Properties

Label 117.3.j.c
Level $117$
Weight $3$
Character orbit 117.j
Analytic conductor $3.188$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(73,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.73");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.897122304.10
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 51x^{4} - 104x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + (\beta_{7} + \beta_{3}) q^{4} - \beta_1 q^{5} + (\beta_{7} - \beta_{5} - \beta_{3} + 1) q^{7} + (\beta_{6} + \beta_{4}) q^{8} + (3 \beta_{7} + 2 \beta_{3}) q^{10} - \beta_{4} q^{11}+ \cdots + ( - 31 \beta_{6} + 4 \beta_{4}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{7} - 16 q^{13} + 56 q^{16} + 56 q^{19} + 16 q^{22} - 88 q^{28} - 136 q^{31} + 48 q^{34} - 136 q^{37} - 240 q^{40} + 288 q^{46} - 168 q^{52} + 256 q^{55} + 304 q^{58} - 32 q^{61} - 40 q^{67} - 272 q^{70}+ \cdots + 488 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 8x^{6} + 51x^{4} - 104x^{2} + 169 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -12\nu^{7} - 34\nu^{5} - 170\nu^{3} - 1846\nu ) / 663 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 15\nu^{7} - 68\nu^{5} + 323\nu^{3} + 871\nu ) / 663 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} - 8\nu^{4} + 38\nu^{2} - 52 ) / 39 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 20\nu^{7} - 238\nu^{5} + 1462\nu^{3} - 2522\nu ) / 663 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 2\nu^{6} + 200 ) / 51 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -25\nu^{7} + 187\nu^{5} - 1054\nu^{3} + 1716\nu ) / 663 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 32\nu^{6} - 204\nu^{4} + 1632\nu^{2} - 2002 ) / 663 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2\beta_{6} + \beta_{4} + 2\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{7} - \beta_{5} - 6\beta_{3} + 8 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4\beta_{6} + 5\beta_{4} - 4\beta_{2} - 5\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 19\beta_{7} + 8\beta_{5} - 48\beta_{3} - 38 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -22\beta_{6} - 8\beta_{4} - 54\beta_{2} - 35\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 51\beta_{5} - 200 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -302\beta_{6} - 202\beta_{4} - 98\beta_{2} - 51\beta_1 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(\beta_{3}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
73.1
−1.30421 0.752986i
−2.07341 + 1.19709i
2.07341 1.19709i
1.30421 + 0.752986i
−1.30421 + 0.752986i
−2.07341 1.19709i
2.07341 + 1.19709i
1.30421 0.752986i
−2.05719 2.05719i 0 4.46410i −3.01194 3.01194i 0 −2.46410 + 2.46410i 0.954747 0.954747i 0 12.3923i
73.2 −0.876327 0.876327i 0 2.46410i 4.78834 + 4.78834i 0 4.46410 4.46410i −5.66467 + 5.66467i 0 8.39230i
73.3 0.876327 + 0.876327i 0 2.46410i −4.78834 4.78834i 0 4.46410 4.46410i 5.66467 5.66467i 0 8.39230i
73.4 2.05719 + 2.05719i 0 4.46410i 3.01194 + 3.01194i 0 −2.46410 + 2.46410i −0.954747 + 0.954747i 0 12.3923i
109.1 −2.05719 + 2.05719i 0 4.46410i −3.01194 + 3.01194i 0 −2.46410 2.46410i 0.954747 + 0.954747i 0 12.3923i
109.2 −0.876327 + 0.876327i 0 2.46410i 4.78834 4.78834i 0 4.46410 + 4.46410i −5.66467 5.66467i 0 8.39230i
109.3 0.876327 0.876327i 0 2.46410i −4.78834 + 4.78834i 0 4.46410 + 4.46410i 5.66467 + 5.66467i 0 8.39230i
109.4 2.05719 2.05719i 0 4.46410i 3.01194 3.01194i 0 −2.46410 2.46410i −0.954747 0.954747i 0 12.3923i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 73.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.d odd 4 1 inner
39.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.3.j.c 8
3.b odd 2 1 inner 117.3.j.c 8
13.d odd 4 1 inner 117.3.j.c 8
39.f even 4 1 inner 117.3.j.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.3.j.c 8 1.a even 1 1 trivial
117.3.j.c 8 3.b odd 2 1 inner
117.3.j.c 8 13.d odd 4 1 inner
117.3.j.c 8 39.f even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} + 74T_{2}^{4} + 169 \) acting on \(S_{3}^{\mathrm{new}}(117, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 74T^{4} + 169 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 2432 T^{4} + 692224 \) Copy content Toggle raw display
$7$ \( (T^{4} - 4 T^{3} + \cdots + 484)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + 2432 T^{4} + 692224 \) Copy content Toggle raw display
$13$ \( (T^{4} + 8 T^{3} + \cdots + 28561)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + 1152 T^{2} + 269568)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 14 T + 98)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} + 1536 T^{2} + 479232)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 1280 T^{2} + 402688)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 68 T^{3} + \cdots + 357604)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 68 T^{3} + \cdots + 131044)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 8387928100864 \) Copy content Toggle raw display
$43$ \( (T^{4} + 7296 T^{2} + 6230016)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 90736445722624 \) Copy content Toggle raw display
$53$ \( (T^{4} - 5504 T^{2} + 1760512)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 17590575468544 \) Copy content Toggle raw display
$61$ \( (T^{2} + 8 T - 416)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 20 T^{3} + \cdots + 2116)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 97713066840064 \) Copy content Toggle raw display
$73$ \( (T^{4} - 76 T^{3} + \cdots + 49758916)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 200 T + 9568)^{4} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 3377832300544 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 40\!\cdots\!84 \) Copy content Toggle raw display
$97$ \( (T^{4} - 244 T^{3} + \cdots + 53963716)^{2} \) Copy content Toggle raw display
show more
show less