Properties

Label 117.2.g.c.100.1
Level $117$
Weight $2$
Character 117.100
Analytic conductor $0.934$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,2,Mod(55,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.55");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 117.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.934249703649\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.1
Root \(-0.780776 + 1.35234i\) of defining polynomial
Character \(\chi\) \(=\) 117.100
Dual form 117.2.g.c.55.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.780776 + 1.35234i) q^{2} +(-0.219224 - 0.379706i) q^{4} +3.56155 q^{5} +(-0.280776 - 0.486319i) q^{7} -2.43845 q^{8} +(-2.78078 + 4.81645i) q^{10} +(-1.00000 + 1.73205i) q^{11} +(0.500000 + 3.57071i) q^{13} +0.876894 q^{14} +(2.34233 - 4.05703i) q^{16} +(-0.780776 - 1.35234i) q^{17} +(-3.56155 - 6.16879i) q^{19} +(-0.780776 - 1.35234i) q^{20} +(-1.56155 - 2.70469i) q^{22} +(1.00000 - 1.73205i) q^{23} +7.68466 q^{25} +(-5.21922 - 2.11176i) q^{26} +(-0.123106 + 0.213225i) q^{28} +(3.34233 - 5.78908i) q^{29} +2.56155 q^{31} +(1.21922 + 2.11176i) q^{32} +2.43845 q^{34} +(-1.00000 - 1.73205i) q^{35} +(-3.78078 + 6.54850i) q^{37} +11.1231 q^{38} -8.68466 q^{40} +(-0.780776 + 1.35234i) q^{41} +(-2.28078 - 3.95042i) q^{43} +0.876894 q^{44} +(1.56155 + 2.70469i) q^{46} -8.24621 q^{47} +(3.34233 - 5.78908i) q^{49} +(-6.00000 + 10.3923i) q^{50} +(1.24621 - 0.972638i) q^{52} +0.684658 q^{53} +(-3.56155 + 6.16879i) q^{55} +(0.684658 + 1.18586i) q^{56} +(5.21922 + 9.03996i) q^{58} +(-1.43845 - 2.49146i) q^{59} +(-1.93845 - 3.35749i) q^{61} +(-2.00000 + 3.46410i) q^{62} +5.56155 q^{64} +(1.78078 + 12.7173i) q^{65} +(-2.28078 + 3.95042i) q^{67} +(-0.342329 + 0.592932i) q^{68} +3.12311 q^{70} +(7.00000 + 12.1244i) q^{71} -10.1231 q^{73} +(-5.90388 - 10.2258i) q^{74} +(-1.56155 + 2.70469i) q^{76} +1.12311 q^{77} +5.43845 q^{79} +(8.34233 - 14.4493i) q^{80} +(-1.21922 - 2.11176i) q^{82} +0.876894 q^{83} +(-2.78078 - 4.81645i) q^{85} +7.12311 q^{86} +(2.43845 - 4.22351i) q^{88} +(2.43845 - 4.22351i) q^{89} +(1.59612 - 1.24573i) q^{91} -0.876894 q^{92} +(6.43845 - 11.1517i) q^{94} +(-12.6847 - 21.9705i) q^{95} +(4.28078 + 7.41452i) q^{97} +(5.21922 + 9.03996i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 5 q^{4} + 6 q^{5} + 3 q^{7} - 18 q^{8} - 7 q^{10} - 4 q^{11} + 2 q^{13} + 20 q^{14} - 3 q^{16} + q^{17} - 6 q^{19} + q^{20} + 2 q^{22} + 4 q^{23} + 6 q^{25} - 25 q^{26} + 16 q^{28} + q^{29}+ \cdots + 25 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.780776 + 1.35234i −0.552092 + 0.956252i 0.446031 + 0.895017i \(0.352837\pi\)
−0.998123 + 0.0612344i \(0.980496\pi\)
\(3\) 0 0
\(4\) −0.219224 0.379706i −0.109612 0.189853i
\(5\) 3.56155 1.59277 0.796387 0.604787i \(-0.206742\pi\)
0.796387 + 0.604787i \(0.206742\pi\)
\(6\) 0 0
\(7\) −0.280776 0.486319i −0.106124 0.183811i 0.808073 0.589082i \(-0.200511\pi\)
−0.914197 + 0.405271i \(0.867177\pi\)
\(8\) −2.43845 −0.862121
\(9\) 0 0
\(10\) −2.78078 + 4.81645i −0.879359 + 1.52309i
\(11\) −1.00000 + 1.73205i −0.301511 + 0.522233i −0.976478 0.215615i \(-0.930824\pi\)
0.674967 + 0.737848i \(0.264158\pi\)
\(12\) 0 0
\(13\) 0.500000 + 3.57071i 0.138675 + 0.990338i
\(14\) 0.876894 0.234360
\(15\) 0 0
\(16\) 2.34233 4.05703i 0.585582 1.01426i
\(17\) −0.780776 1.35234i −0.189366 0.327992i 0.755673 0.654949i \(-0.227310\pi\)
−0.945039 + 0.326957i \(0.893977\pi\)
\(18\) 0 0
\(19\) −3.56155 6.16879i −0.817076 1.41522i −0.907827 0.419344i \(-0.862260\pi\)
0.0907512 0.995874i \(-0.471073\pi\)
\(20\) −0.780776 1.35234i −0.174587 0.302393i
\(21\) 0 0
\(22\) −1.56155 2.70469i −0.332924 0.576642i
\(23\) 1.00000 1.73205i 0.208514 0.361158i −0.742732 0.669588i \(-0.766471\pi\)
0.951247 + 0.308431i \(0.0998038\pi\)
\(24\) 0 0
\(25\) 7.68466 1.53693
\(26\) −5.21922 2.11176i −1.02357 0.414150i
\(27\) 0 0
\(28\) −0.123106 + 0.213225i −0.0232648 + 0.0402958i
\(29\) 3.34233 5.78908i 0.620655 1.07501i −0.368709 0.929545i \(-0.620200\pi\)
0.989364 0.145461i \(-0.0464665\pi\)
\(30\) 0 0
\(31\) 2.56155 0.460068 0.230034 0.973183i \(-0.426116\pi\)
0.230034 + 0.973183i \(0.426116\pi\)
\(32\) 1.21922 + 2.11176i 0.215530 + 0.373309i
\(33\) 0 0
\(34\) 2.43845 0.418190
\(35\) −1.00000 1.73205i −0.169031 0.292770i
\(36\) 0 0
\(37\) −3.78078 + 6.54850i −0.621556 + 1.07657i 0.367640 + 0.929968i \(0.380166\pi\)
−0.989196 + 0.146598i \(0.953168\pi\)
\(38\) 11.1231 1.80441
\(39\) 0 0
\(40\) −8.68466 −1.37317
\(41\) −0.780776 + 1.35234i −0.121937 + 0.211201i −0.920531 0.390669i \(-0.872244\pi\)
0.798595 + 0.601869i \(0.205577\pi\)
\(42\) 0 0
\(43\) −2.28078 3.95042i −0.347815 0.602433i 0.638046 0.769998i \(-0.279743\pi\)
−0.985861 + 0.167565i \(0.946410\pi\)
\(44\) 0.876894 0.132197
\(45\) 0 0
\(46\) 1.56155 + 2.70469i 0.230238 + 0.398785i
\(47\) −8.24621 −1.20283 −0.601417 0.798935i \(-0.705397\pi\)
−0.601417 + 0.798935i \(0.705397\pi\)
\(48\) 0 0
\(49\) 3.34233 5.78908i 0.477476 0.827012i
\(50\) −6.00000 + 10.3923i −0.848528 + 1.46969i
\(51\) 0 0
\(52\) 1.24621 0.972638i 0.172818 0.134881i
\(53\) 0.684658 0.0940451 0.0470225 0.998894i \(-0.485027\pi\)
0.0470225 + 0.998894i \(0.485027\pi\)
\(54\) 0 0
\(55\) −3.56155 + 6.16879i −0.480240 + 0.831800i
\(56\) 0.684658 + 1.18586i 0.0914913 + 0.158468i
\(57\) 0 0
\(58\) 5.21922 + 9.03996i 0.685318 + 1.18700i
\(59\) −1.43845 2.49146i −0.187270 0.324361i 0.757069 0.653335i \(-0.226631\pi\)
−0.944339 + 0.328974i \(0.893297\pi\)
\(60\) 0 0
\(61\) −1.93845 3.35749i −0.248193 0.429882i 0.714832 0.699297i \(-0.246503\pi\)
−0.963024 + 0.269414i \(0.913170\pi\)
\(62\) −2.00000 + 3.46410i −0.254000 + 0.439941i
\(63\) 0 0
\(64\) 5.56155 0.695194
\(65\) 1.78078 + 12.7173i 0.220878 + 1.57739i
\(66\) 0 0
\(67\) −2.28078 + 3.95042i −0.278641 + 0.482621i −0.971047 0.238887i \(-0.923217\pi\)
0.692406 + 0.721508i \(0.256551\pi\)
\(68\) −0.342329 + 0.592932i −0.0415135 + 0.0719035i
\(69\) 0 0
\(70\) 3.12311 0.373283
\(71\) 7.00000 + 12.1244i 0.830747 + 1.43890i 0.897447 + 0.441123i \(0.145420\pi\)
−0.0666994 + 0.997773i \(0.521247\pi\)
\(72\) 0 0
\(73\) −10.1231 −1.18482 −0.592410 0.805637i \(-0.701823\pi\)
−0.592410 + 0.805637i \(0.701823\pi\)
\(74\) −5.90388 10.2258i −0.686312 1.18873i
\(75\) 0 0
\(76\) −1.56155 + 2.70469i −0.179122 + 0.310249i
\(77\) 1.12311 0.127990
\(78\) 0 0
\(79\) 5.43845 0.611873 0.305937 0.952052i \(-0.401030\pi\)
0.305937 + 0.952052i \(0.401030\pi\)
\(80\) 8.34233 14.4493i 0.932701 1.61549i
\(81\) 0 0
\(82\) −1.21922 2.11176i −0.134641 0.233205i
\(83\) 0.876894 0.0962517 0.0481258 0.998841i \(-0.484675\pi\)
0.0481258 + 0.998841i \(0.484675\pi\)
\(84\) 0 0
\(85\) −2.78078 4.81645i −0.301618 0.522417i
\(86\) 7.12311 0.768104
\(87\) 0 0
\(88\) 2.43845 4.22351i 0.259939 0.450228i
\(89\) 2.43845 4.22351i 0.258475 0.447692i −0.707359 0.706855i \(-0.750113\pi\)
0.965834 + 0.259163i \(0.0834467\pi\)
\(90\) 0 0
\(91\) 1.59612 1.24573i 0.167319 0.130588i
\(92\) −0.876894 −0.0914226
\(93\) 0 0
\(94\) 6.43845 11.1517i 0.664075 1.15021i
\(95\) −12.6847 21.9705i −1.30142 2.25412i
\(96\) 0 0
\(97\) 4.28078 + 7.41452i 0.434647 + 0.752831i 0.997267 0.0738851i \(-0.0235398\pi\)
−0.562620 + 0.826716i \(0.690206\pi\)
\(98\) 5.21922 + 9.03996i 0.527221 + 0.913174i
\(99\) 0 0
\(100\) −1.68466 2.91791i −0.168466 0.291791i
\(101\) −3.78078 + 6.54850i −0.376201 + 0.651600i −0.990506 0.137469i \(-0.956103\pi\)
0.614305 + 0.789069i \(0.289437\pi\)
\(102\) 0 0
\(103\) −3.43845 −0.338800 −0.169400 0.985547i \(-0.554183\pi\)
−0.169400 + 0.985547i \(0.554183\pi\)
\(104\) −1.21922 8.70700i −0.119555 0.853791i
\(105\) 0 0
\(106\) −0.534565 + 0.925894i −0.0519216 + 0.0899308i
\(107\) −4.12311 + 7.14143i −0.398596 + 0.690388i −0.993553 0.113369i \(-0.963836\pi\)
0.594957 + 0.803757i \(0.297169\pi\)
\(108\) 0 0
\(109\) −2.80776 −0.268935 −0.134468 0.990918i \(-0.542932\pi\)
−0.134468 + 0.990918i \(0.542932\pi\)
\(110\) −5.56155 9.63289i −0.530273 0.918460i
\(111\) 0 0
\(112\) −2.63068 −0.248576
\(113\) 2.90388 + 5.02967i 0.273174 + 0.473152i 0.969673 0.244406i \(-0.0785931\pi\)
−0.696499 + 0.717558i \(0.745260\pi\)
\(114\) 0 0
\(115\) 3.56155 6.16879i 0.332117 0.575243i
\(116\) −2.93087 −0.272124
\(117\) 0 0
\(118\) 4.49242 0.413561
\(119\) −0.438447 + 0.759413i −0.0401924 + 0.0696153i
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 6.05398 0.548101
\(123\) 0 0
\(124\) −0.561553 0.972638i −0.0504289 0.0873455i
\(125\) 9.56155 0.855211
\(126\) 0 0
\(127\) −2.71922 + 4.70983i −0.241292 + 0.417930i −0.961083 0.276261i \(-0.910905\pi\)
0.719791 + 0.694191i \(0.244238\pi\)
\(128\) −6.78078 + 11.7446i −0.599342 + 1.03809i
\(129\) 0 0
\(130\) −18.5885 7.52113i −1.63032 0.659647i
\(131\) −7.36932 −0.643860 −0.321930 0.946763i \(-0.604332\pi\)
−0.321930 + 0.946763i \(0.604332\pi\)
\(132\) 0 0
\(133\) −2.00000 + 3.46410i −0.173422 + 0.300376i
\(134\) −3.56155 6.16879i −0.307671 0.532902i
\(135\) 0 0
\(136\) 1.90388 + 3.29762i 0.163257 + 0.282769i
\(137\) −2.78078 4.81645i −0.237578 0.411497i 0.722441 0.691433i \(-0.243020\pi\)
−0.960019 + 0.279936i \(0.909687\pi\)
\(138\) 0 0
\(139\) 8.96543 + 15.5286i 0.760438 + 1.31712i 0.942625 + 0.333854i \(0.108349\pi\)
−0.182187 + 0.983264i \(0.558318\pi\)
\(140\) −0.438447 + 0.759413i −0.0370556 + 0.0641821i
\(141\) 0 0
\(142\) −21.8617 −1.83460
\(143\) −6.68466 2.70469i −0.558999 0.226177i
\(144\) 0 0
\(145\) 11.9039 20.6181i 0.988564 1.71224i
\(146\) 7.90388 13.6899i 0.654130 1.13299i
\(147\) 0 0
\(148\) 3.31534 0.272519
\(149\) −1.21922 2.11176i −0.0998827 0.173002i 0.811753 0.584001i \(-0.198513\pi\)
−0.911636 + 0.410999i \(0.865180\pi\)
\(150\) 0 0
\(151\) −9.36932 −0.762464 −0.381232 0.924479i \(-0.624500\pi\)
−0.381232 + 0.924479i \(0.624500\pi\)
\(152\) 8.68466 + 15.0423i 0.704419 + 1.22009i
\(153\) 0 0
\(154\) −0.876894 + 1.51883i −0.0706622 + 0.122390i
\(155\) 9.12311 0.732785
\(156\) 0 0
\(157\) 20.3693 1.62565 0.812824 0.582509i \(-0.197929\pi\)
0.812824 + 0.582509i \(0.197929\pi\)
\(158\) −4.24621 + 7.35465i −0.337810 + 0.585105i
\(159\) 0 0
\(160\) 4.34233 + 7.52113i 0.343291 + 0.594598i
\(161\) −1.12311 −0.0885131
\(162\) 0 0
\(163\) 2.40388 + 4.16365i 0.188287 + 0.326122i 0.944679 0.327996i \(-0.106373\pi\)
−0.756393 + 0.654118i \(0.773040\pi\)
\(164\) 0.684658 0.0534628
\(165\) 0 0
\(166\) −0.684658 + 1.18586i −0.0531398 + 0.0920408i
\(167\) 5.12311 8.87348i 0.396438 0.686650i −0.596846 0.802356i \(-0.703580\pi\)
0.993284 + 0.115706i \(0.0369129\pi\)
\(168\) 0 0
\(169\) −12.5000 + 3.57071i −0.961538 + 0.274670i
\(170\) 8.68466 0.666083
\(171\) 0 0
\(172\) −1.00000 + 1.73205i −0.0762493 + 0.132068i
\(173\) 10.1231 + 17.5337i 0.769645 + 1.33307i 0.937755 + 0.347297i \(0.112900\pi\)
−0.168110 + 0.985768i \(0.553766\pi\)
\(174\) 0 0
\(175\) −2.15767 3.73720i −0.163105 0.282505i
\(176\) 4.68466 + 8.11407i 0.353119 + 0.611621i
\(177\) 0 0
\(178\) 3.80776 + 6.59524i 0.285404 + 0.494334i
\(179\) −2.43845 + 4.22351i −0.182258 + 0.315680i −0.942649 0.333785i \(-0.891674\pi\)
0.760391 + 0.649466i \(0.225007\pi\)
\(180\) 0 0
\(181\) −2.68466 −0.199549 −0.0997745 0.995010i \(-0.531812\pi\)
−0.0997745 + 0.995010i \(0.531812\pi\)
\(182\) 0.438447 + 3.13114i 0.0324999 + 0.232095i
\(183\) 0 0
\(184\) −2.43845 + 4.22351i −0.179765 + 0.311362i
\(185\) −13.4654 + 23.3228i −0.989998 + 1.71473i
\(186\) 0 0
\(187\) 3.12311 0.228384
\(188\) 1.80776 + 3.13114i 0.131845 + 0.228362i
\(189\) 0 0
\(190\) 39.6155 2.87401
\(191\) −4.56155 7.90084i −0.330062 0.571685i 0.652461 0.757822i \(-0.273736\pi\)
−0.982524 + 0.186137i \(0.940403\pi\)
\(192\) 0 0
\(193\) 6.74621 11.6848i 0.485603 0.841089i −0.514260 0.857634i \(-0.671933\pi\)
0.999863 + 0.0165453i \(0.00526677\pi\)
\(194\) −13.3693 −0.959861
\(195\) 0 0
\(196\) −2.93087 −0.209348
\(197\) 6.68466 11.5782i 0.476262 0.824910i −0.523368 0.852107i \(-0.675325\pi\)
0.999630 + 0.0271965i \(0.00865798\pi\)
\(198\) 0 0
\(199\) −11.0885 19.2059i −0.786046 1.36147i −0.928372 0.371651i \(-0.878792\pi\)
0.142327 0.989820i \(-0.454542\pi\)
\(200\) −18.7386 −1.32502
\(201\) 0 0
\(202\) −5.90388 10.2258i −0.415396 0.719486i
\(203\) −3.75379 −0.263464
\(204\) 0 0
\(205\) −2.78078 + 4.81645i −0.194218 + 0.336395i
\(206\) 2.68466 4.64996i 0.187049 0.323978i
\(207\) 0 0
\(208\) 15.6577 + 6.33527i 1.08566 + 0.439272i
\(209\) 14.2462 0.985431
\(210\) 0 0
\(211\) −9.84233 + 17.0474i −0.677574 + 1.17359i 0.298136 + 0.954524i \(0.403635\pi\)
−0.975709 + 0.219069i \(0.929698\pi\)
\(212\) −0.150093 0.259969i −0.0103084 0.0178548i
\(213\) 0 0
\(214\) −6.43845 11.1517i −0.440123 0.762316i
\(215\) −8.12311 14.0696i −0.553991 0.959541i
\(216\) 0 0
\(217\) −0.719224 1.24573i −0.0488241 0.0845658i
\(218\) 2.19224 3.79706i 0.148477 0.257170i
\(219\) 0 0
\(220\) 3.12311 0.210560
\(221\) 4.43845 3.46410i 0.298562 0.233021i
\(222\) 0 0
\(223\) −4.00000 + 6.92820i −0.267860 + 0.463947i −0.968309 0.249756i \(-0.919650\pi\)
0.700449 + 0.713702i \(0.252983\pi\)
\(224\) 0.684658 1.18586i 0.0457457 0.0792338i
\(225\) 0 0
\(226\) −9.06913 −0.603270
\(227\) 3.56155 + 6.16879i 0.236389 + 0.409437i 0.959675 0.281111i \(-0.0907028\pi\)
−0.723287 + 0.690548i \(0.757370\pi\)
\(228\) 0 0
\(229\) −16.2462 −1.07358 −0.536790 0.843716i \(-0.680363\pi\)
−0.536790 + 0.843716i \(0.680363\pi\)
\(230\) 5.56155 + 9.63289i 0.366718 + 0.635174i
\(231\) 0 0
\(232\) −8.15009 + 14.1164i −0.535080 + 0.926785i
\(233\) −26.0000 −1.70332 −0.851658 0.524097i \(-0.824403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) −29.3693 −1.91584
\(236\) −0.630683 + 1.09238i −0.0410540 + 0.0711076i
\(237\) 0 0
\(238\) −0.684658 1.18586i −0.0443798 0.0768681i
\(239\) 25.3693 1.64100 0.820502 0.571643i \(-0.193694\pi\)
0.820502 + 0.571643i \(0.193694\pi\)
\(240\) 0 0
\(241\) 8.90388 + 15.4220i 0.573549 + 0.993417i 0.996198 + 0.0871229i \(0.0277673\pi\)
−0.422648 + 0.906294i \(0.638899\pi\)
\(242\) −10.9309 −0.702663
\(243\) 0 0
\(244\) −0.849907 + 1.47208i −0.0544097 + 0.0942404i
\(245\) 11.9039 20.6181i 0.760511 1.31724i
\(246\) 0 0
\(247\) 20.2462 15.8017i 1.28824 1.00544i
\(248\) −6.24621 −0.396635
\(249\) 0 0
\(250\) −7.46543 + 12.9305i −0.472156 + 0.817797i
\(251\) 9.36932 + 16.2281i 0.591386 + 1.02431i 0.994046 + 0.108961i \(0.0347524\pi\)
−0.402660 + 0.915350i \(0.631914\pi\)
\(252\) 0 0
\(253\) 2.00000 + 3.46410i 0.125739 + 0.217786i
\(254\) −4.24621 7.35465i −0.266431 0.461472i
\(255\) 0 0
\(256\) −5.02699 8.70700i −0.314187 0.544187i
\(257\) 14.5885 25.2681i 0.910008 1.57618i 0.0959583 0.995385i \(-0.469408\pi\)
0.814050 0.580795i \(-0.197258\pi\)
\(258\) 0 0
\(259\) 4.24621 0.263847
\(260\) 4.43845 3.46410i 0.275261 0.214834i
\(261\) 0 0
\(262\) 5.75379 9.96585i 0.355470 0.615693i
\(263\) 4.68466 8.11407i 0.288868 0.500335i −0.684672 0.728852i \(-0.740054\pi\)
0.973540 + 0.228517i \(0.0733877\pi\)
\(264\) 0 0
\(265\) 2.43845 0.149793
\(266\) −3.12311 5.40938i −0.191490 0.331670i
\(267\) 0 0
\(268\) 2.00000 0.122169
\(269\) −10.6847 18.5064i −0.651455 1.12835i −0.982770 0.184833i \(-0.940826\pi\)
0.331315 0.943520i \(-0.392508\pi\)
\(270\) 0 0
\(271\) 14.9654 25.9209i 0.909085 1.57458i 0.0937481 0.995596i \(-0.470115\pi\)
0.815337 0.578986i \(-0.196551\pi\)
\(272\) −7.31534 −0.443558
\(273\) 0 0
\(274\) 8.68466 0.524659
\(275\) −7.68466 + 13.3102i −0.463402 + 0.802636i
\(276\) 0 0
\(277\) −2.65767 4.60322i −0.159684 0.276581i 0.775071 0.631874i \(-0.217714\pi\)
−0.934755 + 0.355294i \(0.884381\pi\)
\(278\) −28.0000 −1.67933
\(279\) 0 0
\(280\) 2.43845 + 4.22351i 0.145725 + 0.252403i
\(281\) −17.8078 −1.06232 −0.531161 0.847271i \(-0.678244\pi\)
−0.531161 + 0.847271i \(0.678244\pi\)
\(282\) 0 0
\(283\) 6.84233 11.8513i 0.406734 0.704484i −0.587787 0.809015i \(-0.700001\pi\)
0.994522 + 0.104531i \(0.0333342\pi\)
\(284\) 3.06913 5.31589i 0.182119 0.315440i
\(285\) 0 0
\(286\) 8.87689 6.92820i 0.524902 0.409673i
\(287\) 0.876894 0.0517614
\(288\) 0 0
\(289\) 7.28078 12.6107i 0.428281 0.741804i
\(290\) 18.5885 + 32.1963i 1.09156 + 1.89063i
\(291\) 0 0
\(292\) 2.21922 + 3.84381i 0.129870 + 0.224942i
\(293\) 10.2192 + 17.7002i 0.597013 + 1.03406i 0.993259 + 0.115913i \(0.0369794\pi\)
−0.396246 + 0.918144i \(0.629687\pi\)
\(294\) 0 0
\(295\) −5.12311 8.87348i −0.298279 0.516634i
\(296\) 9.21922 15.9682i 0.535856 0.928131i
\(297\) 0 0
\(298\) 3.80776 0.220578
\(299\) 6.68466 + 2.70469i 0.386584 + 0.156416i
\(300\) 0 0
\(301\) −1.28078 + 2.21837i −0.0738227 + 0.127865i
\(302\) 7.31534 12.6705i 0.420951 0.729108i
\(303\) 0 0
\(304\) −33.3693 −1.91386
\(305\) −6.90388 11.9579i −0.395315 0.684706i
\(306\) 0 0
\(307\) 30.8078 1.75829 0.879146 0.476553i \(-0.158114\pi\)
0.879146 + 0.476553i \(0.158114\pi\)
\(308\) −0.246211 0.426450i −0.0140292 0.0242993i
\(309\) 0 0
\(310\) −7.12311 + 12.3376i −0.404565 + 0.700728i
\(311\) 19.1231 1.08437 0.542186 0.840259i \(-0.317597\pi\)
0.542186 + 0.840259i \(0.317597\pi\)
\(312\) 0 0
\(313\) −13.6847 −0.773503 −0.386751 0.922184i \(-0.626403\pi\)
−0.386751 + 0.922184i \(0.626403\pi\)
\(314\) −15.9039 + 27.5463i −0.897508 + 1.55453i
\(315\) 0 0
\(316\) −1.19224 2.06501i −0.0670685 0.116166i
\(317\) −14.0540 −0.789350 −0.394675 0.918821i \(-0.629143\pi\)
−0.394675 + 0.918821i \(0.629143\pi\)
\(318\) 0 0
\(319\) 6.68466 + 11.5782i 0.374269 + 0.648253i
\(320\) 19.8078 1.10729
\(321\) 0 0
\(322\) 0.876894 1.51883i 0.0488674 0.0846408i
\(323\) −5.56155 + 9.63289i −0.309453 + 0.535988i
\(324\) 0 0
\(325\) 3.84233 + 27.4397i 0.213134 + 1.52208i
\(326\) −7.50758 −0.415806
\(327\) 0 0
\(328\) 1.90388 3.29762i 0.105124 0.182081i
\(329\) 2.31534 + 4.01029i 0.127649 + 0.221094i
\(330\) 0 0
\(331\) 1.59612 + 2.76456i 0.0877306 + 0.151954i 0.906552 0.422095i \(-0.138705\pi\)
−0.818821 + 0.574049i \(0.805372\pi\)
\(332\) −0.192236 0.332962i −0.0105503 0.0182737i
\(333\) 0 0
\(334\) 8.00000 + 13.8564i 0.437741 + 0.758189i
\(335\) −8.12311 + 14.0696i −0.443813 + 0.768706i
\(336\) 0 0
\(337\) −6.12311 −0.333547 −0.166773 0.985995i \(-0.553335\pi\)
−0.166773 + 0.985995i \(0.553335\pi\)
\(338\) 4.93087 19.6922i 0.268204 1.07112i
\(339\) 0 0
\(340\) −1.21922 + 2.11176i −0.0661217 + 0.114526i
\(341\) −2.56155 + 4.43674i −0.138716 + 0.240263i
\(342\) 0 0
\(343\) −7.68466 −0.414933
\(344\) 5.56155 + 9.63289i 0.299859 + 0.519371i
\(345\) 0 0
\(346\) −31.6155 −1.69966
\(347\) 13.8078 + 23.9157i 0.741240 + 1.28386i 0.951931 + 0.306312i \(0.0990951\pi\)
−0.210692 + 0.977553i \(0.567572\pi\)
\(348\) 0 0
\(349\) −3.40388 + 5.89570i −0.182206 + 0.315589i −0.942631 0.333836i \(-0.891657\pi\)
0.760426 + 0.649425i \(0.224990\pi\)
\(350\) 6.73863 0.360195
\(351\) 0 0
\(352\) −4.87689 −0.259939
\(353\) 2.65767 4.60322i 0.141454 0.245005i −0.786591 0.617475i \(-0.788156\pi\)
0.928044 + 0.372470i \(0.121489\pi\)
\(354\) 0 0
\(355\) 24.9309 + 43.1815i 1.32319 + 2.29184i
\(356\) −2.13826 −0.113328
\(357\) 0 0
\(358\) −3.80776 6.59524i −0.201247 0.348569i
\(359\) 9.36932 0.494494 0.247247 0.968953i \(-0.420474\pi\)
0.247247 + 0.968953i \(0.420474\pi\)
\(360\) 0 0
\(361\) −15.8693 + 27.4865i −0.835227 + 1.44666i
\(362\) 2.09612 3.63058i 0.110170 0.190819i
\(363\) 0 0
\(364\) −0.822919 0.332962i −0.0431327 0.0174520i
\(365\) −36.0540 −1.88715
\(366\) 0 0
\(367\) 8.52699 14.7692i 0.445105 0.770945i −0.552954 0.833212i \(-0.686500\pi\)
0.998060 + 0.0622668i \(0.0198330\pi\)
\(368\) −4.68466 8.11407i −0.244205 0.422975i
\(369\) 0 0
\(370\) −21.0270 36.4198i −1.09314 1.89338i
\(371\) −0.192236 0.332962i −0.00998039 0.0172865i
\(372\) 0 0
\(373\) −14.1847 24.5685i −0.734454 1.27211i −0.954963 0.296726i \(-0.904105\pi\)
0.220509 0.975385i \(-0.429228\pi\)
\(374\) −2.43845 + 4.22351i −0.126089 + 0.218393i
\(375\) 0 0
\(376\) 20.1080 1.03699
\(377\) 22.3423 + 9.03996i 1.15069 + 0.465582i
\(378\) 0 0
\(379\) −11.8423 + 20.5115i −0.608300 + 1.05361i 0.383221 + 0.923657i \(0.374815\pi\)
−0.991521 + 0.129949i \(0.958519\pi\)
\(380\) −5.56155 + 9.63289i −0.285302 + 0.494157i
\(381\) 0 0
\(382\) 14.2462 0.728900
\(383\) −11.3693 19.6922i −0.580945 1.00623i −0.995368 0.0961417i \(-0.969350\pi\)
0.414423 0.910085i \(-0.363984\pi\)
\(384\) 0 0
\(385\) 4.00000 0.203859
\(386\) 10.5346 + 18.2464i 0.536195 + 0.928717i
\(387\) 0 0
\(388\) 1.87689 3.25088i 0.0952849 0.165038i
\(389\) −34.0540 −1.72661 −0.863303 0.504687i \(-0.831608\pi\)
−0.863303 + 0.504687i \(0.831608\pi\)
\(390\) 0 0
\(391\) −3.12311 −0.157942
\(392\) −8.15009 + 14.1164i −0.411642 + 0.712985i
\(393\) 0 0
\(394\) 10.4384 + 18.0799i 0.525881 + 0.910853i
\(395\) 19.3693 0.974576
\(396\) 0 0
\(397\) −12.5270 21.6974i −0.628711 1.08896i −0.987811 0.155661i \(-0.950249\pi\)
0.359099 0.933299i \(-0.383084\pi\)
\(398\) 34.6307 1.73588
\(399\) 0 0
\(400\) 18.0000 31.1769i 0.900000 1.55885i
\(401\) 7.21922 12.5041i 0.360511 0.624423i −0.627534 0.778589i \(-0.715936\pi\)
0.988045 + 0.154166i \(0.0492691\pi\)
\(402\) 0 0
\(403\) 1.28078 + 9.14657i 0.0638000 + 0.455623i
\(404\) 3.31534 0.164944
\(405\) 0 0
\(406\) 2.93087 5.07642i 0.145457 0.251938i
\(407\) −7.56155 13.0970i −0.374812 0.649194i
\(408\) 0 0
\(409\) −3.18466 5.51599i −0.157471 0.272748i 0.776485 0.630136i \(-0.217001\pi\)
−0.933956 + 0.357388i \(0.883667\pi\)
\(410\) −4.34233 7.52113i −0.214452 0.371442i
\(411\) 0 0
\(412\) 0.753789 + 1.30560i 0.0371365 + 0.0643223i
\(413\) −0.807764 + 1.39909i −0.0397475 + 0.0688446i
\(414\) 0 0
\(415\) 3.12311 0.153307
\(416\) −6.93087 + 5.40938i −0.339814 + 0.265217i
\(417\) 0 0
\(418\) −11.1231 + 19.2658i −0.544049 + 0.942320i
\(419\) −17.1231 + 29.6581i −0.836518 + 1.44889i 0.0562697 + 0.998416i \(0.482079\pi\)
−0.892788 + 0.450477i \(0.851254\pi\)
\(420\) 0 0
\(421\) 31.2462 1.52285 0.761424 0.648255i \(-0.224501\pi\)
0.761424 + 0.648255i \(0.224501\pi\)
\(422\) −15.3693 26.6204i −0.748167 1.29586i
\(423\) 0 0
\(424\) −1.66950 −0.0810783
\(425\) −6.00000 10.3923i −0.291043 0.504101i
\(426\) 0 0
\(427\) −1.08854 + 1.88541i −0.0526782 + 0.0912413i
\(428\) 3.61553 0.174763
\(429\) 0 0
\(430\) 25.3693 1.22342
\(431\) −5.56155 + 9.63289i −0.267891 + 0.464000i −0.968317 0.249725i \(-0.919660\pi\)
0.700426 + 0.713725i \(0.252993\pi\)
\(432\) 0 0
\(433\) −4.37689 7.58100i −0.210340 0.364320i 0.741481 0.670974i \(-0.234124\pi\)
−0.951821 + 0.306654i \(0.900790\pi\)
\(434\) 2.24621 0.107822
\(435\) 0 0
\(436\) 0.615528 + 1.06613i 0.0294785 + 0.0510582i
\(437\) −14.2462 −0.681489
\(438\) 0 0
\(439\) 6.84233 11.8513i 0.326567 0.565630i −0.655262 0.755402i \(-0.727442\pi\)
0.981828 + 0.189772i \(0.0607749\pi\)
\(440\) 8.68466 15.0423i 0.414025 0.717112i
\(441\) 0 0
\(442\) 1.21922 + 8.70700i 0.0579926 + 0.414150i
\(443\) 34.7386 1.65048 0.825241 0.564781i \(-0.191039\pi\)
0.825241 + 0.564781i \(0.191039\pi\)
\(444\) 0 0
\(445\) 8.68466 15.0423i 0.411692 0.713072i
\(446\) −6.24621 10.8188i −0.295767 0.512283i
\(447\) 0 0
\(448\) −1.56155 2.70469i −0.0737764 0.127785i
\(449\) −4.12311 7.14143i −0.194581 0.337025i 0.752182 0.658956i \(-0.229002\pi\)
−0.946763 + 0.321931i \(0.895668\pi\)
\(450\) 0 0
\(451\) −1.56155 2.70469i −0.0735307 0.127359i
\(452\) 1.27320 2.20525i 0.0598862 0.103726i
\(453\) 0 0
\(454\) −11.1231 −0.522033
\(455\) 5.68466 4.43674i 0.266501 0.207998i
\(456\) 0 0
\(457\) −6.30776 + 10.9254i −0.295065 + 0.511067i −0.975000 0.222205i \(-0.928675\pi\)
0.679935 + 0.733272i \(0.262008\pi\)
\(458\) 12.6847 21.9705i 0.592715 1.02661i
\(459\) 0 0
\(460\) −3.12311 −0.145616
\(461\) −8.09612 14.0229i −0.377074 0.653111i 0.613561 0.789647i \(-0.289736\pi\)
−0.990635 + 0.136536i \(0.956403\pi\)
\(462\) 0 0
\(463\) −14.3153 −0.665290 −0.332645 0.943052i \(-0.607941\pi\)
−0.332645 + 0.943052i \(0.607941\pi\)
\(464\) −15.6577 27.1199i −0.726889 1.25901i
\(465\) 0 0
\(466\) 20.3002 35.1610i 0.940388 1.62880i
\(467\) 26.0000 1.20314 0.601568 0.798821i \(-0.294543\pi\)
0.601568 + 0.798821i \(0.294543\pi\)
\(468\) 0 0
\(469\) 2.56155 0.118282
\(470\) 22.9309 39.7174i 1.05772 1.83203i
\(471\) 0 0
\(472\) 3.50758 + 6.07530i 0.161449 + 0.279638i
\(473\) 9.12311 0.419481
\(474\) 0 0
\(475\) −27.3693 47.4050i −1.25579 2.17509i
\(476\) 0.384472 0.0176222
\(477\) 0 0
\(478\) −19.8078 + 34.3081i −0.905986 + 1.56921i
\(479\) 5.12311 8.87348i 0.234081 0.405440i −0.724924 0.688828i \(-0.758125\pi\)
0.959005 + 0.283389i \(0.0914587\pi\)
\(480\) 0 0
\(481\) −25.2732 10.2258i −1.15236 0.466257i
\(482\) −27.8078 −1.26661
\(483\) 0 0
\(484\) 1.53457 2.65794i 0.0697530 0.120816i
\(485\) 15.2462 + 26.4072i 0.692295 + 1.19909i
\(486\) 0 0
\(487\) −3.56155 6.16879i −0.161389 0.279535i 0.773978 0.633213i \(-0.218264\pi\)
−0.935367 + 0.353678i \(0.884931\pi\)
\(488\) 4.72680 + 8.18706i 0.213972 + 0.370611i
\(489\) 0 0
\(490\) 18.5885 + 32.1963i 0.839745 + 1.45448i
\(491\) −18.1231 + 31.3901i −0.817884 + 1.41662i 0.0893539 + 0.996000i \(0.471520\pi\)
−0.907238 + 0.420617i \(0.861814\pi\)
\(492\) 0 0
\(493\) −10.4384 −0.470124
\(494\) 5.56155 + 39.7174i 0.250226 + 1.78697i
\(495\) 0 0
\(496\) 6.00000 10.3923i 0.269408 0.466628i
\(497\) 3.93087 6.80847i 0.176324 0.305401i
\(498\) 0 0
\(499\) 4.49242 0.201108 0.100554 0.994932i \(-0.467938\pi\)
0.100554 + 0.994932i \(0.467938\pi\)
\(500\) −2.09612 3.63058i −0.0937412 0.162365i
\(501\) 0 0
\(502\) −29.2614 −1.30600
\(503\) −14.1231 24.4619i −0.629718 1.09070i −0.987608 0.156940i \(-0.949837\pi\)
0.357890 0.933764i \(-0.383496\pi\)
\(504\) 0 0
\(505\) −13.4654 + 23.3228i −0.599204 + 1.03785i
\(506\) −6.24621 −0.277678
\(507\) 0 0
\(508\) 2.38447 0.105794
\(509\) −6.90388 + 11.9579i −0.306009 + 0.530023i −0.977486 0.211003i \(-0.932327\pi\)
0.671476 + 0.741026i \(0.265660\pi\)
\(510\) 0 0
\(511\) 2.84233 + 4.92306i 0.125737 + 0.217783i
\(512\) −11.4233 −0.504843
\(513\) 0 0
\(514\) 22.7808 + 39.4575i 1.00482 + 1.74039i
\(515\) −12.2462 −0.539633
\(516\) 0 0
\(517\) 8.24621 14.2829i 0.362668 0.628159i
\(518\) −3.31534 + 5.74234i −0.145668 + 0.252304i
\(519\) 0 0
\(520\) −4.34233 31.0104i −0.190424 1.35990i
\(521\) 9.06913 0.397326 0.198663 0.980068i \(-0.436340\pi\)
0.198663 + 0.980068i \(0.436340\pi\)
\(522\) 0 0
\(523\) −16.9309 + 29.3251i −0.740335 + 1.28230i 0.212007 + 0.977268i \(0.432000\pi\)
−0.952343 + 0.305030i \(0.901333\pi\)
\(524\) 1.61553 + 2.79818i 0.0705747 + 0.122239i
\(525\) 0 0
\(526\) 7.31534 + 12.6705i 0.318964 + 0.552462i
\(527\) −2.00000 3.46410i −0.0871214 0.150899i
\(528\) 0 0
\(529\) 9.50000 + 16.4545i 0.413043 + 0.715412i
\(530\) −1.90388 + 3.29762i −0.0826994 + 0.143239i
\(531\) 0 0
\(532\) 1.75379 0.0760364
\(533\) −5.21922 2.11176i −0.226070 0.0914704i
\(534\) 0 0
\(535\) −14.6847 + 25.4346i −0.634873 + 1.09963i
\(536\) 5.56155 9.63289i 0.240222 0.416078i
\(537\) 0 0
\(538\) 33.3693 1.43865
\(539\) 6.68466 + 11.5782i 0.287929 + 0.498707i
\(540\) 0 0
\(541\) 19.7386 0.848630 0.424315 0.905515i \(-0.360515\pi\)
0.424315 + 0.905515i \(0.360515\pi\)
\(542\) 23.3693 + 40.4768i 1.00380 + 1.73863i
\(543\) 0 0
\(544\) 1.90388 3.29762i 0.0816283 0.141384i
\(545\) −10.0000 −0.428353
\(546\) 0 0
\(547\) 3.93087 0.168072 0.0840359 0.996463i \(-0.473219\pi\)
0.0840359 + 0.996463i \(0.473219\pi\)
\(548\) −1.21922 + 2.11176i −0.0520827 + 0.0902098i
\(549\) 0 0
\(550\) −12.0000 20.7846i −0.511682 0.886259i
\(551\) −47.6155 −2.02849
\(552\) 0 0
\(553\) −1.52699 2.64482i −0.0649341 0.112469i
\(554\) 8.30019 0.352641
\(555\) 0 0
\(556\) 3.93087 6.80847i 0.166706 0.288743i
\(557\) −21.4654 + 37.1792i −0.909520 + 1.57533i −0.0947869 + 0.995498i \(0.530217\pi\)
−0.814733 + 0.579837i \(0.803116\pi\)
\(558\) 0 0
\(559\) 12.9654 10.1192i 0.548379 0.427997i
\(560\) −9.36932 −0.395926
\(561\) 0 0
\(562\) 13.9039 24.0822i 0.586500 1.01585i
\(563\) −11.6847 20.2384i −0.492450 0.852948i 0.507513 0.861644i \(-0.330565\pi\)
−0.999962 + 0.00869657i \(0.997232\pi\)
\(564\) 0 0
\(565\) 10.3423 + 17.9134i 0.435105 + 0.753624i
\(566\) 10.6847 + 18.5064i 0.449110 + 0.777881i
\(567\) 0 0
\(568\) −17.0691 29.5646i −0.716205 1.24050i
\(569\) −4.36932 + 7.56788i −0.183171 + 0.317262i −0.942959 0.332910i \(-0.891970\pi\)
0.759787 + 0.650171i \(0.225303\pi\)
\(570\) 0 0
\(571\) −5.36932 −0.224699 −0.112349 0.993669i \(-0.535838\pi\)
−0.112349 + 0.993669i \(0.535838\pi\)
\(572\) 0.438447 + 3.13114i 0.0183324 + 0.130920i
\(573\) 0 0
\(574\) −0.684658 + 1.18586i −0.0285771 + 0.0494970i
\(575\) 7.68466 13.3102i 0.320472 0.555074i
\(576\) 0 0
\(577\) −17.3153 −0.720847 −0.360424 0.932789i \(-0.617368\pi\)
−0.360424 + 0.932789i \(0.617368\pi\)
\(578\) 11.3693 + 19.6922i 0.472901 + 0.819089i
\(579\) 0 0
\(580\) −10.4384 −0.433433
\(581\) −0.246211 0.426450i −0.0102146 0.0176921i
\(582\) 0 0
\(583\) −0.684658 + 1.18586i −0.0283557 + 0.0491134i
\(584\) 24.6847 1.02146
\(585\) 0 0
\(586\) −31.9157 −1.31843
\(587\) 19.6847 34.0948i 0.812473 1.40724i −0.0986556 0.995122i \(-0.531454\pi\)
0.911128 0.412123i \(-0.135212\pi\)
\(588\) 0 0
\(589\) −9.12311 15.8017i −0.375911 0.651097i
\(590\) 16.0000 0.658710
\(591\) 0 0
\(592\) 17.7116 + 30.6775i 0.727944 + 1.26084i
\(593\) 17.4233 0.715489 0.357744 0.933820i \(-0.383546\pi\)
0.357744 + 0.933820i \(0.383546\pi\)
\(594\) 0 0
\(595\) −1.56155 + 2.70469i −0.0640174 + 0.110881i
\(596\) −0.534565 + 0.925894i −0.0218966 + 0.0379261i
\(597\) 0 0
\(598\) −8.87689 + 6.92820i −0.363003 + 0.283315i
\(599\) 41.6155 1.70036 0.850182 0.526489i \(-0.176492\pi\)
0.850182 + 0.526489i \(0.176492\pi\)
\(600\) 0 0
\(601\) 3.53457 6.12205i 0.144178 0.249723i −0.784888 0.619638i \(-0.787280\pi\)
0.929066 + 0.369914i \(0.120613\pi\)
\(602\) −2.00000 3.46410i −0.0815139 0.141186i
\(603\) 0 0
\(604\) 2.05398 + 3.55759i 0.0835751 + 0.144756i
\(605\) 12.4654 + 21.5908i 0.506792 + 0.877789i
\(606\) 0 0
\(607\) 8.00000 + 13.8564i 0.324710 + 0.562414i 0.981454 0.191700i \(-0.0614000\pi\)
−0.656744 + 0.754114i \(0.728067\pi\)
\(608\) 8.68466 15.0423i 0.352209 0.610045i
\(609\) 0 0
\(610\) 21.5616 0.873002
\(611\) −4.12311 29.4449i −0.166803 1.19121i
\(612\) 0 0
\(613\) 17.4309 30.1912i 0.704026 1.21941i −0.263016 0.964792i \(-0.584717\pi\)
0.967042 0.254618i \(-0.0819496\pi\)
\(614\) −24.0540 + 41.6627i −0.970739 + 1.68137i
\(615\) 0 0
\(616\) −2.73863 −0.110343
\(617\) 4.90388 + 8.49377i 0.197423 + 0.341946i 0.947692 0.319186i \(-0.103409\pi\)
−0.750269 + 0.661132i \(0.770076\pi\)
\(618\) 0 0
\(619\) 29.3002 1.17767 0.588837 0.808252i \(-0.299586\pi\)
0.588837 + 0.808252i \(0.299586\pi\)
\(620\) −2.00000 3.46410i −0.0803219 0.139122i
\(621\) 0 0
\(622\) −14.9309 + 25.8610i −0.598673 + 1.03693i
\(623\) −2.73863 −0.109721
\(624\) 0 0
\(625\) −4.36932 −0.174773
\(626\) 10.6847 18.5064i 0.427045 0.739663i
\(627\) 0 0
\(628\) −4.46543 7.73436i −0.178190 0.308635i
\(629\) 11.8078 0.470806
\(630\) 0 0
\(631\) 9.28078 + 16.0748i 0.369462 + 0.639927i 0.989481 0.144660i \(-0.0462087\pi\)
−0.620020 + 0.784586i \(0.712875\pi\)
\(632\) −13.2614 −0.527509
\(633\) 0 0
\(634\) 10.9730 19.0058i 0.435794 0.754817i
\(635\) −9.68466 + 16.7743i −0.384324 + 0.665669i
\(636\) 0 0
\(637\) 22.3423 + 9.03996i 0.885235 + 0.358176i
\(638\) −20.8769 −0.826524
\(639\) 0 0
\(640\) −24.1501 + 41.8292i −0.954616 + 1.65344i
\(641\) −9.58854 16.6078i −0.378725 0.655970i 0.612152 0.790740i \(-0.290304\pi\)
−0.990877 + 0.134770i \(0.956971\pi\)
\(642\) 0 0
\(643\) 15.7732 + 27.3200i 0.622034 + 1.07739i 0.989106 + 0.147202i \(0.0470269\pi\)
−0.367072 + 0.930192i \(0.619640\pi\)
\(644\) 0.246211 + 0.426450i 0.00970208 + 0.0168045i
\(645\) 0 0
\(646\) −8.68466 15.0423i −0.341693 0.591830i
\(647\) −3.19224 + 5.52911i −0.125500 + 0.217372i −0.921928 0.387361i \(-0.873387\pi\)
0.796428 + 0.604733i \(0.206720\pi\)
\(648\) 0 0
\(649\) 5.75379 0.225856
\(650\) −40.1080 16.2281i −1.57316 0.636520i
\(651\) 0 0
\(652\) 1.05398 1.82554i 0.0412769 0.0714936i
\(653\) 11.5616 20.0252i 0.452439 0.783647i −0.546098 0.837721i \(-0.683888\pi\)
0.998537 + 0.0540745i \(0.0172209\pi\)
\(654\) 0 0
\(655\) −26.2462 −1.02552
\(656\) 3.65767 + 6.33527i 0.142808 + 0.247351i
\(657\) 0 0
\(658\) −7.23106 −0.281896
\(659\) −1.12311 1.94528i −0.0437500 0.0757772i 0.843321 0.537410i \(-0.180597\pi\)
−0.887071 + 0.461633i \(0.847264\pi\)
\(660\) 0 0
\(661\) −2.81534 + 4.87631i −0.109504 + 0.189667i −0.915569 0.402160i \(-0.868260\pi\)
0.806065 + 0.591827i \(0.201593\pi\)
\(662\) −4.98485 −0.193742
\(663\) 0 0
\(664\) −2.13826 −0.0829806
\(665\) −7.12311 + 12.3376i −0.276222 + 0.478431i
\(666\) 0 0
\(667\) −6.68466 11.5782i −0.258831 0.448308i
\(668\) −4.49242 −0.173817
\(669\) 0 0
\(670\) −12.6847 21.9705i −0.490051 0.848793i
\(671\) 7.75379 0.299332
\(672\) 0 0
\(673\) 11.6231 20.1318i 0.448038 0.776024i −0.550220 0.835019i \(-0.685456\pi\)
0.998258 + 0.0589952i \(0.0187897\pi\)
\(674\) 4.78078 8.28055i 0.184149 0.318955i
\(675\) 0 0
\(676\) 4.09612 + 3.96355i 0.157543 + 0.152444i
\(677\) 15.6155 0.600153 0.300077 0.953915i \(-0.402988\pi\)
0.300077 + 0.953915i \(0.402988\pi\)
\(678\) 0 0
\(679\) 2.40388 4.16365i 0.0922525 0.159786i
\(680\) 6.78078 + 11.7446i 0.260031 + 0.450387i
\(681\) 0 0
\(682\) −4.00000 6.92820i −0.153168 0.265295i
\(683\) −19.0540 33.0025i −0.729080 1.26280i −0.957272 0.289188i \(-0.906615\pi\)
0.228192 0.973616i \(-0.426719\pi\)
\(684\) 0 0
\(685\) −9.90388 17.1540i −0.378408 0.655422i
\(686\) 6.00000 10.3923i 0.229081 0.396780i
\(687\) 0 0
\(688\) −21.3693 −0.814698
\(689\) 0.342329 + 2.44472i 0.0130417 + 0.0931364i
\(690\) 0 0
\(691\) 25.6501 44.4273i 0.975776 1.69009i 0.298424 0.954433i \(-0.403539\pi\)
0.677352 0.735659i \(-0.263128\pi\)
\(692\) 4.43845 7.68762i 0.168724 0.292239i
\(693\) 0 0
\(694\) −43.1231 −1.63693
\(695\) 31.9309 + 55.3059i 1.21121 + 2.09787i
\(696\) 0 0
\(697\) 2.43845 0.0923628
\(698\) −5.31534 9.20644i −0.201189 0.348469i
\(699\) 0 0
\(700\) −0.946025 + 1.63856i −0.0357564 + 0.0619319i
\(701\) 5.36932 0.202796 0.101398 0.994846i \(-0.467668\pi\)
0.101398 + 0.994846i \(0.467668\pi\)
\(702\) 0 0
\(703\) 53.8617 2.03143
\(704\) −5.56155 + 9.63289i −0.209609 + 0.363053i
\(705\) 0 0
\(706\) 4.15009 + 7.18817i 0.156191 + 0.270530i
\(707\) 4.24621 0.159695
\(708\) 0 0
\(709\) 3.74621 + 6.48863i 0.140692 + 0.243686i 0.927757 0.373184i \(-0.121734\pi\)
−0.787065 + 0.616869i \(0.788401\pi\)
\(710\) −77.8617 −2.92210
\(711\) 0 0
\(712\) −5.94602 + 10.2988i −0.222837 + 0.385964i
\(713\) 2.56155 4.43674i 0.0959309 0.166157i
\(714\) 0 0
\(715\) −23.8078 9.63289i −0.890360 0.360250i
\(716\) 2.13826 0.0799106
\(717\) 0 0
\(718\) −7.31534 + 12.6705i −0.273006 + 0.472860i
\(719\) −11.6847 20.2384i −0.435764 0.754766i 0.561593 0.827413i \(-0.310189\pi\)
−0.997358 + 0.0726475i \(0.976855\pi\)
\(720\) 0 0
\(721\) 0.965435 + 1.67218i 0.0359547 + 0.0622753i
\(722\) −24.7808 42.9216i −0.922245 1.59738i
\(723\) 0 0
\(724\) 0.588540 + 1.01938i 0.0218729 + 0.0378850i
\(725\) 25.6847 44.4871i 0.953904 1.65221i
\(726\) 0 0
\(727\) −38.6695 −1.43417 −0.717086 0.696984i \(-0.754525\pi\)
−0.717086 + 0.696984i \(0.754525\pi\)
\(728\) −3.89205 + 3.03765i −0.144249 + 0.112583i
\(729\) 0 0
\(730\) 28.1501 48.7574i 1.04188 1.80459i
\(731\) −3.56155 + 6.16879i −0.131729 + 0.228161i
\(732\) 0 0
\(733\) 20.5076 0.757465 0.378732 0.925506i \(-0.376360\pi\)
0.378732 + 0.925506i \(0.376360\pi\)
\(734\) 13.3153 + 23.0628i 0.491478 + 0.851265i
\(735\) 0 0
\(736\) 4.87689 0.179765
\(737\) −4.56155 7.90084i −0.168027 0.291031i
\(738\) 0 0
\(739\) −5.12311 + 8.87348i −0.188456 + 0.326416i −0.944736 0.327833i \(-0.893682\pi\)
0.756279 + 0.654249i \(0.227015\pi\)
\(740\) 11.8078 0.434062
\(741\) 0 0
\(742\) 0.600373 0.0220404
\(743\) −6.31534 + 10.9385i −0.231687 + 0.401294i −0.958305 0.285748i \(-0.907758\pi\)
0.726617 + 0.687042i \(0.241091\pi\)
\(744\) 0 0
\(745\) −4.34233 7.52113i −0.159091 0.275553i
\(746\) 44.3002 1.62195
\(747\) 0 0
\(748\) −0.684658 1.18586i −0.0250336 0.0433595i
\(749\) 4.63068 0.169201
\(750\) 0 0
\(751\) −22.0540 + 38.1986i −0.804761 + 1.39389i 0.111691 + 0.993743i \(0.464373\pi\)
−0.916452 + 0.400144i \(0.868960\pi\)
\(752\) −19.3153 + 33.4552i −0.704358 + 1.21998i
\(753\) 0 0
\(754\) −29.6695 + 23.1563i −1.08050 + 0.843304i
\(755\) −33.3693 −1.21443
\(756\) 0 0
\(757\) −15.0000 + 25.9808i −0.545184 + 0.944287i 0.453411 + 0.891302i \(0.350207\pi\)
−0.998595 + 0.0529853i \(0.983126\pi\)
\(758\) −18.4924 32.0298i −0.671675 1.16338i
\(759\) 0 0
\(760\) 30.9309 + 53.5738i 1.12198 + 1.94333i
\(761\) 4.68466 + 8.11407i 0.169819 + 0.294135i 0.938356 0.345670i \(-0.112348\pi\)
−0.768537 + 0.639805i \(0.779015\pi\)
\(762\) 0 0
\(763\) 0.788354 + 1.36547i 0.0285403 + 0.0494333i
\(764\) −2.00000 + 3.46410i −0.0723575 + 0.125327i
\(765\) 0 0
\(766\) 35.5076 1.28294
\(767\) 8.17708 6.38202i 0.295257 0.230441i
\(768\) 0 0
\(769\) 9.00000 15.5885i 0.324548 0.562134i −0.656873 0.754002i \(-0.728121\pi\)
0.981421 + 0.191867i \(0.0614544\pi\)
\(770\) −3.12311 + 5.40938i −0.112549 + 0.194940i
\(771\) 0 0
\(772\) −5.91571 −0.212911
\(773\) −12.1231 20.9978i −0.436038 0.755240i 0.561342 0.827584i \(-0.310285\pi\)
−0.997380 + 0.0723444i \(0.976952\pi\)
\(774\) 0 0
\(775\) 19.6847 0.707094
\(776\) −10.4384 18.0799i −0.374718 0.649031i
\(777\) 0 0
\(778\) 26.5885 46.0527i 0.953245 1.65107i
\(779\) 11.1231 0.398527
\(780\) 0 0
\(781\) −28.0000 −1.00192
\(782\) 2.43845 4.22351i 0.0871987 0.151033i
\(783\) 0 0
\(784\) −15.6577 27.1199i −0.559203 0.968567i
\(785\) 72.5464 2.58929
\(786\) 0 0
\(787\) −22.0885 38.2585i −0.787371 1.36377i −0.927572 0.373644i \(-0.878108\pi\)
0.140201 0.990123i \(-0.455225\pi\)
\(788\) −5.86174 −0.208816
\(789\) 0 0
\(790\) −15.1231 + 26.1940i −0.538056 + 0.931940i
\(791\) 1.63068 2.82443i 0.0579804 0.100425i
\(792\) 0 0
\(793\) 11.0194 8.60039i 0.391311 0.305409i
\(794\) 39.1231 1.38843
\(795\) 0 0
\(796\) −4.86174 + 8.42078i −0.172320 + 0.298467i
\(797\) −0.192236 0.332962i −0.00680935 0.0117941i 0.862601 0.505885i \(-0.168834\pi\)
−0.869410 + 0.494091i \(0.835501\pi\)
\(798\) 0 0
\(799\) 6.43845 + 11.1517i 0.227776 + 0.394519i
\(800\) 9.36932 + 16.2281i 0.331255 + 0.573751i
\(801\) 0 0
\(802\) 11.2732 + 19.5258i 0.398070 + 0.689478i
\(803\) 10.1231 17.5337i 0.357237 0.618752i
\(804\) 0 0
\(805\) −4.00000 −0.140981
\(806\) −13.3693 5.40938i −0.470914 0.190537i
\(807\) 0 0
\(808\) 9.21922 15.9682i 0.324331 0.561758i
\(809\) −8.15009 + 14.1164i −0.286542 + 0.496305i −0.972982 0.230881i \(-0.925839\pi\)
0.686440 + 0.727187i \(0.259172\pi\)
\(810\) 0 0
\(811\) 2.56155 0.0899483 0.0449741 0.998988i \(-0.485679\pi\)
0.0449741 + 0.998988i \(0.485679\pi\)
\(812\) 0.822919 + 1.42534i 0.0288788 + 0.0500195i
\(813\) 0 0
\(814\) 23.6155 0.827724
\(815\) 8.56155 + 14.8290i 0.299898 + 0.519439i
\(816\) 0 0
\(817\) −16.2462 + 28.1393i −0.568383 + 0.984468i
\(818\) 9.94602 0.347755
\(819\) 0 0
\(820\) 2.43845 0.0851543
\(821\) 3.24621 5.62260i 0.113294 0.196230i −0.803803 0.594896i \(-0.797193\pi\)
0.917096 + 0.398666i \(0.130527\pi\)
\(822\) 0 0
\(823\) −4.00000 6.92820i −0.139431 0.241502i 0.787850 0.615867i \(-0.211194\pi\)
−0.927281 + 0.374365i \(0.877861\pi\)
\(824\) 8.38447 0.292087
\(825\) 0 0
\(826\) −1.26137 2.18475i −0.0438885 0.0760172i
\(827\) 14.7386 0.512513 0.256256 0.966609i \(-0.417511\pi\)
0.256256 + 0.966609i \(0.417511\pi\)
\(828\) 0 0
\(829\) −6.74621 + 11.6848i −0.234306 + 0.405829i −0.959071 0.283167i \(-0.908615\pi\)
0.724765 + 0.688996i \(0.241948\pi\)
\(830\) −2.43845 + 4.22351i −0.0846397 + 0.146600i
\(831\) 0 0
\(832\) 2.78078 + 19.8587i 0.0964061 + 0.688477i
\(833\) −10.4384 −0.361671
\(834\) 0 0
\(835\) 18.2462 31.6034i 0.631436 1.09368i
\(836\) −3.12311 5.40938i −0.108015 0.187087i
\(837\) 0 0
\(838\) −26.7386 46.3127i −0.923671 1.59984i
\(839\) 10.8078 + 18.7196i 0.373125 + 0.646272i 0.990045 0.140754i \(-0.0449528\pi\)
−0.616919 + 0.787027i \(0.711619\pi\)
\(840\) 0 0
\(841\) −7.84233 13.5833i −0.270425 0.468390i
\(842\) −24.3963 + 42.2556i −0.840752 + 1.45623i
\(843\) 0 0
\(844\) 8.63068 0.297080
\(845\) −44.5194 + 12.7173i −1.53151 + 0.437488i
\(846\) 0 0
\(847\) 1.96543 3.40423i 0.0675331 0.116971i
\(848\) 1.60370 2.77768i 0.0550711 0.0953860i
\(849\) 0 0
\(850\) 18.7386 0.642730
\(851\) 7.56155 + 13.0970i 0.259207 + 0.448959i
\(852\) 0 0
\(853\) 2.12311 0.0726938 0.0363469 0.999339i \(-0.488428\pi\)
0.0363469 + 0.999339i \(0.488428\pi\)
\(854\) −1.69981 2.94416i −0.0581664 0.100747i
\(855\) 0 0
\(856\) 10.0540 17.4140i 0.343638 0.595198i
\(857\) −35.5616 −1.21476 −0.607380 0.794412i \(-0.707779\pi\)
−0.607380 + 0.794412i \(0.707779\pi\)
\(858\) 0 0
\(859\) 24.5616 0.838029 0.419015 0.907979i \(-0.362376\pi\)
0.419015 + 0.907979i \(0.362376\pi\)
\(860\) −3.56155 + 6.16879i −0.121448 + 0.210354i
\(861\) 0 0
\(862\) −8.68466 15.0423i −0.295801 0.512342i
\(863\) −30.4924 −1.03797 −0.518987 0.854782i \(-0.673691\pi\)
−0.518987 + 0.854782i \(0.673691\pi\)
\(864\) 0 0
\(865\) 36.0540 + 62.4473i 1.22587 + 2.12327i
\(866\) 13.6695 0.464509
\(867\) 0 0
\(868\) −0.315342 + 0.546188i −0.0107034 + 0.0185388i
\(869\) −5.43845 + 9.41967i −0.184487 + 0.319540i
\(870\) 0 0
\(871\) −15.2462 6.16879i −0.516598 0.209021i
\(872\) 6.84658 0.231855
\(873\) 0 0
\(874\) 11.1231 19.2658i 0.376245 0.651675i
\(875\) −2.68466 4.64996i −0.0907580 0.157198i
\(876\) 0 0
\(877\) −11.7808 20.4049i −0.397809 0.689025i 0.595647 0.803247i \(-0.296896\pi\)
−0.993455 + 0.114222i \(0.963563\pi\)
\(878\) 10.6847 + 18.5064i 0.360590 + 0.624560i
\(879\) 0 0
\(880\) 16.6847 + 28.8987i 0.562440 + 0.974174i
\(881\) −4.53457 + 7.85410i −0.152773 + 0.264611i −0.932246 0.361825i \(-0.882154\pi\)
0.779473 + 0.626436i \(0.215487\pi\)
\(882\) 0 0
\(883\) 8.80776 0.296405 0.148202 0.988957i \(-0.452651\pi\)
0.148202 + 0.988957i \(0.452651\pi\)
\(884\) −2.28835 0.925894i −0.0769657 0.0311412i
\(885\) 0 0
\(886\) −27.1231 + 46.9786i −0.911219 + 1.57828i
\(887\) 12.3153 21.3308i 0.413509 0.716218i −0.581762 0.813359i \(-0.697636\pi\)
0.995271 + 0.0971410i \(0.0309698\pi\)
\(888\) 0 0
\(889\) 3.05398 0.102427
\(890\) 13.5616 + 23.4893i 0.454584 + 0.787363i
\(891\) 0 0
\(892\) 3.50758 0.117442
\(893\) 29.3693 + 50.8691i 0.982807 + 1.70227i
\(894\) 0 0
\(895\) −8.68466 + 15.0423i −0.290296 + 0.502808i
\(896\) 7.61553 0.254417
\(897\) 0 0
\(898\) 12.8769 0.429708
\(899\) 8.56155 14.8290i 0.285544 0.494576i
\(900\) 0 0
\(901\) −0.534565 0.925894i −0.0178089 0.0308460i
\(902\) 4.87689 0.162383
\(903\) 0 0
\(904\) −7.08096 12.2646i −0.235509 0.407914i
\(905\) −9.56155 −0.317837
\(906\) 0 0
\(907\) −14.0000 + 24.2487i −0.464862 + 0.805165i −0.999195 0.0401089i \(-0.987230\pi\)
0.534333 + 0.845274i \(0.320563\pi\)
\(908\) 1.56155 2.70469i 0.0518220 0.0897583i
\(909\) 0 0
\(910\) 1.56155 + 11.1517i 0.0517650 + 0.369676i
\(911\) −38.7386 −1.28347 −0.641734 0.766927i \(-0.721785\pi\)
−0.641734 + 0.766927i \(0.721785\pi\)
\(912\) 0 0
\(913\) −0.876894 + 1.51883i −0.0290210 + 0.0502658i
\(914\) −9.84991 17.0605i −0.325806 0.564312i
\(915\) 0 0
\(916\) 3.56155 + 6.16879i 0.117677 + 0.203823i
\(917\) 2.06913 + 3.58384i 0.0683287 + 0.118349i
\(918\) 0 0
\(919\) −5.75379 9.96585i −0.189800 0.328743i 0.755383 0.655283i \(-0.227451\pi\)
−0.945183 + 0.326540i \(0.894117\pi\)
\(920\) −8.68466 + 15.0423i −0.286325 + 0.495929i
\(921\) 0 0
\(922\) 25.2850 0.832718
\(923\) −39.7926 + 31.0572i −1.30979 + 1.02226i
\(924\) 0 0
\(925\) −29.0540 + 50.3230i −0.955289 + 1.65461i
\(926\) 11.1771 19.3593i 0.367302 0.636185i
\(927\) 0 0
\(928\) 16.3002 0.535080
\(929\) −3.90388 6.76172i −0.128082 0.221845i 0.794851 0.606804i \(-0.207549\pi\)
−0.922934 + 0.384959i \(0.874215\pi\)
\(930\) 0 0
\(931\) −47.6155 −1.56054
\(932\) 5.69981 + 9.87237i 0.186704 + 0.323380i
\(933\) 0 0
\(934\) −20.3002 + 35.1610i −0.664242 + 1.15050i
\(935\) 11.1231 0.363764
\(936\) 0 0
\(937\) −7.56155 −0.247025 −0.123513 0.992343i \(-0.539416\pi\)
−0.123513 + 0.992343i \(0.539416\pi\)
\(938\) −2.00000 + 3.46410i −0.0653023 + 0.113107i
\(939\) 0 0
\(940\) 6.43845 + 11.1517i 0.209999 + 0.363729i
\(941\) −30.4924 −0.994025 −0.497012 0.867744i \(-0.665570\pi\)
−0.497012 + 0.867744i \(0.665570\pi\)
\(942\) 0 0
\(943\) 1.56155 + 2.70469i 0.0508512 + 0.0880768i
\(944\) −13.4773 −0.438648
\(945\) 0 0
\(946\) −7.12311 + 12.3376i −0.231592 + 0.401129i
\(947\) −19.3693 + 33.5486i −0.629418 + 1.09018i 0.358250 + 0.933626i \(0.383373\pi\)
−0.987669 + 0.156559i \(0.949960\pi\)
\(948\) 0 0
\(949\) −5.06155 36.1467i −0.164305 1.17337i
\(950\) 85.4773 2.77325
\(951\) 0 0
\(952\) 1.06913 1.85179i 0.0346507 0.0600168i
\(953\) 15.4924 + 26.8337i 0.501849 + 0.869228i 0.999998 + 0.00213612i \(0.000679948\pi\)
−0.498149 + 0.867091i \(0.665987\pi\)
\(954\) 0 0
\(955\) −16.2462 28.1393i −0.525715 0.910565i
\(956\) −5.56155 9.63289i −0.179873 0.311550i
\(957\) 0 0
\(958\) 8.00000 + 13.8564i 0.258468 + 0.447680i
\(959\) −1.56155 + 2.70469i −0.0504252 + 0.0873390i
\(960\) 0 0
\(961\) −24.4384 −0.788337
\(962\) 33.5616 26.1940i 1.08207 0.844528i
\(963\) 0 0
\(964\) 3.90388 6.76172i 0.125736 0.217780i
\(965\) 24.0270 41.6160i 0.773456 1.33967i
\(966\) 0 0
\(967\) −0.876894 −0.0281990 −0.0140995 0.999901i \(-0.504488\pi\)
−0.0140995 + 0.999901i \(0.504488\pi\)
\(968\) −8.53457 14.7823i −0.274311 0.475121i
\(969\) 0 0
\(970\) −47.6155 −1.52884
\(971\) −6.49242 11.2452i −0.208352 0.360876i 0.742844 0.669465i \(-0.233477\pi\)
−0.951195 + 0.308589i \(0.900143\pi\)
\(972\) 0 0
\(973\) 5.03457 8.72012i 0.161401 0.279554i
\(974\) 11.1231 0.356407
\(975\) 0 0
\(976\) −18.1619 −0.581349
\(977\) 30.5885 52.9809i 0.978614 1.69501i 0.311162 0.950357i \(-0.399282\pi\)
0.667453 0.744652i \(-0.267385\pi\)
\(978\) 0 0
\(979\) 4.87689 + 8.44703i 0.155866 + 0.269968i
\(980\) −10.4384 −0.333444
\(981\) 0 0
\(982\) −28.3002 49.0174i −0.903095 1.56421i
\(983\) −13.6155 −0.434268 −0.217134 0.976142i \(-0.569671\pi\)
−0.217134 + 0.976142i \(0.569671\pi\)
\(984\) 0 0
\(985\) 23.8078 41.2363i 0.758578 1.31390i
\(986\) 8.15009 14.1164i 0.259552 0.449557i
\(987\) 0 0
\(988\) −10.4384 4.22351i −0.332091 0.134368i
\(989\) −9.12311 −0.290098
\(990\) 0 0
\(991\) 25.1771 43.6080i 0.799776 1.38525i −0.119985 0.992776i \(-0.538285\pi\)
0.919762 0.392478i \(-0.128382\pi\)
\(992\) 3.12311 + 5.40938i 0.0991587 + 0.171748i
\(993\) 0 0
\(994\) 6.13826 + 10.6318i 0.194694 + 0.337220i
\(995\) −39.4924 68.4029i −1.25199 2.16852i
\(996\) 0 0
\(997\) 10.3078 + 17.8536i 0.326450 + 0.565428i 0.981805 0.189893i \(-0.0608141\pi\)
−0.655355 + 0.755321i \(0.727481\pi\)
\(998\) −3.50758 + 6.07530i −0.111030 + 0.192310i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.2.g.c.100.1 4
3.2 odd 2 39.2.e.b.22.2 yes 4
4.3 odd 2 1872.2.t.r.1153.2 4
12.11 even 2 624.2.q.h.529.1 4
13.3 even 3 inner 117.2.g.c.55.1 4
13.4 even 6 1521.2.a.m.1.1 2
13.6 odd 12 1521.2.b.h.1351.2 4
13.7 odd 12 1521.2.b.h.1351.3 4
13.9 even 3 1521.2.a.g.1.2 2
15.2 even 4 975.2.bb.i.724.3 8
15.8 even 4 975.2.bb.i.724.2 8
15.14 odd 2 975.2.i.k.451.1 4
39.2 even 12 507.2.j.g.361.3 8
39.5 even 4 507.2.j.g.316.2 8
39.8 even 4 507.2.j.g.316.3 8
39.11 even 12 507.2.j.g.361.2 8
39.17 odd 6 507.2.a.d.1.2 2
39.20 even 12 507.2.b.d.337.2 4
39.23 odd 6 507.2.e.g.484.1 4
39.29 odd 6 39.2.e.b.16.2 4
39.32 even 12 507.2.b.d.337.3 4
39.35 odd 6 507.2.a.g.1.1 2
39.38 odd 2 507.2.e.g.22.1 4
52.3 odd 6 1872.2.t.r.289.2 4
156.35 even 6 8112.2.a.bk.1.1 2
156.95 even 6 8112.2.a.bo.1.2 2
156.107 even 6 624.2.q.h.289.1 4
195.29 odd 6 975.2.i.k.601.1 4
195.68 even 12 975.2.bb.i.874.3 8
195.107 even 12 975.2.bb.i.874.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.e.b.16.2 4 39.29 odd 6
39.2.e.b.22.2 yes 4 3.2 odd 2
117.2.g.c.55.1 4 13.3 even 3 inner
117.2.g.c.100.1 4 1.1 even 1 trivial
507.2.a.d.1.2 2 39.17 odd 6
507.2.a.g.1.1 2 39.35 odd 6
507.2.b.d.337.2 4 39.20 even 12
507.2.b.d.337.3 4 39.32 even 12
507.2.e.g.22.1 4 39.38 odd 2
507.2.e.g.484.1 4 39.23 odd 6
507.2.j.g.316.2 8 39.5 even 4
507.2.j.g.316.3 8 39.8 even 4
507.2.j.g.361.2 8 39.11 even 12
507.2.j.g.361.3 8 39.2 even 12
624.2.q.h.289.1 4 156.107 even 6
624.2.q.h.529.1 4 12.11 even 2
975.2.i.k.451.1 4 15.14 odd 2
975.2.i.k.601.1 4 195.29 odd 6
975.2.bb.i.724.2 8 15.8 even 4
975.2.bb.i.724.3 8 15.2 even 4
975.2.bb.i.874.2 8 195.107 even 12
975.2.bb.i.874.3 8 195.68 even 12
1521.2.a.g.1.2 2 13.9 even 3
1521.2.a.m.1.1 2 13.4 even 6
1521.2.b.h.1351.2 4 13.6 odd 12
1521.2.b.h.1351.3 4 13.7 odd 12
1872.2.t.r.289.2 4 52.3 odd 6
1872.2.t.r.1153.2 4 4.3 odd 2
8112.2.a.bk.1.1 2 156.35 even 6
8112.2.a.bo.1.2 2 156.95 even 6