 0.826005i \(-0.309392\pi\)
−0.997173 + 0.0751436i \(0.976058\pi\)
\(692\) −4.39511 + 7.61256i −0.167077 + 0.289386i
\(693\) −1.07672 0.488318i −0.0409013 0.0185496i
\(694\) 11.8452 0.449638
\(695\) 1.77071 0.0671667
\(696\) 6.81998 7.52201i 0.258511 0.285121i
\(697\) −12.2338 21.1896i −0.463388 0.802612i
\(698\) −8.02933 + 13.9072i −0.303914 + 0.526395i
\(699\) 5.13742 + 15.9989i 0.194315 + 0.605135i
\(700\) −1.50330 2.60380i −0.0568196 0.0984144i
\(701\) 36.2555 1.36935 0.684675 0.728848i \(-0.259944\pi\)
0.684675 + 0.728848i \(0.259944\pi\)
\(702\) −18.0646 11.2476i −0.681805 0.424514i
\(703\) −24.8955 −0.938953
\(704\) 1.96390 + 3.40157i 0.0740173 + 0.128202i
\(705\) 0.167450 + 0.521473i 0.00630654 + 0.0196398i
\(706\) −8.37952 + 14.5138i −0.315367 + 0.546232i
\(707\) 6.64189 + 11.5041i 0.249794 + 0.432656i
\(708\) 9.14483 10.0862i 0.343684 0.379062i
\(709\) −19.8795 −0.746590 −0.373295 0.927713i \(-0.621772\pi\)
−0.373295 + 0.927713i \(0.621772\pi\)
\(710\) −0.963434 −0.0361570
\(711\) −2.58596 26.3515i −0.0969811 0.988260i
\(712\) 20.3996 35.3332i 0.764508 1.32417i
\(713\) 4.37797 + 7.58287i 0.163956 + 0.283981i
\(714\) 4.12588 + 0.891871i 0.154407 + 0.0333774i
\(715\) −0.111828 0.161590i −0.00418214 0.00604311i
\(716\) −8.53073 14.7757i −0.318808 0.552192i
\(717\) −11.1986 + 12.3514i −0.418221 + 0.461271i
\(718\) 0.0365519 + 0.0633098i 0.00136411 + 0.00236270i
\(719\) 4.26020 + 7.37888i 0.158879 + 0.275186i 0.934465 0.356056i \(-0.115879\pi\)
−0.775586 + 0.631242i \(0.782545\pi\)
\(720\) 0.0714687 + 0.728283i 0.00266348 + 0.0271415i
\(721\) 6.14378 + 10.6413i 0.228806 + 0.396304i
\(722\) 21.8312 0.812473
\(723\) 0.151610 + 0.472142i 0.00563842 + 0.0175592i
\(724\) 7.68183 13.3053i 0.285493 0.494488i
\(725\) −9.49637 −0.352686
\(726\) 6.48685 + 20.2013i 0.240749 + 0.749742i
\(727\) −7.74562 + 13.4158i −0.287269 + 0.497565i −0.973157 0.230143i \(-0.926081\pi\)
0.685888 + 0.727707i \(0.259414\pi\)
\(728\) −4.03089 + 8.52173i −0.149395 + 0.315836i
\(729\) 7.81018 + 25.8457i 0.289266 + 0.957249i
\(730\) 0.221050 0.382869i 0.00818141 0.0141706i
\(731\) 5.31646 + 9.20838i 0.196636 + 0.340584i
\(732\) 9.33474 + 2.01784i 0.345022 + 0.0745816i
\(733\) 16.9965 + 29.4388i 0.627779 + 1.08735i 0.987996 + 0.154477i \(0.0493694\pi\)
−0.360217 + 0.932869i \(0.617297\pi\)
\(734\) 4.05926 7.03084i 0.149830 0.259513i
\(735\) 0.858092 0.946421i 0.0316512 0.0349093i
\(736\) −12.6414 + 21.8955i −0.465968 + 0.807080i
\(737\) −0.237237 0.410907i −0.00873875 0.0151360i
\(738\) 30.0605 + 13.6331i 1.10654 + 0.501841i
\(739\) −24.2722 + 42.0407i −0.892867 + 1.54649i −0.0564440 + 0.998406i \(0.517976\pi\)
−0.836423 + 0.548085i \(0.815357\pi\)
\(740\) 0.167907 0.290824i 0.00617239 0.0106909i
\(741\) −14.7670 35.6725i −0.542478 1.31046i
\(742\) 0.187990 + 0.325608i 0.00690132 + 0.0119534i
\(743\) −34.0986 −1.25096 −0.625478 0.780241i \(-0.715096\pi\)
−0.625478 + 0.780241i \(0.715096\pi\)
\(744\) −4.70947 + 5.19424i −0.172657 + 0.190430i
\(745\) −1.65659 −0.0606927
\(746\) 22.4877 0.823333
\(747\) 1.03016 + 10.4976i 0.0376917 + 0.384087i
\(748\) −0.415934 0.720419i −0.0152081 0.0263411i
\(749\) 2.66570 4.61713i 0.0974025 0.168706i
\(750\) 1.55025 1.70982i 0.0566070 0.0624340i
\(751\) −22.9688 −0.838143 −0.419072 0.907953i \(-0.637644\pi\)
−0.419072 + 0.907953i \(0.637644\pi\)
\(752\) 5.58903 0.203811
\(753\) 28.5872 31.5299i 1.04178 1.14901i
\(754\) 4.43856 + 6.41363i 0.161643 + 0.233571i
\(755\) −0.782666 −0.0284841
\(756\) 2.87536 1.24470i 0.104576 0.0452693i
\(757\) 4.65491 8.06254i 0.169186 0.293038i −0.768948 0.639311i \(-0.779220\pi\)
0.938134 + 0.346273i \(0.112553\pi\)
\(758\) −24.6152 −0.894063
\(759\) 3.59352 3.96343i 0.130437 0.143863i
\(760\) −1.11772 + 1.93595i −0.0405441 + 0.0702244i
\(761\) 12.1360 21.0202i 0.439931 0.761983i −0.557753 0.830007i \(-0.688336\pi\)
0.997684 + 0.0680245i \(0.0216696\pi\)
\(762\) −5.71555 17.7993i −0.207052 0.644802i
\(763\) −14.9015 −0.539470
\(764\) 1.95031 3.37804i 0.0705599 0.122213i
\(765\) −0.0869415 0.885954i −0.00314338 0.0320317i
\(766\) −25.8244 −0.933072
\(767\) 22.7201 + 32.8300i 0.820374 + 1.18542i
\(768\) −24.7789 5.35632i −0.894130 0.193280i
\(769\) 31.8364 1.14805 0.574026 0.818837i \(-0.305381\pi\)
0.574026 + 0.818837i \(0.305381\pi\)
\(770\) −0.0525860 −0.00189507
\(771\) −0.685816 2.13577i −0.0246991 0.0769178i
\(772\) 0.0456861 0.0791306i 0.00164428 0.00284797i
\(773\) 25.7735 + 44.6410i 0.927007 + 1.60562i 0.788301 + 0.615290i \(0.210961\pi\)
0.138707 + 0.990334i \(0.455705\pi\)
\(774\) −13.0634 5.92455i −0.469555 0.212954i
\(775\) 6.55762 0.235557
\(776\) −48.4641 −1.73976
\(777\) 5.79101 + 1.25181i 0.207751 + 0.0449085i
\(778\) −14.7551 −0.528996
\(779\) 29.9426 + 51.8621i 1.07280 + 1.85815i
\(780\) 0.516313 + 0.0680877i 0.0184870 + 0.00243793i
\(781\) −1.67489 + 2.90099i −0.0599321 + 0.103805i
\(782\) −9.55067 + 16.5422i −0.341531 + 0.591549i
\(783\) 1.13624 9.83079i 0.0406060 0.351324i
\(784\) −6.51823 11.2899i −0.232794 0.403211i
\(785\) −0.690268 + 1.19558i −0.0246367 + 0.0426720i
\(786\) 31.5932 + 6.82935i 1.12689 + 0.243595i
\(787\) 4.03765 6.99341i 0.143927 0.249288i −0.785045 0.619438i \(-0.787360\pi\)
0.928972 + 0.370150i \(0.120694\pi\)
\(788\) 1.27861 + 2.21463i 0.0455488 + 0.0788928i
\(789\) 13.6449 15.0495i 0.485772 0.535776i
\(790\) −0.588853 1.01992i −0.0209504 0.0362872i
\(791\) 5.58503 9.67356i 0.198581 0.343952i
\(792\) 3.90152 + 1.76943i 0.138635 + 0.0628738i
\(793\) −11.9753 + 25.3171i −0.425255 + 0.899035i
\(794\) −7.03769 + 12.1896i −0.249758 + 0.432594i
\(795\) 0.0532589 0.0587412i 0.00188890 0.00208333i
\(796\) 14.5079 0.514217
\(797\) 2.89799 5.01947i 0.102652 0.177799i −0.810124 0.586258i \(-0.800600\pi\)
0.912777 + 0.408459i \(0.133934\pi\)
\(798\) −10.0982 2.18288i −0.357473 0.0772731i
\(799\) −6.79903 −0.240533
\(800\) 9.46756 + 16.3983i 0.334729 + 0.579767i
\(801\) −3.88367 39.5755i −0.137223 1.39833i
\(802\) −4.68421 8.11329i −0.165405 0.286490i
\(803\) −0.768569 1.33120i −0.0271222 0.0469770i
\(804\) 1.22904 + 0.265675i 0.0433448 + 0.00936962i
\(805\) −0.332188 0.575367i −0.0117081 0.0202790i
\(806\) −3.06500 4.42886i −0.107960 0.156000i
\(807\) 31.2438 34.4599i 1.09983 1.21305i
\(808\) −24.0670 41.6852i −0.846673 1.46648i
\(809\) 0.705053 1.22119i 0.0247884 0.0429347i −0.853365 0.521314i \(-0.825442\pi\)
0.878153 + 0.478379i \(0.158775\pi\)
\(810\) 0.791180 + 0.903460i 0.0277992 + 0.0317443i
\(811\) 30.4340 1.06868 0.534341 0.845269i \(-0.320560\pi\)
0.534341 + 0.845269i \(0.320560\pi\)
\(812\) −1.14841 −0.0403011
\(813\) −47.9025 10.3548i −1.68001 0.363160i
\(814\) 1.06103 + 1.83776i 0.0371891 + 0.0644133i
\(815\) −0.838329 + 1.45203i −0.0293654 + 0.0508623i
\(816\) −8.87912 1.91935i −0.310831 0.0671909i
\(817\) −13.0122 22.5378i −0.455239 0.788497i
\(818\) 10.5475 0.368786
\(819\) 1.64127 + 9.04038i 0.0573506 + 0.315896i
\(820\) −0.807787 −0.0282091
\(821\) −14.5866 25.2647i −0.509076 0.881746i −0.999945 0.0105120i \(-0.996654\pi\)
0.490869 0.871234i \(-0.336679\pi\)
\(822\) 25.6769 28.3200i 0.895586 0.987774i
\(823\) −11.0375 + 19.1175i −0.384743 + 0.666395i −0.991734 0.128315i \(-0.959043\pi\)
0.606990 + 0.794709i \(0.292377\pi\)
\(824\) −22.2621 38.5591i −0.775537 1.34327i
\(825\) −1.22501 3.81491i −0.0426492 0.132818i
\(826\) 10.6839 0.371739
\(827\) −46.3762 −1.61266 −0.806329 0.591467i \(-0.798549\pi\)
−0.806329 + 0.591467i \(0.798549\pi\)
\(828\) 1.38470 + 14.1104i 0.0481215 + 0.490369i
\(829\) 7.67652 13.2961i 0.266616 0.461793i −0.701369 0.712798i \(-0.747428\pi\)
0.967986 + 0.251005i \(0.0807610\pi\)
\(830\) 0.234580 + 0.406304i 0.00814238 + 0.0141030i
\(831\) 8.79979 + 27.4043i 0.305261 + 0.950645i
\(832\) 13.0523 27.5938i 0.452505 0.956645i
\(833\) 7.92940 + 13.7341i 0.274738 + 0.475859i
\(834\) −9.06603 28.2334i −0.313931 0.977644i
\(835\) 0.656153 + 1.13649i 0.0227071 + 0.0393299i
\(836\) 1.01801 + 1.76325i 0.0352087 + 0.0609832i
\(837\) −0.784620 + 6.78855i −0.0271204 + 0.234647i
\(838\) 0.173620 + 0.300718i 0.00599759 + 0.0103881i
\(839\) 21.0376 0.726299 0.363149 0.931731i \(-0.381701\pi\)
0.363149 + 0.931731i \(0.381701\pi\)
\(840\) 0.357341 0.394124i 0.0123294 0.0135986i
\(841\) 12.6864 21.9735i 0.437461 0.757705i
\(842\) −23.3927 −0.806165
\(843\) 2.07488 + 0.448517i 0.0714628 + 0.0154477i
\(844\) 2.52072 4.36602i 0.0867669 0.150285i
\(845\) −0.538069 + 1.42927i −0.0185101 + 0.0491685i
\(846\) 7.45740 5.33990i 0.256391 0.183589i
\(847\) 4.58053 7.93371i 0.157389 0.272606i
\(848\) −0.404564 0.700726i −0.0138928 0.0240630i
\(849\) −1.61023 5.01458i −0.0552630 0.172100i
\(850\) 7.15281 + 12.3890i 0.245339 + 0.424940i
\(851\) −13.4051 + 23.2184i −0.459522 + 0.795916i
\(852\) −2.71411 8.45228i −0.0929839 0.289570i
\(853\) −16.5578 + 28.6789i −0.566928 + 0.981947i 0.429940 + 0.902858i \(0.358535\pi\)
−0.996867 + 0.0790899i \(0.974799\pi\)
\(854\) 3.74723 + 6.49039i 0.128228 + 0.222097i
\(855\) 0.212792 + 2.16840i 0.00727733 + 0.0741577i
\(856\) −9.65920 + 16.7302i −0.330145 + 0.571827i
\(857\) 10.2603 17.7714i 0.350486 0.607060i −0.635848 0.771814i \(-0.719350\pi\)
0.986335 + 0.164754i \(0.0526830\pi\)
\(858\) −2.00394 + 2.61041i −0.0684134 + 0.0891180i
\(859\) 3.24826 + 5.62615i 0.110829 + 0.191962i 0.916105 0.400939i \(-0.131316\pi\)
−0.805276 + 0.592901i \(0.797983\pi\)
\(860\) 0.351041 0.0119704
\(861\) −4.35725 13.5693i −0.148495 0.462442i
\(862\) 4.32984 0.147475
\(863\) 23.8577 0.812124 0.406062 0.913845i \(-0.366902\pi\)
0.406062 + 0.913845i \(0.366902\pi\)
\(864\) −18.1086 + 7.83890i −0.616066 + 0.266685i
\(865\) 0.727362 + 1.25983i 0.0247310 + 0.0428354i
\(866\) 8.21991 14.2373i 0.279324 0.483803i
\(867\) −17.9787 3.88637i −0.610589 0.131988i
\(868\) 0.793019 0.0269168
\(869\) −4.09477 −0.138906
\(870\) −0.134575 0.419092i −0.00456251 0.0142086i
\(871\) −1.57670 + 3.33331i −0.0534244 + 0.112945i
\(872\) 53.9957 1.82852
\(873\) −38.4057 + 27.5005i −1.29984 + 0.930751i
\(874\) 23.3755 40.4876i 0.790690 1.36951i
\(875\) −0.996524 −0.0336887
\(876\) 3.98166 + 0.860696i 0.134528 + 0.0290802i
\(877\) 7.14487 12.3753i 0.241265 0.417883i −0.719810 0.694171i \(-0.755771\pi\)
0.961075 + 0.276288i \(0.0891044\pi\)
\(878\) 5.10830 8.84784i 0.172397 0.298600i
\(879\) 46.7324 + 10.1019i 1.57624 + 0.340729i
\(880\) 0.113168 0.00381489
\(881\) 2.05178 3.55379i 0.0691263 0.119730i −0.829391 0.558669i \(-0.811312\pi\)
0.898517 + 0.438939i \(0.144646\pi\)
\(882\) −19.4839 8.83636i −0.656056 0.297536i
\(883\) −4.59858 −0.154755 −0.0773773 0.997002i \(-0.524655\pi\)
−0.0773773 + 0.997002i \(0.524655\pi\)
\(884\) −2.76433 + 5.84410i −0.0929746 + 0.196558i
\(885\) −0.688860 2.14525i −0.0231558 0.0721117i
\(886\) 1.27216 0.0427391
\(887\) −58.1282 −1.95175 −0.975877 0.218323i \(-0.929941\pi\)
−0.975877 + 0.218323i \(0.929941\pi\)
\(888\) −20.9838 4.53596i −0.704170 0.152217i
\(889\) −4.03590 + 6.99038i −0.135360 + 0.234450i
\(890\) −0.884357 1.53175i −0.0296437 0.0513444i
\(891\) 4.09583 0.811690i 0.137215 0.0271926i
\(892\) 9.95671 0.333375
\(893\) 16.6408 0.556865
\(894\) 8.48176 + 26.4139i 0.283672 + 0.883412i
\(895\) −2.82356 −0.0943811
\(896\) −0.858450 1.48688i −0.0286788 0.0496732i
\(897\) −41.2207 5.43590i −1.37632 0.181499i
\(898\) −9.00603 + 15.5989i −0.300535 + 0.520542i
\(899\) 1.25238 2.16918i 0.0417691 0.0723461i
\(900\) 9.67044 + 4.38576i 0.322348 + 0.146192i
\(901\) 0.492151 + 0.852431i 0.0163959 + 0.0283986i
\(902\) 2.55226 4.42065i 0.0849810 0.147191i
\(903\) 1.89354 + 5.89685i 0.0630130 + 0.196235i
\(904\) −20.2374 + 35.0523i −0.673087 + 1.16582i
\(905\) −1.27129 2.20194i −0.0422592 0.0731950i
\(906\) 4.00726 + 12.4794i 0.133132 + 0.414601i
\(907\) −15.4165 26.7022i −0.511898 0.886633i −0.999905 0.0137936i \(-0.995609\pi\)
0.488007 0.872840i \(-0.337724\pi\)
\(908\) −4.94677 + 8.56806i −0.164164 + 0.284341i
\(909\) −42.7259 19.3771i −1.41713 0.642698i
\(910\) 0.232564 + 0.336050i 0.00770941 + 0.0111399i
\(911\) −25.0010 + 43.3031i −0.828322 + 1.43470i 0.0710324 + 0.997474i \(0.477371\pi\)
−0.899354 + 0.437221i \(0.855963\pi\)
\(912\) 21.7319 + 4.69768i 0.719616 + 0.155556i
\(913\) 1.63122 0.0539856
\(914\) 19.3572 33.5276i 0.640278 1.10899i
\(915\) 1.06162 1.17090i 0.0350960 0.0387087i
\(916\) −2.30208 −0.0760627
\(917\) −6.97809 12.0864i −0.230437 0.399128i
\(918\) −13.6812 + 5.92235i −0.451545 + 0.195467i
\(919\) −8.08276 13.9998i −0.266626 0.461809i 0.701363 0.712805i \(-0.252575\pi\)
−0.967988 + 0.250995i \(0.919242\pi\)
\(920\) 1.20369 + 2.08485i 0.0396844 + 0.0687354i
\(921\) −4.09971 12.7673i −0.135090 0.420697i
\(922\) 2.90922 + 5.03891i 0.0958099 + 0.165948i
\(923\) 25.9459 2.12641i 0.854021 0.0699918i
\(924\) −0.148141 0.461341i −0.00487349 0.0151770i
\(925\) 10.0396 + 17.3890i 0.330098 + 0.571747i
\(926\) 4.08770 7.08011i 0.134330 0.232667i
\(927\) −39.5217 17.9239i −1.29806 0.588700i
\(928\) 7.23247 0.237417
\(929\) −38.2892 −1.25623 −0.628114 0.778122i \(-0.716173\pi\)
−0.628114 + 0.778122i \(0.716173\pi\)
\(930\) 0.0929292 + 0.289400i 0.00304727 + 0.00948980i
\(931\) −19.4075 33.6147i −0.636054 1.10168i
\(932\) −3.44336 + 5.96407i −0.112791 + 0.195360i
\(933\) −10.9566 + 12.0844i −0.358702 + 0.395626i
\(934\) 17.7432 + 30.7322i 0.580577 + 1.00559i
\(935\) −0.137669 −0.00450224
\(936\) −5.94717 32.7579i −0.194389 1.07073i
\(937\) −3.73973 −0.122172 −0.0610858 0.998133i \(-0.519456\pi\)
−0.0610858 + 0.998133i \(0.519456\pi\)
\(938\) 0.493370 + 0.854543i 0.0161091 + 0.0279018i
\(939\) −22.2984 4.82012i −0.727679 0.157299i
\(940\) −0.112234 + 0.194394i −0.00366066 + 0.00634044i
\(941\) −27.4352 47.5192i −0.894363 1.54908i −0.834591 0.550871i \(-0.814296\pi\)
−0.0597725 0.998212i \(-0.519038\pi\)
\(942\) 22.5974 + 4.88476i 0.736262 + 0.159154i
\(943\) 64.4910 2.10012
\(944\) −22.9923 −0.748334
\(945\) 0.0595347 0.515096i 0.00193667 0.0167561i
\(946\) −1.10914 + 1.92109i −0.0360613 + 0.0624599i
\(947\) 18.8507 + 32.6503i 0.612565 + 1.06099i 0.990807 + 0.135286i \(0.0431954\pi\)
−0.378242 + 0.925707i \(0.623471\pi\)
\(948\) 7.28899 8.03930i 0.236735 0.261104i
\(949\) −5.10797 + 10.7988i −0.165812 + 0.350544i
\(950\) −17.5067 30.3225i −0.567993 0.983793i
\(951\) 42.5515 + 9.19814i 1.37983 + 0.298270i
\(952\) 3.30209 + 5.71939i 0.107021 + 0.185367i
\(953\) −19.3375 33.4935i −0.626402 1.08496i −0.988268 0.152730i \(-0.951194\pi\)
0.361866 0.932230i \(-0.382140\pi\)
\(954\) −1.20930 0.548443i −0.0391525 0.0177565i
\(955\) −0.322764 0.559044i −0.0104444 0.0180902i
\(956\) −6.83293 −0.220993
\(957\) −1.49588 0.323356i −0.0483548 0.0104526i
\(958\) 17.3022 29.9682i 0.559008 0.968230i
\(959\) −16.5056 −0.532992
\(960\) −1.15709 + 1.27620i −0.0373449 + 0.0411891i
\(961\) 14.6352 25.3489i 0.472103 0.817706i
\(962\) 7.05169 14.9080i 0.227356 0.480654i
\(963\) 1.83892 + 18.7390i 0.0592583 + 0.603855i
\(964\) −0.101616 + 0.176005i −0.00327284 + 0.00566873i
\(965\) −0.00756074 0.0130956i −0.000243389 0.000421562i
\(966\) −7.47326 + 8.24254i −0.240448 + 0.265199i
\(967\) 3.01037 + 5.21412i 0.0968070 + 0.167675i 0.910361 0.413814i \(-0.135804\pi\)
−0.813554 + 0.581489i \(0.802470\pi\)
\(968\) −16.5976 + 28.7479i −0.533468 + 0.923993i
\(969\) −26.4368 5.71471i −0.849273 0.183583i
\(970\) −1.05050 + 1.81952i −0.0337295 + 0.0584213i
\(971\) 9.27919 + 16.0720i 0.297783 + 0.515776i 0.975629 0.219429i \(-0.0704194\pi\)
−0.677845 + 0.735205i \(0.737086\pi\)
\(972\) −5.69727 + 9.48623i −0.182740 + 0.304271i
\(973\) −6.40176 + 11.0882i −0.205231 + 0.355471i
\(974\) −11.7036 + 20.2713i −0.375008 + 0.649533i
\(975\) −18.9615 + 24.7000i −0.607253 + 0.791032i
\(976\) −8.06425 13.9677i −0.258130 0.447095i
\(977\) 30.9608 0.990524 0.495262 0.868744i \(-0.335072\pi\)
0.495262 + 0.868744i \(0.335072\pi\)
\(978\) 27.4444 + 5.93253i 0.877577 + 0.189701i
\(979\) −6.14965 −0.196544
\(980\) 0.523572 0.0167249
\(981\) 42.7892 30.6393i 1.36615 0.978238i
\(982\) 24.4056 + 42.2717i 0.778813 + 1.34894i
\(983\) −20.2634 + 35.0972i −0.646301 + 1.11943i 0.337699 + 0.941254i \(0.390351\pi\)
−0.983999 + 0.178171i \(0.942982\pi\)
\(984\) 15.7886 + 49.1687i 0.503321 + 1.56744i
\(985\) 0.423204 0.0134844
\(986\) 5.46418 0.174015
\(987\) −3.87086 0.836745i −0.123211 0.0266339i
\(988\) 6.76579 14.3036i 0.215249 0.455058i
\(989\) −28.0260 −0.891173
\(990\) 0.150999 0.108124i 0.00479907 0.00343639i
\(991\) −21.8458 + 37.8381i −0.693955 + 1.20197i 0.276577 + 0.960992i \(0.410800\pi\)
−0.970532 + 0.240973i \(0.922533\pi\)
\(992\) −4.99430 −0.158569
\(993\) 15.4155 + 48.0070i 0.489197 + 1.52346i
\(994\) 3.48317 6.03304i 0.110480 0.191356i
\(995\) 1.20048 2.07929i 0.0380576 0.0659178i
\(996\) −2.90369 + 3.20259i −0.0920071 + 0.101478i
\(997\) −26.8912 −0.851654 −0.425827 0.904805i \(-0.640017\pi\)
−0.425827 + 0.904805i \(0.640017\pi\)
\(998\) −2.40713 + 4.16928i −0.0761965 + 0.131976i
\(999\) −19.2026 + 8.31250i −0.607544 + 0.262996i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.2.f.a.61.4 24
3.2 odd 2 351.2.f.a.100.9 24
9.4 even 3 117.2.h.a.22.9 yes 24
9.5 odd 6 351.2.h.a.334.4 24
13.3 even 3 117.2.h.a.16.9 yes 24
39.29 odd 6 351.2.h.a.289.4 24
117.68 odd 6 351.2.f.a.172.9 24
117.94 even 3 inner 117.2.f.a.94.4 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.f.a.61.4 24 1.1 even 1 trivial
117.2.f.a.94.4 yes 24 117.94 even 3 inner
117.2.h.a.16.9 yes 24 13.3 even 3
117.2.h.a.22.9 yes 24 9.4 even 3
351.2.f.a.100.9 24 3.2 odd 2
351.2.f.a.172.9 24 117.68 odd 6
351.2.h.a.289.4 24 39.29 odd 6
351.2.h.a.334.4 24 9.5 odd 6