Properties

Label 117.3.m.a.23.7
Level $117$
Weight $3$
Character 117.23
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(23,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.23");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.m (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 23.7
Character \(\chi\) \(=\) 117.23
Dual form 117.3.m.a.56.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.21581 + 2.10585i) q^{2} +(-2.69201 - 1.32405i) q^{3} +(-0.956401 - 1.65653i) q^{4} +(-3.20934 + 5.55874i) q^{5} +(6.06122 - 4.05917i) q^{6} -7.16022i q^{7} -5.07529 q^{8} +(5.49381 + 7.12868i) q^{9} +(-7.80391 - 13.5168i) q^{10} +(7.11261 - 12.3194i) q^{11} +(0.381310 + 5.72572i) q^{12} +(-6.53109 - 11.2403i) q^{13} +(15.0784 + 8.70549i) q^{14} +(15.9996 - 10.7149i) q^{15} +(9.99620 - 17.3139i) q^{16} +(-14.2712 - 8.23946i) q^{17} +(-21.6914 + 2.90199i) q^{18} +(4.94498 + 2.85499i) q^{19} +12.2777 q^{20} +(-9.48046 + 19.2754i) q^{21} +(17.2952 + 29.9562i) q^{22} +14.3327i q^{23} +(13.6627 + 6.71991i) q^{24} +(-8.09972 - 14.0291i) q^{25} +(31.6110 - 0.0873511i) q^{26} +(-5.35066 - 26.4645i) q^{27} +(-11.8612 + 6.84804i) q^{28} +(-4.22551 - 2.43960i) q^{29} +(3.11136 + 46.7200i) q^{30} +(-44.9926 - 25.9765i) q^{31} +(14.1564 + 24.5197i) q^{32} +(-35.4586 + 23.7465i) q^{33} +(34.7021 - 20.0353i) q^{34} +(39.8018 + 22.9796i) q^{35} +(6.55463 - 15.9186i) q^{36} +(-46.8401 + 27.0432i) q^{37} +(-12.0243 + 6.94225i) q^{38} +(2.69902 + 38.9065i) q^{39} +(16.2883 - 28.2122i) q^{40} -51.5357 q^{41} +(-29.0646 - 43.3997i) q^{42} -2.41011 q^{43} -27.2100 q^{44} +(-57.2580 + 7.66027i) q^{45} +(-30.1824 - 17.4258i) q^{46} +(0.709869 + 1.22953i) q^{47} +(-49.8343 + 33.3738i) q^{48} -2.26880 q^{49} +39.3910 q^{50} +(27.5087 + 41.0764i) q^{51} +(-12.3737 + 21.5692i) q^{52} -80.9755i q^{53} +(62.2357 + 20.9082i) q^{54} +(45.6535 + 79.0743i) q^{55} +36.3402i q^{56} +(-9.53179 - 14.2330i) q^{57} +(10.2748 - 5.93219i) q^{58} +(-9.09833 - 15.7588i) q^{59} +(-33.0515 - 16.2562i) q^{60} +113.582 q^{61} +(109.405 - 63.1651i) q^{62} +(51.0430 - 39.3369i) q^{63} +11.1233 q^{64} +(83.4425 - 0.230578i) q^{65} +(-6.89547 - 103.542i) q^{66} -33.8467i q^{67} +31.5209i q^{68} +(18.9771 - 38.5836i) q^{69} +(-96.7831 + 55.8777i) q^{70} +(-59.6642 + 103.341i) q^{71} +(-27.8826 - 36.1801i) q^{72} +52.2658i q^{73} -131.518i q^{74} +(3.22930 + 48.4909i) q^{75} -10.9220i q^{76} +(-88.2097 - 50.9279i) q^{77} +(-85.2127 - 41.6193i) q^{78} +(10.6829 + 18.5033i) q^{79} +(64.1624 + 111.133i) q^{80} +(-20.6362 + 78.3272i) q^{81} +(62.6578 - 108.527i) q^{82} +(-55.2653 - 95.7223i) q^{83} +(40.9974 - 2.73026i) q^{84} +(91.6020 - 52.8865i) q^{85} +(2.93025 - 5.07534i) q^{86} +(8.14495 + 12.1622i) q^{87} +(-36.0985 + 62.5245i) q^{88} +(-12.1907 - 21.1149i) q^{89} +(53.4836 - 129.890i) q^{90} +(-80.4832 + 46.7640i) q^{91} +(23.7426 - 13.7078i) q^{92} +(86.7264 + 129.501i) q^{93} -3.45227 q^{94} +(-31.7402 + 18.3252i) q^{95} +(-5.64407 - 84.7509i) q^{96} -45.1850i q^{97} +(2.75844 - 4.77775i) q^{98} +(126.896 - 16.9769i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 3 q^{2} - q^{3} - 47 q^{4} - 3 q^{6} + 78 q^{8} + q^{9} + 2 q^{10} - 3 q^{11} + 13 q^{12} - 6 q^{13} - 6 q^{14} + 24 q^{15} - 75 q^{16} - 12 q^{18} + 15 q^{19} - 6 q^{20} + 69 q^{21} + 17 q^{22}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.21581 + 2.10585i −0.607906 + 1.05292i 0.383679 + 0.923467i \(0.374657\pi\)
−0.991585 + 0.129458i \(0.958676\pi\)
\(3\) −2.69201 1.32405i −0.897336 0.441349i
\(4\) −0.956401 1.65653i −0.239100 0.414134i
\(5\) −3.20934 + 5.55874i −0.641868 + 1.11175i 0.343148 + 0.939282i \(0.388507\pi\)
−0.985015 + 0.172466i \(0.944826\pi\)
\(6\) 6.06122 4.05917i 1.01020 0.676528i
\(7\) 7.16022i 1.02289i −0.859316 0.511445i \(-0.829111\pi\)
0.859316 0.511445i \(-0.170889\pi\)
\(8\) −5.07529 −0.634411
\(9\) 5.49381 + 7.12868i 0.610423 + 0.792076i
\(10\) −7.80391 13.5168i −0.780391 1.35168i
\(11\) 7.11261 12.3194i 0.646601 1.11995i −0.337329 0.941387i \(-0.609523\pi\)
0.983929 0.178558i \(-0.0571433\pi\)
\(12\) 0.381310 + 5.72572i 0.0317758 + 0.477143i
\(13\) −6.53109 11.2403i −0.502391 0.864640i
\(14\) 15.0784 + 8.70549i 1.07703 + 0.621821i
\(15\) 15.9996 10.7149i 1.06664 0.714323i
\(16\) 9.99620 17.3139i 0.624762 1.08212i
\(17\) −14.2712 8.23946i −0.839480 0.484674i 0.0176072 0.999845i \(-0.494395\pi\)
−0.857088 + 0.515171i \(0.827728\pi\)
\(18\) −21.6914 + 2.90199i −1.20508 + 0.161221i
\(19\) 4.94498 + 2.85499i 0.260262 + 0.150262i 0.624454 0.781061i \(-0.285321\pi\)
−0.364192 + 0.931324i \(0.618655\pi\)
\(20\) 12.2777 0.613883
\(21\) −9.48046 + 19.2754i −0.451451 + 0.917875i
\(22\) 17.2952 + 29.9562i 0.786145 + 1.36164i
\(23\) 14.3327i 0.623159i 0.950220 + 0.311580i \(0.100858\pi\)
−0.950220 + 0.311580i \(0.899142\pi\)
\(24\) 13.6627 + 6.71991i 0.569279 + 0.279996i
\(25\) −8.09972 14.0291i −0.323989 0.561165i
\(26\) 31.6110 0.0873511i 1.21581 0.00335966i
\(27\) −5.35066 26.4645i −0.198173 0.980167i
\(28\) −11.8612 + 6.84804i −0.423613 + 0.244573i
\(29\) −4.22551 2.43960i −0.145707 0.0841240i 0.425374 0.905018i \(-0.360143\pi\)
−0.571081 + 0.820894i \(0.693476\pi\)
\(30\) 3.11136 + 46.7200i 0.103712 + 1.55733i
\(31\) −44.9926 25.9765i −1.45138 0.837952i −0.452815 0.891604i \(-0.649580\pi\)
−0.998560 + 0.0536525i \(0.982914\pi\)
\(32\) 14.1564 + 24.5197i 0.442389 + 0.766240i
\(33\) −35.4586 + 23.7465i −1.07450 + 0.719591i
\(34\) 34.7021 20.0353i 1.02065 0.589273i
\(35\) 39.8018 + 22.9796i 1.13719 + 0.656560i
\(36\) 6.55463 15.9186i 0.182073 0.442182i
\(37\) −46.8401 + 27.0432i −1.26595 + 0.730896i −0.974219 0.225604i \(-0.927564\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(38\) −12.0243 + 6.94225i −0.316430 + 0.182691i
\(39\) 2.69902 + 38.9065i 0.0692057 + 0.997602i
\(40\) 16.2883 28.2122i 0.407208 0.705305i
\(41\) −51.5357 −1.25697 −0.628485 0.777822i \(-0.716325\pi\)
−0.628485 + 0.777822i \(0.716325\pi\)
\(42\) −29.0646 43.3997i −0.692013 1.03333i
\(43\) −2.41011 −0.0560491 −0.0280246 0.999607i \(-0.508922\pi\)
−0.0280246 + 0.999607i \(0.508922\pi\)
\(44\) −27.2100 −0.618409
\(45\) −57.2580 + 7.66027i −1.27240 + 0.170228i
\(46\) −30.1824 17.4258i −0.656140 0.378822i
\(47\) 0.709869 + 1.22953i 0.0151036 + 0.0261602i 0.873478 0.486863i \(-0.161859\pi\)
−0.858375 + 0.513023i \(0.828526\pi\)
\(48\) −49.8343 + 33.3738i −1.03821 + 0.695287i
\(49\) −2.26880 −0.0463021
\(50\) 39.3910 0.787819
\(51\) 27.5087 + 41.0764i 0.539385 + 0.805419i
\(52\) −12.3737 + 21.5692i −0.237955 + 0.414793i
\(53\) 80.9755i 1.52784i −0.645312 0.763919i \(-0.723272\pi\)
0.645312 0.763919i \(-0.276728\pi\)
\(54\) 62.2357 + 20.9082i 1.15251 + 0.387189i
\(55\) 45.6535 + 79.0743i 0.830064 + 1.43771i
\(56\) 36.3402i 0.648932i
\(57\) −9.53179 14.2330i −0.167224 0.249702i
\(58\) 10.2748 5.93219i 0.177153 0.102279i
\(59\) −9.09833 15.7588i −0.154209 0.267098i 0.778562 0.627568i \(-0.215950\pi\)
−0.932771 + 0.360470i \(0.882616\pi\)
\(60\) −33.0515 16.2562i −0.550859 0.270936i
\(61\) 113.582 1.86200 0.931002 0.365015i \(-0.118936\pi\)
0.931002 + 0.365015i \(0.118936\pi\)
\(62\) 109.405 63.1651i 1.76460 1.01879i
\(63\) 51.0430 39.3369i 0.810206 0.624395i
\(64\) 11.1233 0.173801
\(65\) 83.4425 0.230578i 1.28373 0.00354735i
\(66\) −6.89547 103.542i −0.104477 1.56882i
\(67\) 33.8467i 0.505175i −0.967574 0.252588i \(-0.918718\pi\)
0.967574 0.252588i \(-0.0812816\pi\)
\(68\) 31.5209i 0.463543i
\(69\) 18.9771 38.5836i 0.275030 0.559183i
\(70\) −96.7831 + 55.8777i −1.38262 + 0.798253i
\(71\) −59.6642 + 103.341i −0.840341 + 1.45551i 0.0492649 + 0.998786i \(0.484312\pi\)
−0.889606 + 0.456728i \(0.849021\pi\)
\(72\) −27.8826 36.1801i −0.387259 0.502501i
\(73\) 52.2658i 0.715969i 0.933727 + 0.357985i \(0.116536\pi\)
−0.933727 + 0.357985i \(0.883464\pi\)
\(74\) 131.518i 1.77727i
\(75\) 3.22930 + 48.4909i 0.0430573 + 0.646545i
\(76\) 10.9220i 0.143711i
\(77\) −88.2097 50.9279i −1.14558 0.661401i
\(78\) −85.2127 41.6193i −1.09247 0.533580i
\(79\) 10.6829 + 18.5033i 0.135226 + 0.234219i 0.925684 0.378298i \(-0.123491\pi\)
−0.790458 + 0.612517i \(0.790157\pi\)
\(80\) 64.1624 + 111.133i 0.802030 + 1.38916i
\(81\) −20.6362 + 78.3272i −0.254768 + 0.967002i
\(82\) 62.6578 108.527i 0.764120 1.32349i
\(83\) −55.2653 95.7223i −0.665847 1.15328i −0.979055 0.203596i \(-0.934737\pi\)
0.313208 0.949685i \(-0.398596\pi\)
\(84\) 40.9974 2.73026i 0.488065 0.0325031i
\(85\) 91.6020 52.8865i 1.07767 0.622194i
\(86\) 2.93025 5.07534i 0.0340726 0.0590155i
\(87\) 8.14495 + 12.1622i 0.0936202 + 0.139795i
\(88\) −36.0985 + 62.5245i −0.410210 + 0.710505i
\(89\) −12.1907 21.1149i −0.136974 0.237246i 0.789376 0.613910i \(-0.210404\pi\)
−0.926350 + 0.376664i \(0.877071\pi\)
\(90\) 53.4836 129.890i 0.594262 1.44322i
\(91\) −80.4832 + 46.7640i −0.884431 + 0.513890i
\(92\) 23.7426 13.7078i 0.258071 0.148997i
\(93\) 86.7264 + 129.501i 0.932542 + 1.39249i
\(94\) −3.45227 −0.0367263
\(95\) −31.7402 + 18.3252i −0.334108 + 0.192897i
\(96\) −5.64407 84.7509i −0.0587924 0.882822i
\(97\) 45.1850i 0.465825i −0.972498 0.232912i \(-0.925174\pi\)
0.972498 0.232912i \(-0.0748255\pi\)
\(98\) 2.75844 4.77775i 0.0281473 0.0487526i
\(99\) 126.896 16.9769i 1.28178 0.171483i
\(100\) −15.4931 + 26.8349i −0.154931 + 0.268349i
\(101\) −137.614 79.4512i −1.36251 0.786646i −0.372553 0.928011i \(-0.621517\pi\)
−0.989957 + 0.141365i \(0.954851\pi\)
\(102\) −119.946 + 7.98792i −1.17594 + 0.0783129i
\(103\) −51.6241 + 89.4157i −0.501205 + 0.868113i 0.498794 + 0.866721i \(0.333777\pi\)
−0.999999 + 0.00139237i \(0.999557\pi\)
\(104\) 33.1471 + 57.0479i 0.318722 + 0.548537i
\(105\) −76.7207 114.561i −0.730674 1.09105i
\(106\) 170.522 + 98.4510i 1.60870 + 0.928783i
\(107\) 109.254 63.0780i 1.02107 0.589514i 0.106654 0.994296i \(-0.465986\pi\)
0.914413 + 0.404783i \(0.132653\pi\)
\(108\) −38.7220 + 34.1742i −0.358537 + 0.316428i
\(109\) 83.1109i 0.762485i −0.924475 0.381243i \(-0.875496\pi\)
0.924475 0.381243i \(-0.124504\pi\)
\(110\) −222.025 −2.01841
\(111\) 161.900 10.7819i 1.45856 0.0971343i
\(112\) −123.972 71.5750i −1.10689 0.639063i
\(113\) −1.78506 + 1.03061i −0.0157970 + 0.00912042i −0.507878 0.861429i \(-0.669570\pi\)
0.492081 + 0.870550i \(0.336236\pi\)
\(114\) 41.5615 2.76783i 0.364574 0.0242792i
\(115\) −79.6715 45.9984i −0.692796 0.399986i
\(116\) 9.33293i 0.0804563i
\(117\) 44.2482 108.310i 0.378190 0.925728i
\(118\) 44.2475 0.374979
\(119\) −58.9964 + 102.185i −0.495768 + 0.858695i
\(120\) −81.2025 + 54.3809i −0.676687 + 0.453174i
\(121\) −40.6784 70.4571i −0.336185 0.582290i
\(122\) −138.095 + 239.187i −1.13192 + 1.96055i
\(123\) 138.735 + 68.2357i 1.12792 + 0.554762i
\(124\) 99.3758i 0.801418i
\(125\) −56.4880 −0.451904
\(126\) 20.7789 + 155.315i 0.164912 + 1.23266i
\(127\) −21.3143 36.9174i −0.167829 0.290688i 0.769827 0.638252i \(-0.220342\pi\)
−0.937656 + 0.347564i \(0.887009\pi\)
\(128\) −70.1496 + 121.503i −0.548044 + 0.949239i
\(129\) 6.48804 + 3.19110i 0.0502949 + 0.0247372i
\(130\) −100.965 + 175.998i −0.776653 + 1.35383i
\(131\) −41.0008 23.6718i −0.312984 0.180701i 0.335277 0.942120i \(-0.391170\pi\)
−0.648261 + 0.761418i \(0.724503\pi\)
\(132\) 73.2495 + 36.0273i 0.554921 + 0.272934i
\(133\) 20.4423 35.4072i 0.153702 0.266219i
\(134\) 71.2761 + 41.1513i 0.531911 + 0.307099i
\(135\) 164.281 + 55.1907i 1.21690 + 0.408820i
\(136\) 72.4302 + 41.8176i 0.532575 + 0.307482i
\(137\) −10.8548 −0.0792322 −0.0396161 0.999215i \(-0.512613\pi\)
−0.0396161 + 0.999215i \(0.512613\pi\)
\(138\) 58.1787 + 86.8734i 0.421585 + 0.629517i
\(139\) 81.1348 + 140.530i 0.583703 + 1.01100i 0.995036 + 0.0995185i \(0.0317303\pi\)
−0.411332 + 0.911485i \(0.634936\pi\)
\(140\) 87.9108i 0.627934i
\(141\) −0.283020 4.24980i −0.00200723 0.0301404i
\(142\) −145.081 251.288i −1.02170 1.76963i
\(143\) −184.927 + 0.511011i −1.29320 + 0.00357350i
\(144\) 178.343 23.8596i 1.23849 0.165692i
\(145\) 27.1222 15.6590i 0.187049 0.107993i
\(146\) −110.064 63.5454i −0.753862 0.435242i
\(147\) 6.10763 + 3.00400i 0.0415485 + 0.0204354i
\(148\) 89.5958 + 51.7282i 0.605377 + 0.349515i
\(149\) 72.2235 + 125.095i 0.484721 + 0.839562i 0.999846 0.0175534i \(-0.00558771\pi\)
−0.515125 + 0.857115i \(0.672254\pi\)
\(150\) −106.041 52.1554i −0.706938 0.347703i
\(151\) 33.4959 19.3389i 0.221827 0.128072i −0.384969 0.922930i \(-0.625788\pi\)
0.606796 + 0.794858i \(0.292454\pi\)
\(152\) −25.0972 14.4899i −0.165113 0.0953281i
\(153\) −19.6665 147.001i −0.128539 0.960788i
\(154\) 214.493 123.837i 1.39281 0.804140i
\(155\) 288.793 166.735i 1.86318 1.07571i
\(156\) 61.8686 41.6812i 0.396594 0.267187i
\(157\) −82.4092 + 142.737i −0.524899 + 0.909152i 0.474680 + 0.880158i \(0.342564\pi\)
−0.999580 + 0.0289938i \(0.990770\pi\)
\(158\) −51.9535 −0.328819
\(159\) −107.215 + 217.987i −0.674310 + 1.37098i
\(160\) −181.731 −1.13582
\(161\) 102.625 0.637423
\(162\) −139.855 138.688i −0.863305 0.856098i
\(163\) 81.8644 + 47.2644i 0.502236 + 0.289966i 0.729636 0.683835i \(-0.239689\pi\)
−0.227401 + 0.973801i \(0.573023\pi\)
\(164\) 49.2888 + 85.3707i 0.300542 + 0.520553i
\(165\) −18.2017 273.316i −0.110314 1.65646i
\(166\) 268.769 1.61909
\(167\) 236.911 1.41863 0.709314 0.704893i \(-0.249005\pi\)
0.709314 + 0.704893i \(0.249005\pi\)
\(168\) 48.1161 97.8280i 0.286405 0.582310i
\(169\) −83.6898 + 146.823i −0.495206 + 0.868775i
\(170\) 257.200i 1.51294i
\(171\) 6.81448 + 50.9359i 0.0398507 + 0.297871i
\(172\) 2.30503 + 3.99244i 0.0134014 + 0.0232118i
\(173\) 198.418i 1.14693i 0.819231 + 0.573464i \(0.194401\pi\)
−0.819231 + 0.573464i \(0.805599\pi\)
\(174\) −35.5144 + 2.36512i −0.204106 + 0.0135926i
\(175\) −100.452 + 57.9958i −0.574009 + 0.331404i
\(176\) −142.198 246.294i −0.807944 1.39940i
\(177\) 3.62744 + 54.4693i 0.0204940 + 0.307736i
\(178\) 59.2864 0.333070
\(179\) 114.644 66.1898i 0.640470 0.369775i −0.144326 0.989530i \(-0.546101\pi\)
0.784795 + 0.619755i \(0.212768\pi\)
\(180\) 67.4511 + 87.5235i 0.374728 + 0.486242i
\(181\) −25.7631 −0.142338 −0.0711688 0.997464i \(-0.522673\pi\)
−0.0711688 + 0.997464i \(0.522673\pi\)
\(182\) −0.625453 226.342i −0.00343656 1.24364i
\(183\) −305.764 150.388i −1.67084 0.821792i
\(184\) 72.7424i 0.395339i
\(185\) 347.163i 1.87656i
\(186\) −378.153 + 25.1835i −2.03308 + 0.135395i
\(187\) −203.010 + 117.208i −1.08562 + 0.626781i
\(188\) 1.35784 2.35184i 0.00722254 0.0125098i
\(189\) −189.492 + 38.3119i −1.00260 + 0.202709i
\(190\) 89.1202i 0.469054i
\(191\) 4.20261i 0.0220032i −0.999939 0.0110016i \(-0.996498\pi\)
0.999939 0.0110016i \(-0.00350199\pi\)
\(192\) −29.9440 14.7277i −0.155958 0.0767070i
\(193\) 294.252i 1.52462i 0.647212 + 0.762310i \(0.275935\pi\)
−0.647212 + 0.762310i \(0.724065\pi\)
\(194\) 95.1528 + 54.9365i 0.490478 + 0.283178i
\(195\) −224.933 109.861i −1.15350 0.563390i
\(196\) 2.16988 + 3.75835i 0.0110708 + 0.0191752i
\(197\) −79.4500 137.611i −0.403299 0.698535i 0.590822 0.806802i \(-0.298803\pi\)
−0.994122 + 0.108266i \(0.965470\pi\)
\(198\) −118.531 + 287.865i −0.598644 + 1.45387i
\(199\) 121.034 209.636i 0.608209 1.05345i −0.383326 0.923613i \(-0.625221\pi\)
0.991535 0.129836i \(-0.0414452\pi\)
\(200\) 41.1084 + 71.2018i 0.205542 + 0.356009i
\(201\) −44.8146 + 91.1157i −0.222958 + 0.453312i
\(202\) 334.625 193.196i 1.65656 0.956414i
\(203\) −17.4681 + 30.2556i −0.0860496 + 0.149042i
\(204\) 41.7351 84.8545i 0.204584 0.415953i
\(205\) 165.396 286.474i 0.806808 1.39743i
\(206\) −125.531 217.425i −0.609372 1.05546i
\(207\) −102.173 + 78.7409i −0.493589 + 0.380391i
\(208\) −259.900 + 0.718185i −1.24952 + 0.00345281i
\(209\) 70.3434 40.6128i 0.336571 0.194320i
\(210\) 334.525 22.2780i 1.59298 0.106086i
\(211\) 74.7094 0.354073 0.177036 0.984204i \(-0.443349\pi\)
0.177036 + 0.984204i \(0.443349\pi\)
\(212\) −134.139 + 77.4450i −0.632729 + 0.365306i
\(213\) 297.445 199.198i 1.39646 0.935201i
\(214\) 306.764i 1.43348i
\(215\) 7.73487 13.3972i 0.0359761 0.0623125i
\(216\) 27.1561 + 134.315i 0.125723 + 0.621828i
\(217\) −185.998 + 322.157i −0.857132 + 1.48460i
\(218\) 175.019 + 101.047i 0.802840 + 0.463520i
\(219\) 69.2023 140.700i 0.315992 0.642465i
\(220\) 87.3262 151.253i 0.396937 0.687515i
\(221\) 0.591971 + 214.225i 0.00267860 + 0.969345i
\(222\) −174.135 + 354.046i −0.784394 + 1.59480i
\(223\) −247.147 142.690i −1.10828 0.639866i −0.169897 0.985462i \(-0.554343\pi\)
−0.938383 + 0.345596i \(0.887677\pi\)
\(224\) 175.566 101.363i 0.783778 0.452515i
\(225\) 55.5109 134.814i 0.246715 0.599171i
\(226\) 5.01210i 0.0221774i
\(227\) 366.576 1.61487 0.807437 0.589954i \(-0.200854\pi\)
0.807437 + 0.589954i \(0.200854\pi\)
\(228\) −14.4613 + 29.4022i −0.0634267 + 0.128957i
\(229\) −380.993 219.966i −1.66373 0.960552i −0.970913 0.239434i \(-0.923038\pi\)
−0.692812 0.721118i \(-0.743629\pi\)
\(230\) 193.731 111.851i 0.842310 0.486308i
\(231\) 170.030 + 253.892i 0.736061 + 1.09910i
\(232\) 21.4456 + 12.3817i 0.0924381 + 0.0533692i
\(233\) 65.5461i 0.281314i −0.990058 0.140657i \(-0.955079\pi\)
0.990058 0.140657i \(-0.0449215\pi\)
\(234\) 174.287 + 224.865i 0.744818 + 0.960961i
\(235\) −9.11284 −0.0387780
\(236\) −17.4033 + 30.1434i −0.0737428 + 0.127726i
\(237\) −4.25918 63.9555i −0.0179712 0.269855i
\(238\) −143.457 248.475i −0.602761 1.04401i
\(239\) 40.5565 70.2459i 0.169692 0.293916i −0.768619 0.639706i \(-0.779056\pi\)
0.938312 + 0.345791i \(0.112389\pi\)
\(240\) −25.5811 384.123i −0.106588 1.60051i
\(241\) 229.538i 0.952439i −0.879327 0.476219i \(-0.842007\pi\)
0.879327 0.476219i \(-0.157993\pi\)
\(242\) 197.829 0.817476
\(243\) 159.262 183.534i 0.655397 0.755284i
\(244\) −108.630 188.153i −0.445205 0.771118i
\(245\) 7.28136 12.6117i 0.0297198 0.0514762i
\(246\) −312.369 + 209.192i −1.26979 + 0.850375i
\(247\) −0.205119 74.2293i −0.000830440 0.300524i
\(248\) 228.350 + 131.838i 0.920768 + 0.531606i
\(249\) 22.0339 + 330.859i 0.0884894 + 1.32875i
\(250\) 68.6788 118.955i 0.274715 0.475821i
\(251\) 42.8006 + 24.7109i 0.170520 + 0.0984499i 0.582831 0.812593i \(-0.301945\pi\)
−0.412311 + 0.911043i \(0.635278\pi\)
\(252\) −113.980 46.9326i −0.452303 0.186240i
\(253\) 176.570 + 101.943i 0.697904 + 0.402935i
\(254\) 103.657 0.408097
\(255\) −316.617 + 21.0854i −1.24164 + 0.0826880i
\(256\) −148.331 256.917i −0.579418 1.00358i
\(257\) 242.011i 0.941677i 0.882219 + 0.470838i \(0.156049\pi\)
−0.882219 + 0.470838i \(0.843951\pi\)
\(258\) −14.6082 + 9.78306i −0.0566210 + 0.0379188i
\(259\) 193.635 + 335.386i 0.747626 + 1.29493i
\(260\) −80.1864 138.005i −0.308409 0.530788i
\(261\) −5.82300 43.5250i −0.0223103 0.166762i
\(262\) 99.6987 57.5611i 0.380529 0.219699i
\(263\) −189.816 109.591i −0.721736 0.416694i 0.0936555 0.995605i \(-0.470145\pi\)
−0.815391 + 0.578910i \(0.803478\pi\)
\(264\) 179.963 120.520i 0.681677 0.456516i
\(265\) 450.121 + 259.878i 1.69857 + 0.980671i
\(266\) 49.7081 + 86.0969i 0.186873 + 0.323673i
\(267\) 4.86034 + 72.9825i 0.0182035 + 0.273343i
\(268\) −56.0683 + 32.3710i −0.209210 + 0.120787i
\(269\) −14.9001 8.60259i −0.0553908 0.0319799i 0.472049 0.881572i \(-0.343515\pi\)
−0.527440 + 0.849592i \(0.676848\pi\)
\(270\) −315.959 + 278.850i −1.17022 + 1.03278i
\(271\) −239.798 + 138.447i −0.884862 + 0.510875i −0.872259 0.489045i \(-0.837345\pi\)
−0.0126038 + 0.999921i \(0.504012\pi\)
\(272\) −285.315 + 164.727i −1.04895 + 0.605612i
\(273\) 278.579 19.3256i 1.02044 0.0707898i
\(274\) 13.1974 22.8586i 0.0481657 0.0834255i
\(275\) −230.440 −0.837965
\(276\) −82.0648 + 5.46519i −0.297336 + 0.0198014i
\(277\) 269.158 0.971688 0.485844 0.874045i \(-0.338512\pi\)
0.485844 + 0.874045i \(0.338512\pi\)
\(278\) −394.579 −1.41935
\(279\) −62.0025 463.448i −0.222231 1.66110i
\(280\) −202.006 116.628i −0.721448 0.416528i
\(281\) 73.8243 + 127.867i 0.262720 + 0.455044i 0.966964 0.254914i \(-0.0820472\pi\)
−0.704244 + 0.709958i \(0.748714\pi\)
\(282\) 9.29354 + 4.57096i 0.0329558 + 0.0162091i
\(283\) −56.2713 −0.198839 −0.0994193 0.995046i \(-0.531699\pi\)
−0.0994193 + 0.995046i \(0.531699\pi\)
\(284\) 228.252 0.803703
\(285\) 109.708 7.30614i 0.384942 0.0256356i
\(286\) 223.761 390.050i 0.782380 1.36381i
\(287\) 369.007i 1.28574i
\(288\) −97.0202 + 235.623i −0.336876 + 0.818135i
\(289\) −8.72255 15.1079i −0.0301818 0.0522765i
\(290\) 76.1536i 0.262599i
\(291\) −59.8270 + 121.638i −0.205591 + 0.418001i
\(292\) 86.5800 49.9870i 0.296507 0.171188i
\(293\) −134.704 233.314i −0.459740 0.796292i 0.539207 0.842173i \(-0.318724\pi\)
−0.998947 + 0.0458808i \(0.985391\pi\)
\(294\) −13.7517 + 9.20945i −0.0467745 + 0.0313247i
\(295\) 116.799 0.395927
\(296\) 237.727 137.252i 0.803132 0.463688i
\(297\) −364.084 122.315i −1.22587 0.411834i
\(298\) −351.241 −1.17866
\(299\) 161.104 93.6079i 0.538809 0.313070i
\(300\) 77.2383 51.7262i 0.257461 0.172421i
\(301\) 17.2570i 0.0573321i
\(302\) 94.0497i 0.311423i
\(303\) 265.260 + 396.090i 0.875444 + 1.30723i
\(304\) 98.8620 57.0780i 0.325204 0.187757i
\(305\) −364.524 + 631.374i −1.19516 + 2.07008i
\(306\) 333.472 + 137.310i 1.08978 + 0.448727i
\(307\) 268.115i 0.873340i −0.899622 0.436670i \(-0.856158\pi\)
0.899622 0.436670i \(-0.143842\pi\)
\(308\) 194.830i 0.632564i
\(309\) 257.363 172.355i 0.832890 0.557783i
\(310\) 810.873i 2.61572i
\(311\) 180.662 + 104.305i 0.580908 + 0.335387i 0.761494 0.648172i \(-0.224466\pi\)
−0.180586 + 0.983559i \(0.557799\pi\)
\(312\) −13.6983 197.462i −0.0439048 0.632890i
\(313\) −90.2731 156.358i −0.288412 0.499545i 0.685019 0.728526i \(-0.259794\pi\)
−0.973431 + 0.228981i \(0.926461\pi\)
\(314\) −200.388 347.083i −0.638179 1.10536i
\(315\) 54.8493 + 409.980i 0.174125 + 1.30152i
\(316\) 20.4342 35.3931i 0.0646652 0.112003i
\(317\) 77.4399 + 134.130i 0.244290 + 0.423123i 0.961932 0.273290i \(-0.0881118\pi\)
−0.717642 + 0.696412i \(0.754778\pi\)
\(318\) −328.693 490.810i −1.03363 1.54343i
\(319\) −60.1087 + 34.7038i −0.188429 + 0.108789i
\(320\) −35.6984 + 61.8315i −0.111558 + 0.193223i
\(321\) −377.631 + 25.1487i −1.17642 + 0.0783449i
\(322\) −124.773 + 216.113i −0.387493 + 0.671158i
\(323\) −47.0471 81.4879i −0.145657 0.252285i
\(324\) 149.488 40.7276i 0.461383 0.125702i
\(325\) −104.792 + 182.669i −0.322437 + 0.562058i
\(326\) −199.064 + 114.929i −0.610624 + 0.352544i
\(327\) −110.043 + 223.735i −0.336522 + 0.684205i
\(328\) 261.559 0.797435
\(329\) 8.80370 5.08282i 0.0267590 0.0154493i
\(330\) 597.692 + 293.971i 1.81119 + 0.890821i
\(331\) 255.948i 0.773257i −0.922236 0.386629i \(-0.873640\pi\)
0.922236 0.386629i \(-0.126360\pi\)
\(332\) −105.712 + 183.098i −0.318408 + 0.551499i
\(333\) −450.113 185.338i −1.35169 0.556572i
\(334\) −288.039 + 498.898i −0.862393 + 1.49371i
\(335\) 188.145 + 108.626i 0.561627 + 0.324256i
\(336\) 238.964 + 356.824i 0.711202 + 1.06198i
\(337\) −243.708 + 422.115i −0.723170 + 1.25257i 0.236553 + 0.971619i \(0.423982\pi\)
−0.959723 + 0.280949i \(0.909351\pi\)
\(338\) −207.436 354.748i −0.613716 1.04955i
\(339\) 6.16997 0.410895i 0.0182005 0.00121208i
\(340\) −175.216 101.161i −0.515343 0.297533i
\(341\) −640.030 + 369.521i −1.87692 + 1.08364i
\(342\) −115.548 47.5783i −0.337861 0.139118i
\(343\) 334.606i 0.975527i
\(344\) 12.2320 0.0355582
\(345\) 153.572 + 229.317i 0.445137 + 0.664686i
\(346\) −417.839 241.240i −1.20763 0.697224i
\(347\) 200.945 116.016i 0.579092 0.334339i −0.181680 0.983358i \(-0.558154\pi\)
0.760772 + 0.649019i \(0.224820\pi\)
\(348\) 12.3572 25.1243i 0.0355093 0.0721963i
\(349\) −127.011 73.3300i −0.363929 0.210115i 0.306874 0.951750i \(-0.400717\pi\)
−0.670803 + 0.741636i \(0.734050\pi\)
\(350\) 282.048i 0.805851i
\(351\) −262.524 + 232.985i −0.747932 + 0.663775i
\(352\) 402.757 1.14420
\(353\) 299.125 518.100i 0.847381 1.46771i −0.0361569 0.999346i \(-0.511512\pi\)
0.883538 0.468360i \(-0.155155\pi\)
\(354\) −119.115 58.5857i −0.336482 0.165496i
\(355\) −382.966 663.316i −1.07878 1.86850i
\(356\) −23.3184 + 40.3886i −0.0655011 + 0.113451i
\(357\) 294.116 196.968i 0.823854 0.551731i
\(358\) 321.898i 0.899155i
\(359\) 542.212 1.51034 0.755169 0.655530i \(-0.227555\pi\)
0.755169 + 0.655530i \(0.227555\pi\)
\(360\) 290.601 38.8781i 0.807224 0.107995i
\(361\) −164.198 284.399i −0.454842 0.787810i
\(362\) 31.3231 54.2532i 0.0865279 0.149871i
\(363\) 16.2182 + 243.531i 0.0446782 + 0.670884i
\(364\) 154.440 + 88.5981i 0.424287 + 0.243401i
\(365\) −290.532 167.739i −0.795977 0.459558i
\(366\) 688.446 461.049i 1.88100 1.25970i
\(367\) −131.013 + 226.920i −0.356983 + 0.618312i −0.987455 0.157900i \(-0.949528\pi\)
0.630473 + 0.776211i \(0.282861\pi\)
\(368\) 248.155 + 143.272i 0.674333 + 0.389327i
\(369\) −283.127 367.382i −0.767283 0.995615i
\(370\) 731.072 + 422.085i 1.97587 + 1.14077i
\(371\) −579.802 −1.56281
\(372\) 131.578 267.520i 0.353705 0.719141i
\(373\) −301.271 521.816i −0.807696 1.39897i −0.914456 0.404685i \(-0.867381\pi\)
0.106760 0.994285i \(-0.465952\pi\)
\(374\) 570.012i 1.52410i
\(375\) 152.066 + 74.7927i 0.405510 + 0.199447i
\(376\) −3.60279 6.24021i −0.00958188 0.0165963i
\(377\) 0.175275 + 63.4293i 0.000464920 + 0.168247i
\(378\) 149.707 445.621i 0.396051 1.17889i
\(379\) 119.275 68.8634i 0.314710 0.181698i −0.334322 0.942459i \(-0.608507\pi\)
0.649032 + 0.760761i \(0.275174\pi\)
\(380\) 60.7128 + 35.0525i 0.159770 + 0.0922435i
\(381\) 8.49784 + 127.603i 0.0223041 + 0.334916i
\(382\) 8.85006 + 5.10959i 0.0231677 + 0.0133759i
\(383\) −262.183 454.114i −0.684551 1.18568i −0.973578 0.228356i \(-0.926665\pi\)
0.289027 0.957321i \(-0.406668\pi\)
\(384\) 349.718 234.205i 0.910725 0.609908i
\(385\) 566.189 326.890i 1.47062 0.849064i
\(386\) −619.650 357.755i −1.60531 0.926826i
\(387\) −13.2407 17.1809i −0.0342137 0.0443952i
\(388\) −74.8505 + 43.2150i −0.192914 + 0.111379i
\(389\) 108.679 62.7461i 0.279381 0.161301i −0.353762 0.935336i \(-0.615098\pi\)
0.633143 + 0.774035i \(0.281764\pi\)
\(390\) 504.827 340.105i 1.29443 0.872064i
\(391\) 118.093 204.544i 0.302029 0.523130i
\(392\) 11.5148 0.0293745
\(393\) 79.0320 + 118.012i 0.201099 + 0.300284i
\(394\) 386.385 0.980673
\(395\) −137.140 −0.347189
\(396\) −149.487 193.972i −0.377491 0.489827i
\(397\) 662.206 + 382.325i 1.66802 + 0.963035i 0.968701 + 0.248230i \(0.0798487\pi\)
0.699324 + 0.714805i \(0.253485\pi\)
\(398\) 294.308 + 509.757i 0.739469 + 1.28080i
\(399\) −101.912 + 68.2497i −0.255418 + 0.171052i
\(400\) −323.866 −0.809664
\(401\) 129.690 0.323417 0.161709 0.986839i \(-0.448300\pi\)
0.161709 + 0.986839i \(0.448300\pi\)
\(402\) −137.390 205.152i −0.341765 0.510329i
\(403\) 1.86630 + 675.387i 0.00463103 + 1.67590i
\(404\) 303.949i 0.752348i
\(405\) −369.172 366.090i −0.911535 0.903925i
\(406\) −42.4758 73.5702i −0.104620 0.181207i
\(407\) 769.390i 1.89039i
\(408\) −139.614 208.474i −0.342192 0.510966i
\(409\) 250.275 144.496i 0.611920 0.353292i −0.161797 0.986824i \(-0.551729\pi\)
0.773716 + 0.633532i \(0.218396\pi\)
\(410\) 402.180 + 696.597i 0.980928 + 1.69902i
\(411\) 29.2212 + 14.3723i 0.0710979 + 0.0349690i
\(412\) 197.493 0.479353
\(413\) −112.836 + 65.1461i −0.273212 + 0.157739i
\(414\) −41.5932 310.895i −0.100467 0.750954i
\(415\) 709.460 1.70954
\(416\) 183.152 319.263i 0.440270 0.767459i
\(417\) −32.3478 485.733i −0.0775728 1.16483i
\(418\) 197.510i 0.472512i
\(419\) 575.942i 1.37456i −0.726391 0.687282i \(-0.758804\pi\)
0.726391 0.687282i \(-0.241196\pi\)
\(420\) −116.398 + 236.656i −0.277138 + 0.563468i
\(421\) −305.681 + 176.485i −0.726083 + 0.419204i −0.816987 0.576655i \(-0.804358\pi\)
0.0909046 + 0.995860i \(0.471024\pi\)
\(422\) −90.8326 + 157.327i −0.215243 + 0.372812i
\(423\) −4.86504 + 11.8152i −0.0115013 + 0.0279320i
\(424\) 410.974i 0.969277i
\(425\) 266.949i 0.628116i
\(426\) 57.8428 + 868.562i 0.135781 + 2.03888i
\(427\) 813.274i 1.90462i
\(428\) −208.982 120.656i −0.488275 0.281906i
\(429\) 498.502 + 243.476i 1.16201 + 0.567544i
\(430\) 18.8083 + 32.5769i 0.0437403 + 0.0757603i
\(431\) −72.1138 124.905i −0.167317 0.289802i 0.770158 0.637853i \(-0.220177\pi\)
−0.937476 + 0.348051i \(0.886844\pi\)
\(432\) −511.691 171.904i −1.18447 0.397925i
\(433\) −137.768 + 238.621i −0.318171 + 0.551088i −0.980106 0.198473i \(-0.936402\pi\)
0.661936 + 0.749561i \(0.269735\pi\)
\(434\) −452.276 783.366i −1.04211 1.80499i
\(435\) −93.7463 + 6.24312i −0.215509 + 0.0143520i
\(436\) −137.676 + 79.4873i −0.315771 + 0.182310i
\(437\) −40.9195 + 70.8747i −0.0936374 + 0.162185i
\(438\) 212.156 + 316.794i 0.484374 + 0.723274i
\(439\) −355.754 + 616.183i −0.810373 + 1.40361i 0.102231 + 0.994761i \(0.467402\pi\)
−0.912604 + 0.408846i \(0.865931\pi\)
\(440\) −231.705 401.324i −0.526602 0.912101i
\(441\) −12.4644 16.1736i −0.0282638 0.0366748i
\(442\) −451.846 259.211i −1.02228 0.586450i
\(443\) −111.062 + 64.1214i −0.250703 + 0.144744i −0.620086 0.784534i \(-0.712902\pi\)
0.369383 + 0.929277i \(0.379569\pi\)
\(444\) −172.702 257.882i −0.388969 0.580815i
\(445\) 156.496 0.351677
\(446\) 600.968 346.969i 1.34746 0.777957i
\(447\) −28.7950 432.383i −0.0644183 0.967300i
\(448\) 79.6452i 0.177780i
\(449\) −2.55946 + 4.43311i −0.00570035 + 0.00987329i −0.868862 0.495055i \(-0.835148\pi\)
0.863161 + 0.504929i \(0.168481\pi\)
\(450\) 216.406 + 280.806i 0.480903 + 0.624012i
\(451\) −366.554 + 634.889i −0.812757 + 1.40774i
\(452\) 3.41447 + 1.97135i 0.00755414 + 0.00436139i
\(453\) −115.777 + 7.71026i −0.255578 + 0.0170204i
\(454\) −445.688 + 771.955i −0.981692 + 1.70034i
\(455\) −1.65099 597.467i −0.00362854 1.31311i
\(456\) 48.3765 + 72.2366i 0.106089 + 0.158414i
\(457\) −81.8086 47.2322i −0.179012 0.103353i 0.407816 0.913064i \(-0.366290\pi\)
−0.586829 + 0.809711i \(0.699624\pi\)
\(458\) 926.432 534.876i 2.02278 1.16785i
\(459\) −141.693 + 421.766i −0.308700 + 0.918880i
\(460\) 175.972i 0.382547i
\(461\) −581.747 −1.26192 −0.630962 0.775813i \(-0.717340\pi\)
−0.630962 + 0.775813i \(0.717340\pi\)
\(462\) −741.383 + 49.3731i −1.60472 + 0.106868i
\(463\) 536.960 + 310.014i 1.15974 + 0.669576i 0.951242 0.308446i \(-0.0998091\pi\)
0.208498 + 0.978023i \(0.433142\pi\)
\(464\) −84.4780 + 48.7734i −0.182065 + 0.105115i
\(465\) −998.198 + 66.4760i −2.14666 + 0.142959i
\(466\) 138.030 + 79.6918i 0.296202 + 0.171013i
\(467\) 499.899i 1.07045i −0.844710 0.535224i \(-0.820227\pi\)
0.844710 0.535224i \(-0.179773\pi\)
\(468\) −221.739 + 30.2893i −0.473800 + 0.0647207i
\(469\) −242.350 −0.516738
\(470\) 11.0795 19.1903i 0.0235734 0.0408304i
\(471\) 410.836 275.135i 0.872264 0.584151i
\(472\) 46.1766 + 79.9803i 0.0978319 + 0.169450i
\(473\) −17.1422 + 29.6911i −0.0362414 + 0.0627720i
\(474\) 139.859 + 68.7888i 0.295061 + 0.145124i
\(475\) 92.4983i 0.194733i
\(476\) 225.697 0.474153
\(477\) 577.248 444.863i 1.21016 0.932628i
\(478\) 98.6182 + 170.812i 0.206314 + 0.357347i
\(479\) −205.302 + 355.594i −0.428606 + 0.742367i −0.996750 0.0805622i \(-0.974328\pi\)
0.568144 + 0.822929i \(0.307662\pi\)
\(480\) 489.222 + 240.620i 1.01921 + 0.501293i
\(481\) 609.891 + 349.877i 1.26796 + 0.727395i
\(482\) 483.372 + 279.075i 1.00285 + 0.578994i
\(483\) −276.267 135.880i −0.571982 0.281326i
\(484\) −77.8097 + 134.770i −0.160764 + 0.278451i
\(485\) 251.172 + 145.014i 0.517879 + 0.298998i
\(486\) 192.863 + 558.524i 0.396837 + 1.14923i
\(487\) 244.715 + 141.286i 0.502495 + 0.290116i 0.729743 0.683721i \(-0.239640\pi\)
−0.227248 + 0.973837i \(0.572973\pi\)
\(488\) −576.462 −1.18127
\(489\) −157.799 235.628i −0.322698 0.481858i
\(490\) 17.7055 + 30.6669i 0.0361337 + 0.0625855i
\(491\) 42.1387i 0.0858222i 0.999079 + 0.0429111i \(0.0136632\pi\)
−0.999079 + 0.0429111i \(0.986337\pi\)
\(492\) −19.6511 295.079i −0.0399412 0.599755i
\(493\) 40.2019 + 69.6318i 0.0815455 + 0.141241i
\(494\) 156.565 + 89.8170i 0.316934 + 0.181816i
\(495\) −312.884 + 759.868i −0.632088 + 1.53509i
\(496\) −899.510 + 519.333i −1.81353 + 1.04704i
\(497\) 739.948 + 427.209i 1.48883 + 0.859576i
\(498\) −723.528 355.862i −1.45287 0.714583i
\(499\) −284.623 164.327i −0.570386 0.329312i 0.186918 0.982376i \(-0.440150\pi\)
−0.757303 + 0.653063i \(0.773484\pi\)
\(500\) 54.0252 + 93.5743i 0.108050 + 0.187149i
\(501\) −637.766 313.681i −1.27299 0.626109i
\(502\) −104.075 + 60.0877i −0.207321 + 0.119697i
\(503\) 81.9945 + 47.3395i 0.163011 + 0.0941144i 0.579286 0.815124i \(-0.303331\pi\)
−0.416275 + 0.909239i \(0.636665\pi\)
\(504\) −259.058 + 199.646i −0.514003 + 0.396123i
\(505\) 883.297 509.972i 1.74910 1.00985i
\(506\) −429.352 + 247.886i −0.848521 + 0.489894i
\(507\) 419.694 284.440i 0.827799 0.561025i
\(508\) −40.7700 + 70.6157i −0.0802558 + 0.139007i
\(509\) −810.940 −1.59320 −0.796601 0.604506i \(-0.793371\pi\)
−0.796601 + 0.604506i \(0.793371\pi\)
\(510\) 340.545 692.384i 0.667735 1.35762i
\(511\) 374.235 0.732357
\(512\) 160.174 0.312839
\(513\) 49.0969 146.143i 0.0957054 0.284878i
\(514\) −509.639 294.240i −0.991515 0.572451i
\(515\) −331.359 573.930i −0.643415 1.11443i
\(516\) −0.919000 13.7996i −0.00178101 0.0267435i
\(517\) 20.1961 0.0390640
\(518\) −941.696 −1.81795
\(519\) 262.715 534.144i 0.506195 1.02918i
\(520\) −423.495 + 1.17025i −0.814413 + 0.00225048i
\(521\) 49.2103i 0.0944536i −0.998884 0.0472268i \(-0.984962\pi\)
0.998884 0.0472268i \(-0.0150384\pi\)
\(522\) 98.7367 + 40.6558i 0.189151 + 0.0778847i
\(523\) −470.200 814.410i −0.899043 1.55719i −0.828719 0.559664i \(-0.810930\pi\)
−0.0703240 0.997524i \(-0.522403\pi\)
\(524\) 90.5591i 0.172823i
\(525\) 347.206 23.1225i 0.661344 0.0440428i
\(526\) 461.563 266.483i 0.877495 0.506622i
\(527\) 428.065 + 741.430i 0.812267 + 1.40689i
\(528\) 56.6933 + 851.303i 0.107374 + 1.61232i
\(529\) 323.575 0.611672
\(530\) −1094.53 + 631.925i −2.06514 + 1.19231i
\(531\) 62.3548 151.435i 0.117429 0.285188i
\(532\) −78.2042 −0.147000
\(533\) 336.584 + 579.279i 0.631490 + 1.08683i
\(534\) −159.599 78.4979i −0.298875 0.147000i
\(535\) 809.754i 1.51356i
\(536\) 171.782i 0.320489i
\(537\) −396.261 + 26.3894i −0.737916 + 0.0491422i
\(538\) 36.2315 20.9183i 0.0673448 0.0388816i
\(539\) −16.1371 + 27.9503i −0.0299390 + 0.0518558i
\(540\) −65.6936 324.922i −0.121655 0.601708i
\(541\) 706.936i 1.30672i −0.757047 0.653361i \(-0.773358\pi\)
0.757047 0.653361i \(-0.226642\pi\)
\(542\) 673.304i 1.24226i
\(543\) 69.3545 + 34.1115i 0.127725 + 0.0628205i
\(544\) 466.566i 0.857657i
\(545\) 461.992 + 266.731i 0.847691 + 0.489415i
\(546\) −298.003 + 610.142i −0.545794 + 1.11748i
\(547\) 99.7575 + 172.785i 0.182372 + 0.315878i 0.942688 0.333676i \(-0.108289\pi\)
−0.760316 + 0.649554i \(0.774956\pi\)
\(548\) 10.3815 + 17.9814i 0.0189444 + 0.0328127i
\(549\) 623.998 + 809.691i 1.13661 + 1.47485i
\(550\) 280.172 485.273i 0.509404 0.882314i
\(551\) −13.9300 24.1275i −0.0252814 0.0437886i
\(552\) −96.3142 + 195.823i −0.174482 + 0.354752i
\(553\) 132.488 76.4917i 0.239580 0.138321i
\(554\) −327.245 + 566.805i −0.590695 + 1.02311i
\(555\) −459.659 + 934.564i −0.828215 + 1.68390i
\(556\) 155.195 268.805i 0.279127 0.483462i
\(557\) 524.367 + 908.230i 0.941413 + 1.63057i 0.762779 + 0.646659i \(0.223834\pi\)
0.178634 + 0.983916i \(0.442832\pi\)
\(558\) 1051.34 + 432.898i 1.88411 + 0.775803i
\(559\) 15.7407 + 27.0905i 0.0281586 + 0.0484624i
\(560\) 795.734 459.417i 1.42095 0.820388i
\(561\) 701.694 46.7300i 1.25079 0.0832977i
\(562\) −359.026 −0.638836
\(563\) 950.599 548.829i 1.68845 0.974829i 0.732749 0.680499i \(-0.238237\pi\)
0.955704 0.294329i \(-0.0950962\pi\)
\(564\) −6.76926 + 4.53334i −0.0120022 + 0.00803784i
\(565\) 13.2303i 0.0234164i
\(566\) 68.4154 118.499i 0.120875 0.209362i
\(567\) 560.840 + 147.760i 0.989136 + 0.260599i
\(568\) 302.813 524.488i 0.533122 0.923394i
\(569\) 62.6306 + 36.1598i 0.110071 + 0.0635497i 0.554025 0.832500i \(-0.313091\pi\)
−0.443954 + 0.896050i \(0.646425\pi\)
\(570\) −117.999 + 239.912i −0.207016 + 0.420899i
\(571\) 217.151 376.116i 0.380299 0.658697i −0.610806 0.791780i \(-0.709154\pi\)
0.991105 + 0.133083i \(0.0424878\pi\)
\(572\) 177.711 + 305.849i 0.310683 + 0.534702i
\(573\) −5.56445 + 11.3135i −0.00971108 + 0.0197443i
\(574\) −777.074 448.644i −1.35379 0.781610i
\(575\) 201.075 116.091i 0.349695 0.201897i
\(576\) 61.1092 + 79.2944i 0.106092 + 0.137664i
\(577\) 704.900i 1.22166i 0.791760 + 0.610832i \(0.209165\pi\)
−0.791760 + 0.610832i \(0.790835\pi\)
\(578\) 42.4199 0.0733909
\(579\) 389.603 792.128i 0.672889 1.36810i
\(580\) −51.8793 29.9525i −0.0894471 0.0516423i
\(581\) −685.393 + 395.712i −1.17968 + 0.681088i
\(582\) −183.414 273.876i −0.315144 0.470577i
\(583\) −997.569 575.947i −1.71110 0.987902i
\(584\) 265.264i 0.454219i
\(585\) 460.061 + 593.568i 0.786428 + 1.01465i
\(586\) 655.098 1.11791
\(587\) 177.011 306.592i 0.301552 0.522303i −0.674936 0.737876i \(-0.735829\pi\)
0.976488 + 0.215573i \(0.0691620\pi\)
\(588\) −0.865117 12.9905i −0.00147129 0.0220927i
\(589\) −148.325 256.907i −0.251825 0.436174i
\(590\) −142.005 + 245.960i −0.240687 + 0.416882i
\(591\) 31.6761 + 475.646i 0.0535975 + 0.804816i
\(592\) 1081.32i 1.82655i
\(593\) −533.102 −0.898992 −0.449496 0.893282i \(-0.648396\pi\)
−0.449496 + 0.893282i \(0.648396\pi\)
\(594\) 700.234 617.994i 1.17885 1.04039i
\(595\) −378.679 655.891i −0.636435 1.10234i
\(596\) 138.149 239.281i 0.231794 0.401479i
\(597\) −603.392 + 404.089i −1.01071 + 0.676866i
\(598\) 1.25197 + 453.070i 0.00209360 + 0.757642i
\(599\) −834.351 481.713i −1.39291 0.804195i −0.399270 0.916833i \(-0.630736\pi\)
−0.993636 + 0.112638i \(0.964070\pi\)
\(600\) −16.3896 246.105i −0.0273160 0.410175i
\(601\) 414.212 717.435i 0.689204 1.19374i −0.282892 0.959152i \(-0.591294\pi\)
0.972096 0.234584i \(-0.0753729\pi\)
\(602\) −36.3405 20.9812i −0.0603663 0.0348525i
\(603\) 241.283 185.947i 0.400137 0.308371i
\(604\) −64.0710 36.9914i −0.106078 0.0612440i
\(605\) 522.203 0.863146
\(606\) −1156.61 + 77.0257i −1.90860 + 0.127105i
\(607\) 33.5138 + 58.0477i 0.0552122 + 0.0956304i 0.892311 0.451422i \(-0.149083\pi\)
−0.837098 + 0.547053i \(0.815750\pi\)
\(608\) 161.666i 0.265897i
\(609\) 87.0839 58.3197i 0.142995 0.0957631i
\(610\) −886.385 1535.26i −1.45309 2.51683i
\(611\) 9.18409 16.0093i 0.0150312 0.0262018i
\(612\) −224.702 + 173.170i −0.367161 + 0.282957i
\(613\) 242.597 140.063i 0.395753 0.228488i −0.288897 0.957360i \(-0.593288\pi\)
0.684650 + 0.728872i \(0.259955\pi\)
\(614\) 564.611 + 325.978i 0.919561 + 0.530909i
\(615\) −824.551 + 552.198i −1.34073 + 0.897883i
\(616\) 447.689 + 258.473i 0.726768 + 0.419600i
\(617\) 136.829 + 236.996i 0.221766 + 0.384110i 0.955344 0.295495i \(-0.0954846\pi\)
−0.733578 + 0.679605i \(0.762151\pi\)
\(618\) 50.0481 + 751.519i 0.0809840 + 1.21605i
\(619\) 545.006 314.660i 0.880463 0.508335i 0.00965176 0.999953i \(-0.496928\pi\)
0.870811 + 0.491618i \(0.163594\pi\)
\(620\) −552.404 318.931i −0.890974 0.514404i
\(621\) 379.307 76.6893i 0.610800 0.123493i
\(622\) −439.303 + 253.632i −0.706275 + 0.407768i
\(623\) −151.187 + 87.2881i −0.242677 + 0.140109i
\(624\) 700.604 + 342.186i 1.12276 + 0.548376i
\(625\) 383.782 664.730i 0.614051 1.06357i
\(626\) 439.021 0.701311
\(627\) −243.138 + 16.1920i −0.387780 + 0.0258246i
\(628\) 315.265 0.502014
\(629\) 891.284 1.41699
\(630\) −930.042 382.954i −1.47626 0.607864i
\(631\) −573.158 330.913i −0.908333 0.524426i −0.0284384 0.999596i \(-0.509053\pi\)
−0.879894 + 0.475169i \(0.842387\pi\)
\(632\) −54.2186 93.9094i −0.0857889 0.148591i
\(633\) −201.118 98.9186i −0.317722 0.156270i
\(634\) −376.610 −0.594022
\(635\) 273.619 0.430896
\(636\) 463.643 30.8767i 0.728998 0.0485483i
\(637\) 14.8177 + 25.5021i 0.0232618 + 0.0400347i
\(638\) 168.773i 0.264535i
\(639\) −1064.47 + 142.411i −1.66584 + 0.222865i
\(640\) −450.268 779.886i −0.703543 1.21857i
\(641\) 407.959i 0.636441i −0.948017 0.318220i \(-0.896915\pi\)
0.948017 0.318220i \(-0.103085\pi\)
\(642\) 406.169 825.811i 0.632663 1.28631i
\(643\) −773.235 + 446.427i −1.20254 + 0.694288i −0.961120 0.276132i \(-0.910947\pi\)
−0.241423 + 0.970420i \(0.577614\pi\)
\(644\) −98.1507 170.002i −0.152408 0.263978i
\(645\) −38.5608 + 25.8240i −0.0597842 + 0.0400372i
\(646\) 228.802 0.354182
\(647\) 341.098 196.933i 0.527199 0.304378i −0.212676 0.977123i \(-0.568218\pi\)
0.739875 + 0.672744i \(0.234885\pi\)
\(648\) 104.735 397.533i 0.161627 0.613477i
\(649\) −258.852 −0.398847
\(650\) −257.266 442.767i −0.395793 0.681180i
\(651\) 927.258 620.980i 1.42436 0.953887i
\(652\) 180.815i 0.277324i
\(653\) 1115.79i 1.70872i 0.519681 + 0.854361i \(0.326051\pi\)
−0.519681 + 0.854361i \(0.673949\pi\)
\(654\) −337.361 503.753i −0.515843 0.770265i
\(655\) 263.171 151.942i 0.401788 0.231972i
\(656\) −515.162 + 892.286i −0.785307 + 1.36019i
\(657\) −372.586 + 287.138i −0.567102 + 0.437044i
\(658\) 24.7190i 0.0375669i
\(659\) 201.860i 0.306313i −0.988202 0.153157i \(-0.951056\pi\)
0.988202 0.153157i \(-0.0489439\pi\)
\(660\) −435.349 + 291.551i −0.659620 + 0.441744i
\(661\) 192.489i 0.291209i 0.989343 + 0.145604i \(0.0465126\pi\)
−0.989343 + 0.145604i \(0.953487\pi\)
\(662\) 538.988 + 311.185i 0.814182 + 0.470068i
\(663\) 282.050 577.480i 0.425415 0.871010i
\(664\) 280.487 + 485.818i 0.422420 + 0.731654i
\(665\) 131.213 + 227.267i 0.197312 + 0.341755i
\(666\) 937.548 722.532i 1.40773 1.08488i
\(667\) 34.9659 60.5628i 0.0524227 0.0907987i
\(668\) −226.582 392.451i −0.339194 0.587501i
\(669\) 476.392 + 711.356i 0.712096 + 1.06331i
\(670\) −457.499 + 264.137i −0.682834 + 0.394234i
\(671\) 807.866 1399.26i 1.20397 2.08534i
\(672\) −606.835 + 40.4128i −0.903029 + 0.0601381i
\(673\) −238.997 + 413.955i −0.355122 + 0.615089i −0.987139 0.159865i \(-0.948894\pi\)
0.632017 + 0.774955i \(0.282227\pi\)
\(674\) −592.607 1026.43i −0.879239 1.52289i
\(675\) −327.935 + 289.420i −0.485830 + 0.428771i
\(676\) 323.258 1.78654i 0.478193 0.00264281i
\(677\) 36.4414 21.0394i 0.0538277 0.0310774i −0.472845 0.881146i \(-0.656773\pi\)
0.526672 + 0.850068i \(0.323439\pi\)
\(678\) −6.63625 + 13.4926i −0.00978798 + 0.0199006i
\(679\) −323.535 −0.476487
\(680\) −464.906 + 268.414i −0.683686 + 0.394726i
\(681\) −986.826 485.364i −1.44908 0.712722i
\(682\) 1797.08i 2.63501i
\(683\) −262.088 + 453.949i −0.383730 + 0.664640i −0.991592 0.129403i \(-0.958694\pi\)
0.607862 + 0.794043i \(0.292027\pi\)
\(684\) 77.8597 60.0036i 0.113830 0.0877245i
\(685\) 34.8368 60.3390i 0.0508566 0.0880862i
\(686\) 704.629 + 406.818i 1.02716 + 0.593029i
\(687\) 734.390 + 1096.60i 1.06898 + 1.59622i
\(688\) −24.0920 + 41.7285i −0.0350174 + 0.0606519i
\(689\) −910.191 + 528.858i −1.32103 + 0.767573i
\(690\) −669.622 + 44.5941i −0.970466 + 0.0646291i
\(691\) −295.209 170.439i −0.427220 0.246656i 0.270941 0.962596i \(-0.412665\pi\)
−0.698162 + 0.715940i \(0.745998\pi\)
\(692\) 328.687 189.767i 0.474981 0.274230i
\(693\) −121.558 908.606i −0.175409 1.31112i
\(694\) 564.213i 0.812987i
\(695\) −1041.56 −1.49864
\(696\) −41.3380 61.7265i −0.0593936 0.0886875i
\(697\) 735.475 + 424.627i 1.05520 + 0.609221i
\(698\) 308.844 178.311i 0.442469 0.255460i
\(699\) −86.7861 + 176.451i −0.124158 + 0.252433i
\(700\) 192.144 + 110.934i 0.274491 + 0.158478i
\(701\) 223.372i 0.318647i −0.987226 0.159324i \(-0.949069\pi\)
0.987226 0.159324i \(-0.0509313\pi\)
\(702\) −171.452 836.102i −0.244233 1.19103i
\(703\) −308.831 −0.439305
\(704\) 79.1156 137.032i 0.112380 0.194648i
\(705\) 24.5318 + 12.0658i 0.0347969 + 0.0171146i
\(706\) 727.361 + 1259.83i 1.03026 + 1.78446i
\(707\) −568.888 + 985.344i −0.804651 + 1.39370i
\(708\) 86.7611 58.1035i 0.122544 0.0820671i
\(709\) 450.877i 0.635933i 0.948102 + 0.317967i \(0.103000\pi\)
−0.948102 + 0.317967i \(0.897000\pi\)
\(710\) 1862.46 2.62318
\(711\) −73.2143 + 177.808i −0.102974 + 0.250082i
\(712\) 61.8713 + 107.164i 0.0868979 + 0.150511i
\(713\) 372.313 644.864i 0.522177 0.904438i
\(714\) 57.1953 + 858.840i 0.0801055 + 1.20286i
\(715\) 590.653 1029.60i 0.826088 1.44000i
\(716\) −219.291 126.608i −0.306273 0.176827i
\(717\) −202.187 + 135.404i −0.281990 + 0.188848i
\(718\) −659.228 + 1141.82i −0.918144 + 1.59027i
\(719\) 0.356771 + 0.205982i 0.000496205 + 0.000286484i 0.500248 0.865882i \(-0.333242\pi\)
−0.499752 + 0.866169i \(0.666575\pi\)
\(720\) −439.733 + 1067.93i −0.610740 + 1.48324i
\(721\) 640.236 + 369.640i 0.887983 + 0.512677i
\(722\) 798.537 1.10601
\(723\) −303.918 + 617.917i −0.420357 + 0.854657i
\(724\) 24.6398 + 42.6775i 0.0340329 + 0.0589468i
\(725\) 79.0402i 0.109021i
\(726\) −532.558 261.935i −0.733551 0.360792i
\(727\) −154.985 268.443i −0.213185 0.369247i 0.739525 0.673129i \(-0.235050\pi\)
−0.952710 + 0.303882i \(0.901717\pi\)
\(728\) 408.475 237.341i 0.561093 0.326018i
\(729\) −671.741 + 283.205i −0.921455 + 0.388485i
\(730\) 706.464 407.877i 0.967759 0.558736i
\(731\) 34.3951 + 19.8580i 0.0470522 + 0.0271656i
\(732\) 43.3100 + 650.340i 0.0591667 + 0.888442i
\(733\) 894.231 + 516.284i 1.21996 + 0.704344i 0.964909 0.262584i \(-0.0845745\pi\)
0.255051 + 0.966928i \(0.417908\pi\)
\(734\) −318.574 551.786i −0.434024 0.751751i
\(735\) −36.2999 + 24.3099i −0.0493876 + 0.0330747i
\(736\) −351.432 + 202.899i −0.477489 + 0.275679i
\(737\) −416.972 240.739i −0.565769 0.326647i
\(738\) 1117.88 149.556i 1.51474 0.202650i
\(739\) −38.9096 + 22.4645i −0.0526517 + 0.0303985i −0.526095 0.850426i \(-0.676344\pi\)
0.473443 + 0.880824i \(0.343011\pi\)
\(740\) −575.087 + 332.027i −0.777145 + 0.448685i
\(741\) −97.7309 + 200.097i −0.131890 + 0.270037i
\(742\) 704.931 1220.98i 0.950042 1.64552i
\(743\) 946.018 1.27324 0.636621 0.771177i \(-0.280332\pi\)
0.636621 + 0.771177i \(0.280332\pi\)
\(744\) −440.161 657.256i −0.591615 0.883408i
\(745\) −927.158 −1.24451
\(746\) 1465.15 1.96401
\(747\) 378.757 919.848i 0.507037 1.23139i
\(748\) 388.319 + 224.196i 0.519142 + 0.299727i
\(749\) −451.652 782.285i −0.603007 1.04444i
\(750\) −342.386 + 229.294i −0.456515 + 0.305726i
\(751\) −1183.78 −1.57627 −0.788136 0.615502i \(-0.788953\pi\)
−0.788136 + 0.615502i \(0.788953\pi\)
\(752\) 28.3840 0.0377446
\(753\) −82.5011 123.192i −0.109563 0.163602i
\(754\) −133.786 76.7490i −0.177434 0.101789i
\(755\) 248.260i 0.328821i
\(756\) 244.695 + 277.258i 0.323671 + 0.366744i
\(757\) 228.146 + 395.161i 0.301382 + 0.522010i 0.976449 0.215747i \(-0.0692186\pi\)
−0.675067 + 0.737756i \(0.735885\pi\)
\(758\) 334.900i 0.441821i
\(759\) −340.351 508.217i −0.448420 0.669587i
\(760\) 161.091 93.0058i 0.211961 0.122376i
\(761\) −114.372 198.099i −0.150292 0.260313i 0.781043 0.624478i \(-0.214688\pi\)
−0.931335 + 0.364164i \(0.881355\pi\)
\(762\) −279.044 137.246i −0.366200 0.180113i
\(763\) −595.093 −0.779938
\(764\) −6.96177 + 4.01938i −0.00911226 + 0.00526097i
\(765\) 880.254 + 362.454i 1.15066 + 0.473796i
\(766\) 1275.06 1.66457
\(767\) −117.712 + 205.190i −0.153470 + 0.267523i
\(768\) 59.1384 + 888.018i 0.0770032 + 1.15627i
\(769\) 1268.37i 1.64937i 0.565592 + 0.824685i \(0.308648\pi\)
−0.565592 + 0.824685i \(0.691352\pi\)
\(770\) 1589.75i 2.06461i
\(771\) 320.434 651.495i 0.415608 0.845000i
\(772\) 487.438 281.422i 0.631396 0.364537i
\(773\) 198.313 343.488i 0.256550 0.444357i −0.708765 0.705444i \(-0.750748\pi\)
0.965315 + 0.261087i \(0.0840809\pi\)
\(774\) 52.2787 6.99411i 0.0675435 0.00903632i
\(775\) 841.609i 1.08595i
\(776\) 229.327i 0.295524i
\(777\) −77.2009 1159.24i −0.0993576 1.49195i
\(778\) 305.150i 0.392224i
\(779\) −254.843 147.134i −0.327141 0.188875i
\(780\) 33.1377 + 477.681i 0.0424842 + 0.612411i
\(781\) 848.737 + 1470.06i 1.08673 + 1.88227i
\(782\) 287.159 + 497.374i 0.367211 + 0.636028i
\(783\) −41.9535 + 124.879i −0.0535804 + 0.159488i
\(784\) −22.6794 + 39.2819i −0.0289278 + 0.0501044i
\(785\) −528.958 916.182i −0.673832 1.16711i
\(786\) −344.603 + 22.9492i −0.438426 + 0.0291974i
\(787\) 286.703 165.528i 0.364298 0.210328i −0.306666 0.951817i \(-0.599214\pi\)
0.670965 + 0.741489i \(0.265880\pi\)
\(788\) −151.972 + 263.223i −0.192858 + 0.334040i
\(789\) 365.884 + 546.344i 0.463732 + 0.692452i
\(790\) 166.736 288.796i 0.211059 0.365564i
\(791\) 7.37938 + 12.7815i 0.00932917 + 0.0161586i
\(792\) −644.035 + 86.1624i −0.813176 + 0.108791i
\(793\) −741.815 1276.70i −0.935454 1.60996i
\(794\) −1610.24 + 929.671i −2.02801 + 1.17087i
\(795\) −867.640 1295.57i −1.09137 1.62965i
\(796\) −463.027 −0.581692
\(797\) 156.545 90.3810i 0.196417 0.113402i −0.398566 0.917140i \(-0.630492\pi\)
0.594983 + 0.803738i \(0.297159\pi\)
\(798\) −19.8183 297.589i −0.0248349 0.372919i
\(799\) 23.3957i 0.0292813i
\(800\) 229.326 397.205i 0.286658 0.496506i
\(801\) 83.5481 202.905i 0.104305 0.253314i
\(802\) −157.679 + 273.108i −0.196607 + 0.340534i
\(803\) 643.883 + 371.746i 0.801847 + 0.462946i
\(804\) 193.797 12.9061i 0.241041 0.0160524i
\(805\) −329.359 + 570.466i −0.409141 + 0.708653i
\(806\) −1424.53 817.213i −1.76741 1.01391i
\(807\) 28.7210 + 42.8867i 0.0355899 + 0.0531434i
\(808\) 698.428 + 403.238i 0.864391 + 0.499056i
\(809\) 341.944 197.422i 0.422675 0.244032i −0.273546 0.961859i \(-0.588197\pi\)
0.696221 + 0.717827i \(0.254863\pi\)
\(810\) 1219.77 332.324i 1.50589 0.410276i
\(811\) 55.3650i 0.0682676i −0.999417 0.0341338i \(-0.989133\pi\)
0.999417 0.0341338i \(-0.0108672\pi\)
\(812\) 66.8259 0.0822978
\(813\) 828.848 55.1979i 1.01949 0.0678941i
\(814\) −1620.22 935.434i −1.99044 1.14918i
\(815\) −525.461 + 303.375i −0.644738 + 0.372240i
\(816\) 986.175 65.6753i 1.20855 0.0804844i
\(817\) −11.9180 6.88084i −0.0145875 0.00842208i
\(818\) 702.722i 0.859074i
\(819\) −775.525 316.827i −0.946917 0.386846i
\(820\) −632.738 −0.771632
\(821\) 386.359 669.193i 0.470596 0.815095i −0.528839 0.848722i \(-0.677372\pi\)
0.999434 + 0.0336268i \(0.0107058\pi\)
\(822\) −65.7933 + 44.0615i −0.0800406 + 0.0536028i
\(823\) 136.989 + 237.273i 0.166451 + 0.288302i 0.937170 0.348874i \(-0.113436\pi\)
−0.770718 + 0.637176i \(0.780102\pi\)
\(824\) 262.007 453.810i 0.317970 0.550740i
\(825\) 620.347 + 305.114i 0.751936 + 0.369835i
\(826\) 316.822i 0.383562i
\(827\) −744.269 −0.899963 −0.449981 0.893038i \(-0.648569\pi\)
−0.449981 + 0.893038i \(0.648569\pi\)
\(828\) 228.155 + 93.9453i 0.275550 + 0.113460i
\(829\) 421.820 + 730.613i 0.508829 + 0.881318i 0.999948 + 0.0102254i \(0.00325490\pi\)
−0.491118 + 0.871093i \(0.663412\pi\)
\(830\) −862.571 + 1494.02i −1.03924 + 1.80002i
\(831\) −724.574 356.377i −0.871931 0.428853i
\(832\) −72.6471 125.029i −0.0873163 0.150276i
\(833\) 32.3784 + 18.6937i 0.0388697 + 0.0224414i
\(834\) 1062.21 + 522.440i 1.27363 + 0.626427i
\(835\) −760.327 + 1316.93i −0.910571 + 1.57716i
\(836\) −134.553 77.6842i −0.160948 0.0929237i
\(837\) −446.715 + 1329.70i −0.533710 + 1.58865i
\(838\) 1212.85 + 700.238i 1.44731 + 0.835606i
\(839\) 957.235 1.14092 0.570462 0.821324i \(-0.306764\pi\)
0.570462 + 0.821324i \(0.306764\pi\)
\(840\) 389.380 + 581.428i 0.463547 + 0.692176i
\(841\) −408.597 707.710i −0.485846 0.841510i
\(842\) 858.290i 1.01935i
\(843\) −29.4332 441.967i −0.0349148 0.524278i
\(844\) −71.4521 123.759i −0.0846589 0.146633i
\(845\) −547.562 936.415i −0.648002 1.10818i
\(846\) −18.9661 24.6101i −0.0224186 0.0290900i
\(847\) −504.488 + 291.266i −0.595618 + 0.343880i
\(848\) −1402.00 809.447i −1.65331 0.954536i
\(849\) 151.483 + 74.5058i 0.178425 + 0.0877571i
\(850\) −562.155 324.560i −0.661359 0.381836i
\(851\) −387.601 671.344i −0.455465 0.788888i
\(852\) −614.455 302.216i −0.721191 0.354713i
\(853\) −98.7338 + 57.0040i −0.115749 + 0.0668276i −0.556757 0.830676i \(-0.687954\pi\)
0.441008 + 0.897503i \(0.354621\pi\)
\(854\) 1712.63 + 988.789i 2.00542 + 1.15783i
\(855\) −305.009 125.591i −0.356736 0.146890i
\(856\) −554.496 + 320.139i −0.647776 + 0.373994i
\(857\) −234.477 + 135.376i −0.273603 + 0.157965i −0.630524 0.776170i \(-0.717160\pi\)
0.356921 + 0.934135i \(0.383827\pi\)
\(858\) −1118.81 + 753.748i −1.30397 + 0.878494i
\(859\) −206.165 + 357.089i −0.240006 + 0.415703i −0.960716 0.277534i \(-0.910483\pi\)
0.720710 + 0.693237i \(0.243816\pi\)
\(860\) −29.5905 −0.0344076
\(861\) 488.583 993.371i 0.567460 1.15374i
\(862\) 350.707 0.406853
\(863\) −213.008 −0.246823 −0.123412 0.992356i \(-0.539384\pi\)
−0.123412 + 0.992356i \(0.539384\pi\)
\(864\) 573.155 505.840i 0.663374 0.585463i
\(865\) −1102.96 636.792i −1.27509 0.736176i
\(866\) −335.000 580.237i −0.386836 0.670019i
\(867\) 3.47762 + 52.2196i 0.00401109 + 0.0602303i
\(868\) 711.553 0.819761
\(869\) 303.932 0.349749
\(870\) 100.831 205.006i 0.115898 0.235639i
\(871\) −380.448 + 221.056i −0.436795 + 0.253796i
\(872\) 421.812i 0.483729i
\(873\) 322.109 248.238i 0.368968 0.284350i
\(874\) −99.5010 172.341i −0.113846 0.197186i
\(875\) 404.467i 0.462248i
\(876\) −299.259 + 19.9295i −0.341620 + 0.0227505i
\(877\) 803.725 464.031i 0.916448 0.529112i 0.0339480 0.999424i \(-0.489192\pi\)
0.882500 + 0.470312i \(0.155859\pi\)
\(878\) −865.059 1498.33i −0.985261 1.70652i
\(879\) 53.7054 + 806.436i 0.0610983 + 0.917447i
\(880\) 1825.45 2.07437
\(881\) −217.258 + 125.434i −0.246603 + 0.142377i −0.618208 0.786015i \(-0.712141\pi\)
0.371605 + 0.928391i \(0.378808\pi\)
\(882\) 49.2134 6.58403i 0.0557975 0.00746489i
\(883\) −15.6013 −0.0176685 −0.00883423 0.999961i \(-0.502812\pi\)
−0.00883423 + 0.999961i \(0.502812\pi\)
\(884\) 354.305 205.866i 0.400798 0.232880i
\(885\) −314.423 154.647i −0.355280 0.174742i
\(886\) 311.838i 0.351962i
\(887\) 700.604i 0.789858i 0.918712 + 0.394929i \(0.129231\pi\)
−0.918712 + 0.394929i \(0.870769\pi\)
\(888\) −821.690 + 54.7213i −0.925327 + 0.0616230i
\(889\) −264.337 + 152.615i −0.297342 + 0.171670i
\(890\) −190.270 + 329.558i −0.213787 + 0.370290i
\(891\) 818.167 + 811.336i 0.918257 + 0.910591i
\(892\) 545.876i 0.611968i
\(893\) 8.10666i 0.00907801i
\(894\) 945.543 + 465.059i 1.05765 + 0.520200i
\(895\) 849.702i 0.949388i
\(896\) 869.986 + 502.287i 0.970967 + 0.560588i
\(897\) −557.634 + 38.6842i −0.621665 + 0.0431262i
\(898\) −6.22364 10.7797i −0.00693055 0.0120041i
\(899\) 126.744 + 219.528i 0.140984 + 0.244191i
\(900\) −276.414 + 36.9801i −0.307127 + 0.0410890i
\(901\) −667.194 + 1155.61i −0.740504 + 1.28259i
\(902\) −891.321 1543.81i −0.988161 1.71154i
\(903\) 22.8490 46.4558i 0.0253034 0.0514461i
\(904\) 9.05971 5.23062i 0.0100218 0.00578609i
\(905\) 82.6825 143.210i 0.0913619 0.158244i
\(906\) 124.526 253.183i 0.137446 0.279451i
\(907\) 756.422 1310.16i 0.833983 1.44450i −0.0608732 0.998146i \(-0.519389\pi\)
0.894856 0.446355i \(-0.147278\pi\)
\(908\) −350.594 607.246i −0.386117 0.668774i
\(909\) −189.640 1417.49i −0.208624 1.55940i
\(910\) 1260.18 + 722.931i 1.38482 + 0.794430i
\(911\) −667.209 + 385.213i −0.732392 + 0.422846i −0.819296 0.573370i \(-0.805636\pi\)
0.0869049 + 0.996217i \(0.472302\pi\)
\(912\) −341.711 + 22.7566i −0.374683 + 0.0249524i
\(913\) −1572.32 −1.72215
\(914\) 198.928 114.851i 0.217645 0.125658i
\(915\) 1817.27 1217.02i 1.98609 1.33007i
\(916\) 841.504i 0.918673i
\(917\) −169.496 + 293.575i −0.184837 + 0.320147i
\(918\) −715.903 811.173i −0.779851 0.883630i
\(919\) −91.8891 + 159.157i −0.0999881 + 0.173184i −0.911679 0.410902i \(-0.865214\pi\)
0.811691 + 0.584087i \(0.198547\pi\)
\(920\) 404.356 + 233.455i 0.439517 + 0.253755i
\(921\) −354.997 + 721.769i −0.385447 + 0.783679i
\(922\) 707.296 1225.07i 0.767132 1.32871i
\(923\) 1551.26 4.28663i 1.68068 0.00464423i
\(924\) 257.964 524.483i 0.279181 0.567622i
\(925\) 758.784 + 438.084i 0.820307 + 0.473604i
\(926\) −1305.68 + 753.837i −1.41003 + 0.814079i
\(927\) −921.029 + 123.220i −0.993559 + 0.132923i
\(928\) 138.144i 0.148862i
\(929\) 1623.41 1.74748 0.873740 0.486394i \(-0.161688\pi\)
0.873740 + 0.486394i \(0.161688\pi\)
\(930\) 1073.63 2182.88i 1.15444 2.34718i
\(931\) −11.2192 6.47740i −0.0120507 0.00695746i
\(932\) −108.579 + 62.6884i −0.116502 + 0.0672622i
\(933\) −348.239 519.996i −0.373247 0.557338i
\(934\) 1052.71 + 607.784i 1.12710 + 0.650732i
\(935\) 1504.64i 1.60924i
\(936\) −224.572 + 549.705i −0.239928 + 0.587292i
\(937\) −914.127 −0.975589 −0.487795 0.872958i \(-0.662199\pi\)
−0.487795 + 0.872958i \(0.662199\pi\)
\(938\) 294.652 510.353i 0.314128 0.544086i
\(939\) 35.9912 + 540.441i 0.0383293 + 0.575550i
\(940\) 8.71553 + 15.0957i 0.00927184 + 0.0160593i
\(941\) −442.075 + 765.697i −0.469793 + 0.813706i −0.999403 0.0345354i \(-0.989005\pi\)
0.529610 + 0.848241i \(0.322338\pi\)
\(942\) 79.8933 + 1199.67i 0.0848124 + 1.27354i
\(943\) 738.645i 0.783292i
\(944\) −363.795 −0.385376
\(945\) 395.177 1176.29i 0.418177 1.24475i
\(946\) −41.6834 72.1977i −0.0440628 0.0763190i
\(947\) −174.337 + 301.961i −0.184094 + 0.318861i −0.943271 0.332024i \(-0.892269\pi\)
0.759177 + 0.650885i \(0.225602\pi\)
\(948\) −101.871 + 68.2226i −0.107459 + 0.0719648i
\(949\) 587.484 341.352i 0.619056 0.359697i
\(950\) 194.787 + 112.461i 0.205039 + 0.118380i
\(951\) −30.8747 463.613i −0.0324655 0.487500i
\(952\) 299.423 518.617i 0.314520 0.544765i
\(953\) −69.3765 40.0546i −0.0727980 0.0420300i 0.463159 0.886275i \(-0.346716\pi\)
−0.535957 + 0.844245i \(0.680049\pi\)
\(954\) 234.990 + 1756.47i 0.246320 + 1.84116i
\(955\) 23.3612 + 13.4876i 0.0244620 + 0.0141231i
\(956\) −155.153 −0.162294
\(957\) 207.763 13.8361i 0.217098 0.0144578i
\(958\) −499.218 864.671i −0.521104 0.902579i
\(959\) 77.7228i 0.0810457i
\(960\) 177.968 119.184i 0.185383 0.124150i
\(961\) 869.058 + 1505.25i 0.904326 + 1.56634i
\(962\) −1478.30 + 858.953i −1.53670 + 0.892883i
\(963\) 1049.88 + 432.301i 1.09022 + 0.448910i
\(964\) −380.237 + 219.530i −0.394437 + 0.227728i
\(965\) −1635.67 944.354i −1.69499 0.978605i
\(966\) 622.033 416.573i 0.643926 0.431235i
\(967\) −907.640 524.026i −0.938615 0.541909i −0.0490889 0.998794i \(-0.515632\pi\)
−0.889526 + 0.456885i \(0.848965\pi\)
\(968\) 206.454 + 357.590i 0.213279 + 0.369411i
\(969\) 18.7573 + 281.659i 0.0193574 + 0.290669i
\(970\) −610.755 + 352.620i −0.629644 + 0.363525i
\(971\) −829.665 479.008i −0.854444 0.493314i 0.00770360 0.999970i \(-0.497548\pi\)
−0.862148 + 0.506657i \(0.830881\pi\)
\(972\) −456.348 88.2902i −0.469494 0.0908335i
\(973\) 1006.22 580.943i 1.03414 0.597064i
\(974\) −595.055 + 343.555i −0.610940 + 0.352726i
\(975\) 523.963 352.997i 0.537398 0.362048i
\(976\) 1135.39 1966.55i 1.16331 2.01491i
\(977\) −100.112 −0.102468 −0.0512342 0.998687i \(-0.516315\pi\)
−0.0512342 + 0.998687i \(0.516315\pi\)
\(978\) 688.052 45.8215i 0.703530 0.0468523i
\(979\) −346.831 −0.354270
\(980\) −27.8556 −0.0284240
\(981\) 592.471 456.595i 0.603946 0.465439i
\(982\) −88.7377 51.2327i −0.0903643 0.0521718i
\(983\) 313.749 + 543.430i 0.319175 + 0.552828i 0.980316 0.197434i \(-0.0632608\pi\)
−0.661141 + 0.750262i \(0.729927\pi\)
\(984\) −704.118 346.316i −0.715567 0.351947i
\(985\) 1019.93 1.03546
\(986\) −195.512 −0.198288
\(987\) −30.4295 + 2.02648i −0.0308303 + 0.00205317i
\(988\) −122.767 + 71.3328i −0.124258 + 0.0721992i
\(989\) 34.5433i 0.0349275i
\(990\) −1219.76 1582.74i −1.23208 1.59873i
\(991\) −639.887 1108.32i −0.645698 1.11838i −0.984140 0.177394i \(-0.943233\pi\)
0.338442 0.940987i \(-0.390100\pi\)
\(992\) 1470.94i 1.48280i
\(993\) −338.887 + 689.014i −0.341276 + 0.693871i
\(994\) −1799.28 + 1038.81i −1.81014 + 1.04508i
\(995\) 776.876 + 1345.59i 0.780780 + 1.35235i
\(996\) 527.006 352.933i 0.529122 0.354351i
\(997\) −1.55999 −0.00156468 −0.000782342 1.00000i \(-0.500249\pi\)
−0.000782342 1.00000i \(0.500249\pi\)
\(998\) 692.095 399.581i 0.693482 0.400382i
\(999\) 966.310 + 1094.90i 0.967277 + 1.09600i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.m.a.23.7 52
3.2 odd 2 351.3.m.a.179.20 52
9.2 odd 6 117.3.v.a.101.7 yes 52
9.7 even 3 351.3.v.a.62.20 52
13.4 even 6 117.3.v.a.95.7 yes 52
39.17 odd 6 351.3.v.a.17.20 52
117.43 even 6 351.3.m.a.251.20 52
117.56 odd 6 inner 117.3.m.a.56.7 yes 52
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.m.a.23.7 52 1.1 even 1 trivial
117.3.m.a.56.7 yes 52 117.56 odd 6 inner
117.3.v.a.95.7 yes 52 13.4 even 6
117.3.v.a.101.7 yes 52 9.2 odd 6
351.3.m.a.179.20 52 3.2 odd 2
351.3.m.a.251.20 52 117.43 even 6
351.3.v.a.17.20 52 39.17 odd 6
351.3.v.a.62.20 52 9.7 even 3