Properties

Label 117.3.p.a.107.1
Level $117$
Weight $3$
Character 117.107
Analytic conductor $3.188$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(35,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.35");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.p (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 32 x^{18} + 690 x^{16} - 7984 x^{14} + 66147 x^{12} - 315440 x^{10} + 1074610 x^{8} + \cdots + 1327104 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 107.1
Root \(-3.42041 - 1.97477i\) of defining polynomial
Character \(\chi\) \(=\) 117.107
Dual form 117.3.p.a.35.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.42041 + 1.97477i) q^{2} +(5.79946 - 10.0450i) q^{4} -3.48286i q^{5} +(-3.91511 + 6.78116i) q^{7} +30.0123i q^{8} +(6.87786 + 11.9128i) q^{10} +(-1.34563 + 0.776897i) q^{11} +(-10.1673 + 8.10098i) q^{13} -30.9258i q^{14} +(-36.0696 - 62.4744i) q^{16} +(0.0458820 + 0.0264900i) q^{17} +(-9.50972 + 16.4713i) q^{19} +(-34.9852 - 20.1987i) q^{20} +(3.06839 - 5.31461i) q^{22} +(-24.2254 + 13.9865i) q^{23} +12.8697 q^{25} +(18.7787 - 47.7868i) q^{26} +(45.4110 + 78.6542i) q^{28} +(-19.5861 + 11.3080i) q^{29} -28.9341 q^{31} +(142.780 + 82.4340i) q^{32} -0.209247 q^{34} +(23.6179 + 13.6358i) q^{35} +(-7.55065 - 13.0781i) q^{37} -75.1181i q^{38} +104.529 q^{40} +(-10.8214 + 6.24772i) q^{41} +(-17.8186 + 30.8627i) q^{43} +18.0223i q^{44} +(55.2404 - 95.6792i) q^{46} +25.2020i q^{47} +(-6.15612 - 10.6627i) q^{49} +(-44.0195 + 25.4147i) q^{50} +(22.4091 + 149.111i) q^{52} -20.1527i q^{53} +(2.70583 + 4.68663i) q^{55} +(-203.518 - 117.501i) q^{56} +(44.6616 - 77.3562i) q^{58} +(72.6718 + 41.9571i) q^{59} +(46.1130 - 79.8701i) q^{61} +(98.9665 - 57.1383i) q^{62} -362.597 q^{64} +(28.2146 + 35.4113i) q^{65} +(-8.65002 - 14.9823i) q^{67} +(0.532182 - 0.307255i) q^{68} -107.710 q^{70} +(6.70449 + 3.87084i) q^{71} -60.2339 q^{73} +(51.6526 + 29.8216i) q^{74} +(110.302 + 191.049i) q^{76} -12.1665i q^{77} +59.5786 q^{79} +(-217.590 + 125.625i) q^{80} +(24.6757 - 42.7395i) q^{82} -69.3433i q^{83} +(0.0922610 - 0.159801i) q^{85} -140.751i q^{86} +(-23.3164 - 40.3853i) q^{88} +(7.25951 - 4.19128i) q^{89} +(-15.1280 - 100.662i) q^{91} +324.457i q^{92} +(-49.7683 - 86.2012i) q^{94} +(57.3673 + 33.1210i) q^{95} +(25.0793 - 43.4386i) q^{97} +(42.1129 + 24.3139i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 24 q^{4} - 6 q^{7} + 12 q^{10} - 2 q^{13} - 104 q^{16} - 92 q^{19} + 44 q^{22} - 116 q^{25} + 76 q^{28} - 156 q^{31} + 80 q^{34} + 148 q^{37} + 328 q^{40} + 186 q^{43} + 164 q^{46} + 8 q^{49} + 392 q^{52}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.42041 + 1.97477i −1.71020 + 0.987387i −0.775938 + 0.630809i \(0.782723\pi\)
−0.934266 + 0.356577i \(0.883944\pi\)
\(3\) 0 0
\(4\) 5.79946 10.0450i 1.44986 2.51124i
\(5\) 3.48286i 0.696572i −0.937388 0.348286i \(-0.886764\pi\)
0.937388 0.348286i \(-0.113236\pi\)
\(6\) 0 0
\(7\) −3.91511 + 6.78116i −0.559301 + 0.968738i 0.438254 + 0.898851i \(0.355597\pi\)
−0.997555 + 0.0698865i \(0.977736\pi\)
\(8\) 30.0123i 3.75153i
\(9\) 0 0
\(10\) 6.87786 + 11.9128i 0.687786 + 1.19128i
\(11\) −1.34563 + 0.776897i −0.122330 + 0.0706270i −0.559916 0.828549i \(-0.689167\pi\)
0.437587 + 0.899176i \(0.355833\pi\)
\(12\) 0 0
\(13\) −10.1673 + 8.10098i −0.782101 + 0.623152i
\(14\) 30.9258i 2.20899i
\(15\) 0 0
\(16\) −36.0696 62.4744i −2.25435 3.90465i
\(17\) 0.0458820 + 0.0264900i 0.00269894 + 0.00155824i 0.501349 0.865245i \(-0.332837\pi\)
−0.498650 + 0.866803i \(0.666171\pi\)
\(18\) 0 0
\(19\) −9.50972 + 16.4713i −0.500511 + 0.866911i 0.499488 + 0.866321i \(0.333521\pi\)
−1.00000 0.000590683i \(0.999812\pi\)
\(20\) −34.9852 20.1987i −1.74926 1.00994i
\(21\) 0 0
\(22\) 3.06839 5.31461i 0.139472 0.241573i
\(23\) −24.2254 + 13.9865i −1.05328 + 0.608110i −0.923565 0.383442i \(-0.874739\pi\)
−0.129712 + 0.991552i \(0.541405\pi\)
\(24\) 0 0
\(25\) 12.8697 0.514787
\(26\) 18.7787 47.7868i 0.722259 1.83795i
\(27\) 0 0
\(28\) 45.4110 + 78.6542i 1.62182 + 2.80908i
\(29\) −19.5861 + 11.3080i −0.675383 + 0.389932i −0.798113 0.602508i \(-0.794168\pi\)
0.122730 + 0.992440i \(0.460835\pi\)
\(30\) 0 0
\(31\) −28.9341 −0.933359 −0.466679 0.884427i \(-0.654550\pi\)
−0.466679 + 0.884427i \(0.654550\pi\)
\(32\) 142.780 + 82.4340i 4.46187 + 2.57606i
\(33\) 0 0
\(34\) −0.209247 −0.00615432
\(35\) 23.6179 + 13.6358i 0.674796 + 0.389594i
\(36\) 0 0
\(37\) −7.55065 13.0781i −0.204072 0.353462i 0.745765 0.666209i \(-0.232084\pi\)
−0.949837 + 0.312747i \(0.898751\pi\)
\(38\) 75.1181i 1.97679i
\(39\) 0 0
\(40\) 104.529 2.61321
\(41\) −10.8214 + 6.24772i −0.263936 + 0.152383i −0.626129 0.779720i \(-0.715362\pi\)
0.362193 + 0.932103i \(0.382028\pi\)
\(42\) 0 0
\(43\) −17.8186 + 30.8627i −0.414385 + 0.717736i −0.995364 0.0961826i \(-0.969337\pi\)
0.580978 + 0.813919i \(0.302670\pi\)
\(44\) 18.0223i 0.409598i
\(45\) 0 0
\(46\) 55.2404 95.6792i 1.20088 2.07998i
\(47\) 25.2020i 0.536213i 0.963389 + 0.268107i \(0.0863980\pi\)
−0.963389 + 0.268107i \(0.913602\pi\)
\(48\) 0 0
\(49\) −6.15612 10.6627i −0.125635 0.217606i
\(50\) −44.0195 + 25.4147i −0.880391 + 0.508294i
\(51\) 0 0
\(52\) 22.4091 + 149.111i 0.430944 + 2.86753i
\(53\) 20.1527i 0.380240i −0.981761 0.190120i \(-0.939112\pi\)
0.981761 0.190120i \(-0.0608876\pi\)
\(54\) 0 0
\(55\) 2.70583 + 4.68663i 0.0491968 + 0.0852114i
\(56\) −203.518 117.501i −3.63425 2.09824i
\(57\) 0 0
\(58\) 44.6616 77.3562i 0.770028 1.33373i
\(59\) 72.6718 + 41.9571i 1.23173 + 0.711137i 0.967389 0.253294i \(-0.0815139\pi\)
0.264336 + 0.964431i \(0.414847\pi\)
\(60\) 0 0
\(61\) 46.1130 79.8701i 0.755951 1.30935i −0.188949 0.981987i \(-0.560508\pi\)
0.944900 0.327359i \(-0.106158\pi\)
\(62\) 98.9665 57.1383i 1.59623 0.921586i
\(63\) 0 0
\(64\) −362.597 −5.66558
\(65\) 28.2146 + 35.4113i 0.434071 + 0.544790i
\(66\) 0 0
\(67\) −8.65002 14.9823i −0.129105 0.223616i 0.794225 0.607624i \(-0.207877\pi\)
−0.923330 + 0.384007i \(0.874544\pi\)
\(68\) 0.532182 0.307255i 0.00782620 0.00451846i
\(69\) 0 0
\(70\) −107.710 −1.53872
\(71\) 6.70449 + 3.87084i 0.0944295 + 0.0545189i 0.546471 0.837478i \(-0.315971\pi\)
−0.452042 + 0.891997i \(0.649304\pi\)
\(72\) 0 0
\(73\) −60.2339 −0.825122 −0.412561 0.910930i \(-0.635366\pi\)
−0.412561 + 0.910930i \(0.635366\pi\)
\(74\) 51.6526 + 29.8216i 0.698008 + 0.402995i
\(75\) 0 0
\(76\) 110.302 + 191.049i 1.45135 + 2.51381i
\(77\) 12.1665i 0.158007i
\(78\) 0 0
\(79\) 59.5786 0.754159 0.377080 0.926181i \(-0.376928\pi\)
0.377080 + 0.926181i \(0.376928\pi\)
\(80\) −217.590 + 125.625i −2.71987 + 1.57032i
\(81\) 0 0
\(82\) 24.6757 42.7395i 0.300923 0.521213i
\(83\) 69.3433i 0.835461i −0.908571 0.417731i \(-0.862826\pi\)
0.908571 0.417731i \(-0.137174\pi\)
\(84\) 0 0
\(85\) 0.0922610 0.159801i 0.00108542 0.00188001i
\(86\) 140.751i 1.63663i
\(87\) 0 0
\(88\) −23.3164 40.3853i −0.264960 0.458924i
\(89\) 7.25951 4.19128i 0.0815675 0.0470930i −0.458661 0.888611i \(-0.651671\pi\)
0.540229 + 0.841518i \(0.318338\pi\)
\(90\) 0 0
\(91\) −15.1280 100.662i −0.166241 1.10618i
\(92\) 324.457i 3.52671i
\(93\) 0 0
\(94\) −49.7683 86.2012i −0.529450 0.917034i
\(95\) 57.3673 + 33.1210i 0.603866 + 0.348642i
\(96\) 0 0
\(97\) 25.0793 43.4386i 0.258550 0.447821i −0.707304 0.706909i \(-0.750089\pi\)
0.965854 + 0.259088i \(0.0834221\pi\)
\(98\) 42.1129 + 24.3139i 0.429723 + 0.248101i
\(99\) 0 0
\(100\) 74.6371 129.275i 0.746371 1.29275i
\(101\) −150.510 + 86.8971i −1.49020 + 0.860367i −0.999937 0.0112080i \(-0.996432\pi\)
−0.490262 + 0.871575i \(0.663099\pi\)
\(102\) 0 0
\(103\) 41.2736 0.400714 0.200357 0.979723i \(-0.435790\pi\)
0.200357 + 0.979723i \(0.435790\pi\)
\(104\) −243.129 305.144i −2.33778 2.93408i
\(105\) 0 0
\(106\) 39.7970 + 68.9304i 0.375444 + 0.650287i
\(107\) 134.548 77.6813i 1.25746 0.725994i 0.284878 0.958564i \(-0.408047\pi\)
0.972580 + 0.232570i \(0.0747135\pi\)
\(108\) 0 0
\(109\) 106.118 0.973560 0.486780 0.873525i \(-0.338171\pi\)
0.486780 + 0.873525i \(0.338171\pi\)
\(110\) −18.5101 10.6868i −0.168273 0.0971526i
\(111\) 0 0
\(112\) 564.865 5.04344
\(113\) 31.6552 + 18.2761i 0.280134 + 0.161736i 0.633484 0.773756i \(-0.281624\pi\)
−0.353350 + 0.935491i \(0.614957\pi\)
\(114\) 0 0
\(115\) 48.7131 + 84.3736i 0.423592 + 0.733684i
\(116\) 262.322i 2.26140i
\(117\) 0 0
\(118\) −331.423 −2.80867
\(119\) −0.359266 + 0.207422i −0.00301904 + 0.00174305i
\(120\) 0 0
\(121\) −59.2929 + 102.698i −0.490024 + 0.848746i
\(122\) 364.251i 2.98566i
\(123\) 0 0
\(124\) −167.802 + 290.642i −1.35324 + 2.34389i
\(125\) 131.895i 1.05516i
\(126\) 0 0
\(127\) 59.4737 + 103.011i 0.468297 + 0.811114i 0.999344 0.0362288i \(-0.0115345\pi\)
−0.531047 + 0.847342i \(0.678201\pi\)
\(128\) 669.110 386.311i 5.22742 3.01805i
\(129\) 0 0
\(130\) −166.435 65.4038i −1.28027 0.503106i
\(131\) 16.9004i 0.129010i 0.997917 + 0.0645052i \(0.0205469\pi\)
−0.997917 + 0.0645052i \(0.979453\pi\)
\(132\) 0 0
\(133\) −74.4631 128.974i −0.559873 0.969729i
\(134\) 59.1732 + 34.1637i 0.441591 + 0.254953i
\(135\) 0 0
\(136\) −0.795025 + 1.37702i −0.00584577 + 0.0101252i
\(137\) −129.092 74.5312i −0.942277 0.544024i −0.0516033 0.998668i \(-0.516433\pi\)
−0.890673 + 0.454644i \(0.849766\pi\)
\(138\) 0 0
\(139\) −12.4281 + 21.5261i −0.0894109 + 0.154864i −0.907262 0.420565i \(-0.861832\pi\)
0.817851 + 0.575429i \(0.195165\pi\)
\(140\) 273.942 158.160i 1.95673 1.12972i
\(141\) 0 0
\(142\) −30.5761 −0.215325
\(143\) 7.38776 18.7998i 0.0516627 0.131467i
\(144\) 0 0
\(145\) 39.3843 + 68.2157i 0.271616 + 0.470453i
\(146\) 206.024 118.948i 1.41113 0.814714i
\(147\) 0 0
\(148\) −175.159 −1.18350
\(149\) −216.107 124.769i −1.45038 0.837377i −0.451877 0.892080i \(-0.649245\pi\)
−0.998503 + 0.0547033i \(0.982579\pi\)
\(150\) 0 0
\(151\) −177.640 −1.17642 −0.588212 0.808706i \(-0.700168\pi\)
−0.588212 + 0.808706i \(0.700168\pi\)
\(152\) −494.342 285.408i −3.25225 1.87769i
\(153\) 0 0
\(154\) 24.0262 + 41.6145i 0.156014 + 0.270224i
\(155\) 100.774i 0.650152i
\(156\) 0 0
\(157\) 15.6911 0.0999435 0.0499717 0.998751i \(-0.484087\pi\)
0.0499717 + 0.998751i \(0.484087\pi\)
\(158\) −203.783 + 117.654i −1.28977 + 0.744647i
\(159\) 0 0
\(160\) 287.106 497.283i 1.79441 3.10802i
\(161\) 219.035i 1.36047i
\(162\) 0 0
\(163\) −70.9192 + 122.836i −0.435087 + 0.753593i −0.997303 0.0733975i \(-0.976616\pi\)
0.562215 + 0.826991i \(0.309949\pi\)
\(164\) 144.934i 0.883741i
\(165\) 0 0
\(166\) 136.937 + 237.182i 0.824923 + 1.42881i
\(167\) −190.922 + 110.229i −1.14325 + 0.660054i −0.947233 0.320547i \(-0.896133\pi\)
−0.196015 + 0.980601i \(0.562800\pi\)
\(168\) 0 0
\(169\) 37.7483 164.730i 0.223363 0.974735i
\(170\) 0.728778i 0.00428693i
\(171\) 0 0
\(172\) 206.676 + 357.973i 1.20161 + 2.08124i
\(173\) −209.161 120.759i −1.20902 0.698029i −0.246476 0.969149i \(-0.579273\pi\)
−0.962546 + 0.271120i \(0.912606\pi\)
\(174\) 0 0
\(175\) −50.3861 + 87.2714i −0.287921 + 0.498694i
\(176\) 97.0723 + 56.0447i 0.551547 + 0.318436i
\(177\) 0 0
\(178\) −16.5537 + 28.6718i −0.0929981 + 0.161077i
\(179\) 124.823 72.0666i 0.697335 0.402607i −0.109019 0.994040i \(-0.534771\pi\)
0.806354 + 0.591433i \(0.201438\pi\)
\(180\) 0 0
\(181\) 177.598 0.981203 0.490601 0.871384i \(-0.336777\pi\)
0.490601 + 0.871384i \(0.336777\pi\)
\(182\) 250.529 + 314.432i 1.37653 + 1.72765i
\(183\) 0 0
\(184\) −419.767 727.058i −2.28134 3.95140i
\(185\) −45.5492 + 26.2979i −0.246212 + 0.142151i
\(186\) 0 0
\(187\) −0.0823200 −0.000440214
\(188\) 253.153 + 146.158i 1.34656 + 0.777437i
\(189\) 0 0
\(190\) −261.626 −1.37698
\(191\) 253.098 + 146.126i 1.32512 + 0.765058i 0.984540 0.175158i \(-0.0560436\pi\)
0.340579 + 0.940216i \(0.389377\pi\)
\(192\) 0 0
\(193\) 127.537 + 220.900i 0.660813 + 1.14456i 0.980402 + 0.197005i \(0.0631216\pi\)
−0.319590 + 0.947556i \(0.603545\pi\)
\(194\) 198.104i 1.02115i
\(195\) 0 0
\(196\) −142.809 −0.728616
\(197\) 110.874 64.0128i 0.562810 0.324938i −0.191463 0.981500i \(-0.561323\pi\)
0.754272 + 0.656562i \(0.227990\pi\)
\(198\) 0 0
\(199\) −98.5281 + 170.656i −0.495116 + 0.857566i −0.999984 0.00563041i \(-0.998208\pi\)
0.504868 + 0.863196i \(0.331541\pi\)
\(200\) 386.248i 1.93124i
\(201\) 0 0
\(202\) 343.204 594.447i 1.69903 2.94281i
\(203\) 177.089i 0.872358i
\(204\) 0 0
\(205\) 21.7599 + 37.6893i 0.106146 + 0.183850i
\(206\) −141.172 + 81.5059i −0.685303 + 0.395660i
\(207\) 0 0
\(208\) 872.834 + 342.997i 4.19632 + 1.64902i
\(209\) 29.5523i 0.141399i
\(210\) 0 0
\(211\) −30.3040 52.4880i −0.143621 0.248758i 0.785237 0.619196i \(-0.212541\pi\)
−0.928858 + 0.370437i \(0.879208\pi\)
\(212\) −202.433 116.875i −0.954873 0.551296i
\(213\) 0 0
\(214\) −306.806 + 531.404i −1.43367 + 2.48319i
\(215\) 107.490 + 62.0596i 0.499955 + 0.288649i
\(216\) 0 0
\(217\) 113.280 196.207i 0.522028 0.904180i
\(218\) −362.967 + 209.559i −1.66499 + 0.961280i
\(219\) 0 0
\(220\) 62.7693 0.285315
\(221\) −0.681092 + 0.102357i −0.00308186 + 0.000463155i
\(222\) 0 0
\(223\) 72.0887 + 124.861i 0.323268 + 0.559916i 0.981160 0.193196i \(-0.0618852\pi\)
−0.657892 + 0.753112i \(0.728552\pi\)
\(224\) −1118.00 + 645.476i −4.99106 + 2.88159i
\(225\) 0 0
\(226\) −144.365 −0.638782
\(227\) 111.046 + 64.1125i 0.489190 + 0.282434i 0.724238 0.689550i \(-0.242192\pi\)
−0.235048 + 0.971984i \(0.575525\pi\)
\(228\) 0 0
\(229\) −286.798 −1.25239 −0.626197 0.779665i \(-0.715390\pi\)
−0.626197 + 0.779665i \(0.715390\pi\)
\(230\) −333.238 192.395i −1.44886 0.836499i
\(231\) 0 0
\(232\) −339.380 587.823i −1.46284 2.53372i
\(233\) 57.2952i 0.245902i 0.992413 + 0.122951i \(0.0392358\pi\)
−0.992413 + 0.122951i \(0.960764\pi\)
\(234\) 0 0
\(235\) 87.7752 0.373511
\(236\) 842.914 486.657i 3.57167 2.06210i
\(237\) 0 0
\(238\) 0.819224 1.41894i 0.00344212 0.00596192i
\(239\) 190.663i 0.797755i −0.917004 0.398878i \(-0.869400\pi\)
0.917004 0.398878i \(-0.130600\pi\)
\(240\) 0 0
\(241\) 195.341 338.341i 0.810546 1.40391i −0.101937 0.994791i \(-0.532504\pi\)
0.912483 0.409115i \(-0.134163\pi\)
\(242\) 468.360i 1.93537i
\(243\) 0 0
\(244\) −534.861 926.406i −2.19205 3.79675i
\(245\) −37.1368 + 21.4409i −0.151579 + 0.0875140i
\(246\) 0 0
\(247\) −36.7455 244.507i −0.148767 0.989907i
\(248\) 868.379i 3.50153i
\(249\) 0 0
\(250\) 260.462 + 451.134i 1.04185 + 1.80454i
\(251\) 204.609 + 118.131i 0.815177 + 0.470642i 0.848750 0.528794i \(-0.177356\pi\)
−0.0335737 + 0.999436i \(0.510689\pi\)
\(252\) 0 0
\(253\) 21.7322 37.6412i 0.0858980 0.148780i
\(254\) −406.848 234.894i −1.60177 0.924780i
\(255\) 0 0
\(256\) −800.559 + 1386.61i −3.12718 + 5.41644i
\(257\) −168.597 + 97.3394i −0.656018 + 0.378752i −0.790758 0.612129i \(-0.790313\pi\)
0.134740 + 0.990881i \(0.456980\pi\)
\(258\) 0 0
\(259\) 118.246 0.456550
\(260\) 519.335 78.0478i 1.99744 0.300184i
\(261\) 0 0
\(262\) −33.3744 57.8061i −0.127383 0.220634i
\(263\) −369.214 + 213.166i −1.40386 + 0.810516i −0.994786 0.101987i \(-0.967480\pi\)
−0.409070 + 0.912503i \(0.634147\pi\)
\(264\) 0 0
\(265\) −70.1891 −0.264864
\(266\) 509.388 + 294.096i 1.91499 + 1.10562i
\(267\) 0 0
\(268\) −200.662 −0.748738
\(269\) 463.435 + 267.564i 1.72281 + 0.994662i 0.912996 + 0.407969i \(0.133763\pi\)
0.809809 + 0.586693i \(0.199571\pi\)
\(270\) 0 0
\(271\) −55.6910 96.4596i −0.205502 0.355939i 0.744791 0.667298i \(-0.232549\pi\)
−0.950292 + 0.311359i \(0.899216\pi\)
\(272\) 3.82193i 0.0140512i
\(273\) 0 0
\(274\) 588.729 2.14865
\(275\) −17.3178 + 9.99841i −0.0629737 + 0.0363579i
\(276\) 0 0
\(277\) 56.3692 97.6342i 0.203499 0.352470i −0.746155 0.665773i \(-0.768102\pi\)
0.949653 + 0.313303i \(0.101435\pi\)
\(278\) 98.1708i 0.353132i
\(279\) 0 0
\(280\) −409.241 + 708.826i −1.46157 + 2.53152i
\(281\) 317.901i 1.13132i 0.824638 + 0.565660i \(0.191379\pi\)
−0.824638 + 0.565660i \(0.808621\pi\)
\(282\) 0 0
\(283\) 195.437 + 338.506i 0.690589 + 1.19614i 0.971645 + 0.236444i \(0.0759820\pi\)
−0.281056 + 0.959691i \(0.590685\pi\)
\(284\) 77.7649 44.8976i 0.273820 0.158090i
\(285\) 0 0
\(286\) 11.8563 + 78.8922i 0.0414555 + 0.275847i
\(287\) 97.8419i 0.340913i
\(288\) 0 0
\(289\) −144.499 250.279i −0.499995 0.866017i
\(290\) −269.421 155.550i −0.929038 0.536380i
\(291\) 0 0
\(292\) −349.324 + 605.047i −1.19631 + 2.07208i
\(293\) 313.014 + 180.719i 1.06831 + 0.616788i 0.927719 0.373280i \(-0.121767\pi\)
0.140589 + 0.990068i \(0.455100\pi\)
\(294\) 0 0
\(295\) 146.131 253.106i 0.495358 0.857986i
\(296\) 392.504 226.612i 1.32603 0.765581i
\(297\) 0 0
\(298\) 985.563 3.30726
\(299\) 133.002 338.455i 0.444824 1.13195i
\(300\) 0 0
\(301\) −139.523 241.661i −0.463532 0.802861i
\(302\) 607.602 350.799i 2.01193 1.16159i
\(303\) 0 0
\(304\) 1372.05 4.51331
\(305\) −278.176 160.605i −0.912054 0.526574i
\(306\) 0 0
\(307\) −442.916 −1.44272 −0.721362 0.692558i \(-0.756484\pi\)
−0.721362 + 0.692558i \(0.756484\pi\)
\(308\) −122.212 70.5593i −0.396793 0.229089i
\(309\) 0 0
\(310\) −199.005 344.687i −0.641951 1.11189i
\(311\) 546.608i 1.75758i 0.477206 + 0.878792i \(0.341650\pi\)
−0.477206 + 0.878792i \(0.658350\pi\)
\(312\) 0 0
\(313\) −421.281 −1.34595 −0.672974 0.739667i \(-0.734983\pi\)
−0.672974 + 0.739667i \(0.734983\pi\)
\(314\) −53.6700 + 30.9864i −0.170924 + 0.0986829i
\(315\) 0 0
\(316\) 345.523 598.464i 1.09343 1.89387i
\(317\) 80.2351i 0.253108i 0.991960 + 0.126554i \(0.0403917\pi\)
−0.991960 + 0.126554i \(0.959608\pi\)
\(318\) 0 0
\(319\) 17.5704 30.4328i 0.0550795 0.0954005i
\(320\) 1262.88i 3.94649i
\(321\) 0 0
\(322\) 432.544 + 749.189i 1.34331 + 2.32667i
\(323\) −0.872650 + 0.503825i −0.00270170 + 0.00155983i
\(324\) 0 0
\(325\) −130.850 + 104.257i −0.402615 + 0.320791i
\(326\) 560.198i 1.71840i
\(327\) 0 0
\(328\) −187.508 324.774i −0.571671 0.990164i
\(329\) −170.899 98.6686i −0.519450 0.299905i
\(330\) 0 0
\(331\) −31.8141 + 55.1037i −0.0961152 + 0.166476i −0.910073 0.414447i \(-0.863975\pi\)
0.813958 + 0.580923i \(0.197308\pi\)
\(332\) −696.550 402.153i −2.09804 1.21131i
\(333\) 0 0
\(334\) 435.355 754.056i 1.30346 2.25765i
\(335\) −52.1812 + 30.1268i −0.155765 + 0.0899308i
\(336\) 0 0
\(337\) 394.465 1.17052 0.585260 0.810846i \(-0.300992\pi\)
0.585260 + 0.810846i \(0.300992\pi\)
\(338\) 196.190 + 637.989i 0.580445 + 1.88754i
\(339\) 0 0
\(340\) −1.07013 1.85352i −0.00314743 0.00545152i
\(341\) 38.9345 22.4788i 0.114177 0.0659203i
\(342\) 0 0
\(343\) −287.273 −0.837531
\(344\) −926.259 534.776i −2.69261 1.55458i
\(345\) 0 0
\(346\) 953.887 2.75690
\(347\) 263.595 + 152.187i 0.759640 + 0.438578i 0.829166 0.559002i \(-0.188816\pi\)
−0.0695266 + 0.997580i \(0.522149\pi\)
\(348\) 0 0
\(349\) 272.010 + 471.135i 0.779399 + 1.34996i 0.932289 + 0.361715i \(0.117809\pi\)
−0.152890 + 0.988243i \(0.548858\pi\)
\(350\) 398.005i 1.13716i
\(351\) 0 0
\(352\) −256.171 −0.727758
\(353\) −172.625 + 99.6651i −0.489023 + 0.282337i −0.724169 0.689623i \(-0.757776\pi\)
0.235146 + 0.971960i \(0.424443\pi\)
\(354\) 0 0
\(355\) 13.4816 23.3508i 0.0379764 0.0657770i
\(356\) 97.2286i 0.273114i
\(357\) 0 0
\(358\) −284.630 + 492.994i −0.795057 + 1.37708i
\(359\) 113.145i 0.315167i −0.987506 0.157584i \(-0.949630\pi\)
0.987506 0.157584i \(-0.0503704\pi\)
\(360\) 0 0
\(361\) −0.369463 0.639928i −0.00102344 0.00177265i
\(362\) −607.457 + 350.715i −1.67806 + 0.968827i
\(363\) 0 0
\(364\) −1098.88 431.827i −3.01891 1.18634i
\(365\) 209.786i 0.574757i
\(366\) 0 0
\(367\) −139.798 242.138i −0.380922 0.659777i 0.610272 0.792192i \(-0.291060\pi\)
−0.991194 + 0.132415i \(0.957727\pi\)
\(368\) 1747.60 + 1008.98i 4.74891 + 2.74178i
\(369\) 0 0
\(370\) 103.865 179.899i 0.280715 0.486213i
\(371\) 136.659 + 78.9000i 0.368352 + 0.212668i
\(372\) 0 0
\(373\) −133.323 + 230.922i −0.357435 + 0.619095i −0.987532 0.157421i \(-0.949682\pi\)
0.630097 + 0.776517i \(0.283015\pi\)
\(374\) 0.281568 0.162563i 0.000752856 0.000434661i
\(375\) 0 0
\(376\) −756.370 −2.01162
\(377\) 107.532 273.639i 0.285230 0.725833i
\(378\) 0 0
\(379\) 257.310 + 445.675i 0.678919 + 1.17592i 0.975307 + 0.220855i \(0.0708847\pi\)
−0.296388 + 0.955068i \(0.595782\pi\)
\(380\) 665.399 384.168i 1.75105 1.01097i
\(381\) 0 0
\(382\) −1154.26 −3.02163
\(383\) −310.787 179.433i −0.811455 0.468494i 0.0360060 0.999352i \(-0.488536\pi\)
−0.847461 + 0.530858i \(0.821870\pi\)
\(384\) 0 0
\(385\) −42.3744 −0.110063
\(386\) −872.456 503.713i −2.26025 1.30496i
\(387\) 0 0
\(388\) −290.893 503.841i −0.749724 1.29856i
\(389\) 46.5721i 0.119723i −0.998207 0.0598613i \(-0.980934\pi\)
0.998207 0.0598613i \(-0.0190659\pi\)
\(390\) 0 0
\(391\) −1.48201 −0.00379031
\(392\) 320.012 184.759i 0.816358 0.471324i
\(393\) 0 0
\(394\) −252.822 + 437.900i −0.641679 + 1.11142i
\(395\) 207.504i 0.525326i
\(396\) 0 0
\(397\) −125.251 + 216.942i −0.315495 + 0.546453i −0.979543 0.201237i \(-0.935504\pi\)
0.664048 + 0.747690i \(0.268837\pi\)
\(398\) 778.282i 1.95548i
\(399\) 0 0
\(400\) −464.204 804.025i −1.16051 2.01006i
\(401\) 352.188 203.336i 0.878275 0.507072i 0.00818543 0.999966i \(-0.497394\pi\)
0.870089 + 0.492894i \(0.164061\pi\)
\(402\) 0 0
\(403\) 294.182 234.395i 0.729980 0.581625i
\(404\) 2015.82i 4.98966i
\(405\) 0 0
\(406\) 349.710 + 605.716i 0.861355 + 1.49191i
\(407\) 20.3207 + 11.7322i 0.0499280 + 0.0288259i
\(408\) 0 0
\(409\) −120.999 + 209.577i −0.295842 + 0.512413i −0.975180 0.221412i \(-0.928933\pi\)
0.679339 + 0.733825i \(0.262267\pi\)
\(410\) −148.856 85.9419i −0.363063 0.209614i
\(411\) 0 0
\(412\) 239.364 414.591i 0.580981 1.00629i
\(413\) −569.036 + 328.533i −1.37781 + 0.795479i
\(414\) 0 0
\(415\) −241.513 −0.581959
\(416\) −2119.48 + 318.525i −5.09491 + 0.765685i
\(417\) 0 0
\(418\) 58.3591 + 101.081i 0.139615 + 0.241820i
\(419\) −121.143 + 69.9420i −0.289124 + 0.166926i −0.637547 0.770412i \(-0.720051\pi\)
0.348423 + 0.937338i \(0.386717\pi\)
\(420\) 0 0
\(421\) 78.3626 0.186135 0.0930673 0.995660i \(-0.470333\pi\)
0.0930673 + 0.995660i \(0.470333\pi\)
\(422\) 207.304 + 119.687i 0.491242 + 0.283618i
\(423\) 0 0
\(424\) 604.828 1.42648
\(425\) 0.590487 + 0.340918i 0.00138938 + 0.000802159i
\(426\) 0 0
\(427\) 361.075 + 625.400i 0.845608 + 1.46464i
\(428\) 1802.04i 4.21037i
\(429\) 0 0
\(430\) −490.215 −1.14003
\(431\) −475.554 + 274.561i −1.10337 + 0.637033i −0.937105 0.349048i \(-0.886505\pi\)
−0.166268 + 0.986081i \(0.553172\pi\)
\(432\) 0 0
\(433\) −366.932 + 635.544i −0.847417 + 1.46777i 0.0360879 + 0.999349i \(0.488510\pi\)
−0.883505 + 0.468421i \(0.844823\pi\)
\(434\) 894.811i 2.06178i
\(435\) 0 0
\(436\) 615.427 1065.95i 1.41153 2.44484i
\(437\) 532.032i 1.21746i
\(438\) 0 0
\(439\) −243.833 422.332i −0.555429 0.962031i −0.997870 0.0652337i \(-0.979221\pi\)
0.442441 0.896798i \(-0.354113\pi\)
\(440\) −140.656 + 81.2080i −0.319673 + 0.184564i
\(441\) 0 0
\(442\) 2.12748 1.69511i 0.00481330 0.00383508i
\(443\) 626.871i 1.41506i −0.706684 0.707530i \(-0.749810\pi\)
0.706684 0.707530i \(-0.250190\pi\)
\(444\) 0 0
\(445\) −14.5977 25.2839i −0.0328037 0.0568177i
\(446\) −493.146 284.718i −1.10571 0.638381i
\(447\) 0 0
\(448\) 1419.61 2458.83i 3.16876 5.48846i
\(449\) 288.400 + 166.508i 0.642315 + 0.370841i 0.785506 0.618854i \(-0.212403\pi\)
−0.143191 + 0.989695i \(0.545736\pi\)
\(450\) 0 0
\(451\) 9.70767 16.8142i 0.0215248 0.0372820i
\(452\) 367.166 211.983i 0.812314 0.468990i
\(453\) 0 0
\(454\) −506.430 −1.11549
\(455\) −350.593 + 52.6886i −0.770534 + 0.115799i
\(456\) 0 0
\(457\) −178.056 308.403i −0.389620 0.674842i 0.602778 0.797909i \(-0.294060\pi\)
−0.992398 + 0.123067i \(0.960727\pi\)
\(458\) 980.967 566.362i 2.14185 1.23660i
\(459\) 0 0
\(460\) 1130.04 2.45661
\(461\) 220.638 + 127.385i 0.478607 + 0.276324i 0.719836 0.694145i \(-0.244217\pi\)
−0.241229 + 0.970468i \(0.577550\pi\)
\(462\) 0 0
\(463\) −292.288 −0.631292 −0.315646 0.948877i \(-0.602221\pi\)
−0.315646 + 0.948877i \(0.602221\pi\)
\(464\) 1412.93 + 815.753i 3.04510 + 1.75809i
\(465\) 0 0
\(466\) −113.145 195.973i −0.242800 0.420543i
\(467\) 380.785i 0.815385i 0.913119 + 0.407692i \(0.133666\pi\)
−0.913119 + 0.407692i \(0.866334\pi\)
\(468\) 0 0
\(469\) 135.463 0.288834
\(470\) −300.227 + 173.336i −0.638780 + 0.368800i
\(471\) 0 0
\(472\) −1259.23 + 2181.05i −2.66785 + 4.62086i
\(473\) 55.3728i 0.117067i
\(474\) 0 0
\(475\) −122.387 + 211.980i −0.257657 + 0.446275i
\(476\) 4.81175i 0.0101087i
\(477\) 0 0
\(478\) 376.517 + 652.147i 0.787693 + 1.36432i
\(479\) −161.150 + 93.0402i −0.336431 + 0.194238i −0.658693 0.752412i \(-0.728890\pi\)
0.322262 + 0.946651i \(0.395557\pi\)
\(480\) 0 0
\(481\) 182.715 + 71.8015i 0.379865 + 0.149275i
\(482\) 1543.02i 3.20129i
\(483\) 0 0
\(484\) 687.733 + 1191.19i 1.42094 + 2.46113i
\(485\) −151.291 87.3478i −0.311940 0.180098i
\(486\) 0 0
\(487\) 286.705 496.588i 0.588717 1.01969i −0.405684 0.914013i \(-0.632967\pi\)
0.994401 0.105674i \(-0.0336999\pi\)
\(488\) 2397.08 + 1383.96i 4.91205 + 2.83598i
\(489\) 0 0
\(490\) 84.6819 146.673i 0.172820 0.299333i
\(491\) 362.363 209.211i 0.738011 0.426091i −0.0833348 0.996522i \(-0.526557\pi\)
0.821346 + 0.570431i \(0.193224\pi\)
\(492\) 0 0
\(493\) −1.19820 −0.00243043
\(494\) 608.530 + 763.749i 1.23184 + 1.54605i
\(495\) 0 0
\(496\) 1043.64 + 1807.64i 2.10412 + 3.64444i
\(497\) −52.4976 + 30.3095i −0.105629 + 0.0609849i
\(498\) 0 0
\(499\) 446.216 0.894221 0.447110 0.894479i \(-0.352453\pi\)
0.447110 + 0.894479i \(0.352453\pi\)
\(500\) −1324.88 764.919i −2.64976 1.52984i
\(501\) 0 0
\(502\) −933.130 −1.85882
\(503\) −400.438 231.193i −0.796100 0.459628i 0.0460057 0.998941i \(-0.485351\pi\)
−0.842106 + 0.539313i \(0.818684\pi\)
\(504\) 0 0
\(505\) 302.650 + 524.206i 0.599308 + 1.03803i
\(506\) 171.665i 0.339258i
\(507\) 0 0
\(508\) 1379.66 2.71587
\(509\) 136.418 78.7609i 0.268012 0.154737i −0.359972 0.932963i \(-0.617214\pi\)
0.627984 + 0.778227i \(0.283880\pi\)
\(510\) 0 0
\(511\) 235.822 408.456i 0.461491 0.799327i
\(512\) 3233.20i 6.31484i
\(513\) 0 0
\(514\) 384.446 665.881i 0.747950 1.29549i
\(515\) 143.750i 0.279126i
\(516\) 0 0
\(517\) −19.5794 33.9125i −0.0378711 0.0655947i
\(518\) −404.451 + 233.510i −0.780793 + 0.450791i
\(519\) 0 0
\(520\) −1062.77 + 846.784i −2.04380 + 1.62843i
\(521\) 110.574i 0.212234i 0.994354 + 0.106117i \(0.0338418\pi\)
−0.994354 + 0.106117i \(0.966158\pi\)
\(522\) 0 0
\(523\) −172.086 298.061i −0.329036 0.569907i 0.653285 0.757112i \(-0.273390\pi\)
−0.982321 + 0.187205i \(0.940057\pi\)
\(524\) 169.763 + 98.0129i 0.323976 + 0.187047i
\(525\) 0 0
\(526\) 841.908 1458.23i 1.60059 2.77230i
\(527\) −1.32756 0.766465i −0.00251908 0.00145439i
\(528\) 0 0
\(529\) 126.746 219.530i 0.239595 0.414991i
\(530\) 240.075 138.607i 0.452972 0.261524i
\(531\) 0 0
\(532\) −1727.38 −3.24696
\(533\) 59.4115 151.186i 0.111466 0.283651i
\(534\) 0 0
\(535\) −270.553 468.612i −0.505707 0.875910i
\(536\) 449.652 259.607i 0.838903 0.484341i
\(537\) 0 0
\(538\) −2113.51 −3.92846
\(539\) 16.5677 + 9.56535i 0.0307378 + 0.0177465i
\(540\) 0 0
\(541\) −248.721 −0.459742 −0.229871 0.973221i \(-0.573830\pi\)
−0.229871 + 0.973221i \(0.573830\pi\)
\(542\) 380.972 + 219.954i 0.702900 + 0.405819i
\(543\) 0 0
\(544\) 4.36735 + 7.56448i 0.00802822 + 0.0139053i
\(545\) 369.594i 0.678155i
\(546\) 0 0
\(547\) 576.229 1.05344 0.526718 0.850040i \(-0.323423\pi\)
0.526718 + 0.850040i \(0.323423\pi\)
\(548\) −1497.33 + 864.482i −2.73235 + 1.57752i
\(549\) 0 0
\(550\) 39.4892 68.3973i 0.0717985 0.124359i
\(551\) 430.145i 0.780663i
\(552\) 0 0
\(553\) −233.256 + 404.012i −0.421802 + 0.730582i
\(554\) 445.265i 0.803728i
\(555\) 0 0
\(556\) 144.153 + 249.680i 0.259267 + 0.449064i
\(557\) 593.466 342.638i 1.06547 0.615149i 0.138529 0.990358i \(-0.455763\pi\)
0.926940 + 0.375210i \(0.122429\pi\)
\(558\) 0 0
\(559\) −68.8509 458.138i −0.123168 0.819567i
\(560\) 1967.35i 3.51312i
\(561\) 0 0
\(562\) −627.783 1087.35i −1.11705 1.93479i
\(563\) −389.054 224.620i −0.691037 0.398970i 0.112963 0.993599i \(-0.463966\pi\)
−0.804000 + 0.594629i \(0.797299\pi\)
\(564\) 0 0
\(565\) 63.6532 110.251i 0.112661 0.195134i
\(566\) −1336.95 771.886i −2.36210 1.36376i
\(567\) 0 0
\(568\) −116.173 + 201.217i −0.204530 + 0.354255i
\(569\) 265.734 153.422i 0.467019 0.269634i −0.247972 0.968767i \(-0.579764\pi\)
0.714991 + 0.699134i \(0.246431\pi\)
\(570\) 0 0
\(571\) −207.442 −0.363296 −0.181648 0.983364i \(-0.558143\pi\)
−0.181648 + 0.983364i \(0.558143\pi\)
\(572\) −145.999 183.239i −0.255242 0.320347i
\(573\) 0 0
\(574\) 193.216 + 334.659i 0.336613 + 0.583030i
\(575\) −311.773 + 180.002i −0.542213 + 0.313047i
\(576\) 0 0
\(577\) 1016.11 1.76102 0.880508 0.474031i \(-0.157201\pi\)
0.880508 + 0.474031i \(0.157201\pi\)
\(578\) 988.488 + 570.704i 1.71019 + 0.987377i
\(579\) 0 0
\(580\) 913.631 1.57523
\(581\) 470.228 + 271.486i 0.809343 + 0.467274i
\(582\) 0 0
\(583\) 15.6566 + 27.1180i 0.0268552 + 0.0465146i
\(584\) 1807.76i 3.09547i
\(585\) 0 0
\(586\) −1427.52 −2.43603
\(587\) 491.007 283.483i 0.836469 0.482936i −0.0195935 0.999808i \(-0.506237\pi\)
0.856062 + 0.516872i \(0.172904\pi\)
\(588\) 0 0
\(589\) 275.155 476.583i 0.467157 0.809139i
\(590\) 1154.30i 1.95644i
\(591\) 0 0
\(592\) −544.698 + 943.444i −0.920097 + 1.59366i
\(593\) 534.041i 0.900575i 0.892884 + 0.450287i \(0.148678\pi\)
−0.892884 + 0.450287i \(0.851322\pi\)
\(594\) 0 0
\(595\) 0.722423 + 1.25127i 0.00121416 + 0.00210298i
\(596\) −2506.60 + 1447.19i −4.20571 + 2.42817i
\(597\) 0 0
\(598\) 213.449 + 1420.30i 0.356938 + 2.37509i
\(599\) 277.715i 0.463631i 0.972760 + 0.231816i \(0.0744666\pi\)
−0.972760 + 0.231816i \(0.925533\pi\)
\(600\) 0 0
\(601\) −397.687 688.814i −0.661709 1.14611i −0.980166 0.198176i \(-0.936498\pi\)
0.318458 0.947937i \(-0.396835\pi\)
\(602\) 954.452 + 551.053i 1.58547 + 0.915371i
\(603\) 0 0
\(604\) −1030.22 + 1784.39i −1.70566 + 2.95428i
\(605\) 357.684 + 206.509i 0.591213 + 0.341337i
\(606\) 0 0
\(607\) −151.132 + 261.768i −0.248981 + 0.431248i −0.963243 0.268630i \(-0.913429\pi\)
0.714262 + 0.699878i \(0.246762\pi\)
\(608\) −2715.59 + 1567.85i −4.46644 + 2.57870i
\(609\) 0 0
\(610\) 1268.64 2.07973
\(611\) −204.161 256.237i −0.334142 0.419373i
\(612\) 0 0
\(613\) 196.015 + 339.508i 0.319763 + 0.553846i 0.980438 0.196826i \(-0.0630633\pi\)
−0.660675 + 0.750672i \(0.729730\pi\)
\(614\) 1514.95 874.659i 2.46735 1.42453i
\(615\) 0 0
\(616\) 365.146 0.592769
\(617\) 579.136 + 334.364i 0.938632 + 0.541919i 0.889531 0.456874i \(-0.151031\pi\)
0.0491007 + 0.998794i \(0.484364\pi\)
\(618\) 0 0
\(619\) 1111.30 1.79532 0.897661 0.440686i \(-0.145265\pi\)
0.897661 + 0.440686i \(0.145265\pi\)
\(620\) 1012.27 + 584.432i 1.63269 + 0.942632i
\(621\) 0 0
\(622\) −1079.43 1869.62i −1.73541 3.00583i
\(623\) 65.6372i 0.105357i
\(624\) 0 0
\(625\) −137.630 −0.220207
\(626\) 1440.95 831.935i 2.30184 1.32897i
\(627\) 0 0
\(628\) 91.0000 157.617i 0.144905 0.250982i
\(629\) 0.800067i 0.00127197i
\(630\) 0 0
\(631\) 384.366 665.742i 0.609138 1.05506i −0.382245 0.924061i \(-0.624849\pi\)
0.991383 0.130997i \(-0.0418178\pi\)
\(632\) 1788.09i 2.82925i
\(633\) 0 0
\(634\) −158.446 274.437i −0.249915 0.432866i
\(635\) 358.775 207.139i 0.564999 0.326203i
\(636\) 0 0
\(637\) 148.970 + 58.5405i 0.233861 + 0.0919003i
\(638\) 138.790i 0.217539i
\(639\) 0 0
\(640\) −1345.47 2330.42i −2.10229 3.64128i
\(641\) 651.395 + 376.083i 1.01622 + 0.586713i 0.913006 0.407947i \(-0.133755\pi\)
0.103211 + 0.994660i \(0.467088\pi\)
\(642\) 0 0
\(643\) −266.402 + 461.421i −0.414311 + 0.717607i −0.995356 0.0962641i \(-0.969311\pi\)
0.581045 + 0.813871i \(0.302644\pi\)
\(644\) −2200.20 1270.28i −3.41645 1.97249i
\(645\) 0 0
\(646\) 1.98988 3.44657i 0.00308031 0.00533525i
\(647\) −444.157 + 256.434i −0.686487 + 0.396343i −0.802294 0.596928i \(-0.796388\pi\)
0.115808 + 0.993272i \(0.463054\pi\)
\(648\) 0 0
\(649\) −130.385 −0.200902
\(650\) 241.676 615.000i 0.371810 0.946154i
\(651\) 0 0
\(652\) 822.586 + 1424.76i 1.26164 + 2.18522i
\(653\) −265.640 + 153.367i −0.406799 + 0.234866i −0.689413 0.724368i \(-0.742132\pi\)
0.282614 + 0.959234i \(0.408798\pi\)
\(654\) 0 0
\(655\) 58.8616 0.0898650
\(656\) 780.645 + 450.705i 1.19001 + 0.687051i
\(657\) 0 0
\(658\) 779.393 1.18449
\(659\) −220.263 127.169i −0.334239 0.192973i 0.323483 0.946234i \(-0.395146\pi\)
−0.657721 + 0.753261i \(0.728480\pi\)
\(660\) 0 0
\(661\) −297.467 515.227i −0.450025 0.779466i 0.548362 0.836241i \(-0.315252\pi\)
−0.998387 + 0.0567747i \(0.981918\pi\)
\(662\) 251.303i 0.379611i
\(663\) 0 0
\(664\) 2081.15 3.13426
\(665\) −449.198 + 259.345i −0.675486 + 0.389992i
\(666\) 0 0
\(667\) 316.320 547.883i 0.474243 0.821414i
\(668\) 2557.07i 3.82796i
\(669\) 0 0
\(670\) 118.987 206.092i 0.177593 0.307600i
\(671\) 143.300i 0.213562i
\(672\) 0 0
\(673\) −144.062 249.523i −0.214060 0.370762i 0.738922 0.673792i \(-0.235335\pi\)
−0.952981 + 0.303029i \(0.902002\pi\)
\(674\) −1349.23 + 778.980i −2.00183 + 1.15576i
\(675\) 0 0
\(676\) −1435.79 1334.53i −2.12395 1.97415i
\(677\) 1095.13i 1.61762i −0.588070 0.808810i \(-0.700112\pi\)
0.588070 0.808810i \(-0.299888\pi\)
\(678\) 0 0
\(679\) 196.376 + 340.134i 0.289214 + 0.500933i
\(680\) 4.79598 + 2.76896i 0.00705292 + 0.00407200i
\(681\) 0 0
\(682\) −88.7812 + 153.774i −0.130178 + 0.225474i
\(683\) −770.415 444.800i −1.12799 0.651244i −0.184559 0.982821i \(-0.559086\pi\)
−0.943428 + 0.331578i \(0.892419\pi\)
\(684\) 0 0
\(685\) −259.582 + 449.609i −0.378952 + 0.656364i
\(686\) 982.591 567.299i 1.43235 0.826966i
\(687\) 0 0
\(688\) 2570.83 3.73668
\(689\) 163.257 + 204.899i 0.236947 + 0.297386i
\(690\) 0 0
\(691\) 268.340 + 464.779i 0.388336 + 0.672617i 0.992226 0.124450i \(-0.0397167\pi\)
−0.603890 + 0.797068i \(0.706383\pi\)
\(692\) −2426.04 + 1400.67i −3.50584 + 2.02410i
\(693\) 0 0
\(694\) −1202.14 −1.73219
\(695\) 74.9725 + 43.2854i 0.107874 + 0.0622811i
\(696\) 0 0
\(697\) −0.662008 −0.000949797
\(698\) −1860.77 1074.32i −2.66586 1.53914i
\(699\) 0 0
\(700\) 584.425 + 1012.25i 0.834892 + 1.44608i
\(701\) 809.935i 1.15540i 0.816250 + 0.577699i \(0.196049\pi\)
−0.816250 + 0.577699i \(0.803951\pi\)
\(702\) 0 0
\(703\) 287.218 0.408561
\(704\) 487.920 281.701i 0.693068 0.400143i
\(705\) 0 0
\(706\) 393.632 681.791i 0.557552 0.965709i
\(707\) 1360.85i 1.92482i
\(708\) 0 0
\(709\) −225.504 + 390.584i −0.318059 + 0.550895i −0.980083 0.198588i \(-0.936364\pi\)
0.662024 + 0.749483i \(0.269698\pi\)
\(710\) 106.492i 0.149989i
\(711\) 0 0
\(712\) 125.790 + 217.874i 0.176671 + 0.306003i
\(713\) 700.940 404.688i 0.983085 0.567585i
\(714\) 0 0
\(715\) −65.4772 25.7305i −0.0915765 0.0359868i
\(716\) 1671.79i 2.33490i
\(717\) 0 0
\(718\) 223.436 + 387.002i 0.311192 + 0.539000i
\(719\) −352.585 203.565i −0.490382 0.283122i 0.234351 0.972152i \(-0.424704\pi\)
−0.724733 + 0.689030i \(0.758037\pi\)
\(720\) 0 0
\(721\) −161.590 + 279.883i −0.224120 + 0.388187i
\(722\) 2.52743 + 1.45921i 0.00350059 + 0.00202107i
\(723\) 0 0
\(724\) 1029.97 1783.96i 1.42261 2.46404i
\(725\) −252.067 + 145.531i −0.347678 + 0.200732i
\(726\) 0 0
\(727\) −1100.48 −1.51373 −0.756865 0.653572i \(-0.773270\pi\)
−0.756865 + 0.653572i \(0.773270\pi\)
\(728\) 3021.11 454.025i 4.14987 0.623660i
\(729\) 0 0
\(730\) −414.280 717.555i −0.567507 0.982952i
\(731\) −1.63510 + 0.944028i −0.00223680 + 0.00129142i
\(732\) 0 0
\(733\) −342.568 −0.467351 −0.233675 0.972315i \(-0.575075\pi\)
−0.233675 + 0.972315i \(0.575075\pi\)
\(734\) 956.335 + 552.140i 1.30291 + 0.752235i
\(735\) 0 0
\(736\) −4611.86 −6.26611
\(737\) 23.2794 + 13.4404i 0.0315867 + 0.0182366i
\(738\) 0 0
\(739\) −478.879 829.443i −0.648009 1.12239i −0.983598 0.180376i \(-0.942268\pi\)
0.335588 0.942009i \(-0.391065\pi\)
\(740\) 610.053i 0.824396i
\(741\) 0 0
\(742\) −623.238 −0.839944
\(743\) −15.6101 + 9.01251i −0.0210096 + 0.0121299i −0.510468 0.859897i \(-0.670528\pi\)
0.489458 + 0.872027i \(0.337194\pi\)
\(744\) 0 0
\(745\) −434.554 + 752.669i −0.583294 + 1.01029i
\(746\) 1053.13i 1.41171i
\(747\) 0 0
\(748\) −0.477412 + 0.826901i −0.000638251 + 0.00110548i
\(749\) 1216.52i 1.62420i
\(750\) 0 0
\(751\) 37.8776 + 65.6059i 0.0504362 + 0.0873580i 0.890141 0.455685i \(-0.150606\pi\)
−0.839705 + 0.543043i \(0.817272\pi\)
\(752\) 1574.48 909.027i 2.09372 1.20881i
\(753\) 0 0
\(754\) 172.573 + 1148.31i 0.228876 + 1.52295i
\(755\) 618.696i 0.819465i
\(756\) 0 0
\(757\) 393.498 + 681.558i 0.519812 + 0.900341i 0.999735 + 0.0230304i \(0.00733145\pi\)
−0.479922 + 0.877311i \(0.659335\pi\)
\(758\) −1760.21 1016.26i −2.32218 1.34071i
\(759\) 0 0
\(760\) −994.037 + 1721.72i −1.30794 + 2.26543i
\(761\) 730.995 + 422.040i 0.960571 + 0.554586i 0.896349 0.443350i \(-0.146210\pi\)
0.0642223 + 0.997936i \(0.479543\pi\)
\(762\) 0 0
\(763\) −415.463 + 719.603i −0.544513 + 0.943124i
\(764\) 2935.66 1694.90i 3.84249 2.21846i
\(765\) 0 0
\(766\) 1417.36 1.85034
\(767\) −1078.77 + 162.122i −1.40648 + 0.211372i
\(768\) 0 0
\(769\) −53.2885 92.2985i −0.0692959 0.120024i 0.829296 0.558810i \(-0.188742\pi\)
−0.898592 + 0.438786i \(0.855409\pi\)
\(770\) 144.938 83.6798i 0.188231 0.108675i
\(771\) 0 0
\(772\) 2958.58 3.83236
\(773\) −570.104 329.150i −0.737522 0.425808i 0.0836459 0.996496i \(-0.473344\pi\)
−0.821168 + 0.570687i \(0.806677\pi\)
\(774\) 0 0
\(775\) −372.373 −0.480481
\(776\) 1303.69 + 752.687i 1.68002 + 0.969957i
\(777\) 0 0
\(778\) 91.9694 + 159.296i 0.118213 + 0.204750i
\(779\) 237.656i 0.305079i
\(780\) 0 0
\(781\) −12.0290 −0.0154020
\(782\) 5.06909 2.92664i 0.00648221 0.00374250i
\(783\) 0 0
\(784\) −444.098 + 769.200i −0.566451 + 0.981122i
\(785\) 54.6500i 0.0696179i
\(786\) 0 0
\(787\) −85.5172 + 148.120i −0.108662 + 0.188208i −0.915229 0.402935i \(-0.867990\pi\)
0.806566 + 0.591144i \(0.201323\pi\)
\(788\) 1484.96i 1.88447i
\(789\) 0 0
\(790\) 409.773 + 709.748i 0.518700 + 0.898415i
\(791\) −247.867 + 143.106i −0.313359 + 0.180918i
\(792\) 0 0
\(793\) 178.181 + 1185.62i 0.224692 + 1.49511i
\(794\) 989.373i 1.24606i
\(795\) 0 0
\(796\) 1142.82 + 1979.42i 1.43570 + 2.48671i
\(797\) −65.3138 37.7089i −0.0819495 0.0473136i 0.458465 0.888712i \(-0.348399\pi\)
−0.540415 + 0.841399i \(0.681733\pi\)
\(798\) 0 0
\(799\) −0.667602 + 1.15632i −0.000835547 + 0.00144721i
\(800\) 1837.53 + 1060.90i 2.29691 + 1.32612i
\(801\) 0 0
\(802\) −803.085 + 1390.98i −1.00135 + 1.73439i
\(803\) 81.0523 46.7955i 0.100937 0.0582759i
\(804\) 0 0
\(805\) −762.868 −0.947663
\(806\) −543.346 + 1382.67i −0.674127 + 1.71547i
\(807\) 0 0
\(808\) −2607.98 4517.15i −3.22770 5.59053i
\(809\) −911.781 + 526.417i −1.12705 + 0.650701i −0.943190 0.332252i \(-0.892191\pi\)
−0.183856 + 0.982953i \(0.558858\pi\)
\(810\) 0 0
\(811\) 250.658 0.309073 0.154536 0.987987i \(-0.450612\pi\)
0.154536 + 0.987987i \(0.450612\pi\)
\(812\) −1778.85 1027.02i −2.19070 1.26480i
\(813\) 0 0
\(814\) −92.6733 −0.113849
\(815\) 427.820 + 247.002i 0.524932 + 0.303070i
\(816\) 0 0
\(817\) −338.899 586.990i −0.414809 0.718471i
\(818\) 955.784i 1.16844i
\(819\) 0 0
\(820\) 504.783 0.615590
\(821\) 410.512 237.009i 0.500015 0.288684i −0.228705 0.973496i \(-0.573449\pi\)
0.728720 + 0.684812i \(0.240116\pi\)
\(822\) 0 0
\(823\) −95.9561 + 166.201i −0.116593 + 0.201945i −0.918415 0.395617i \(-0.870531\pi\)
0.801822 + 0.597562i \(0.203864\pi\)
\(824\) 1238.71i 1.50329i
\(825\) 0 0
\(826\) 1297.56 2247.43i 1.57089 2.72086i
\(827\) 921.567i 1.11435i 0.830395 + 0.557175i \(0.188115\pi\)
−0.830395 + 0.557175i \(0.811885\pi\)
\(828\) 0 0
\(829\) −250.159 433.288i −0.301760 0.522664i 0.674775 0.738024i \(-0.264241\pi\)
−0.976535 + 0.215360i \(0.930907\pi\)
\(830\) 826.073 476.933i 0.995269 0.574619i
\(831\) 0 0
\(832\) 3686.64 2937.39i 4.43105 3.53052i
\(833\) 0.652303i 0.000783077i
\(834\) 0 0
\(835\) 383.912 + 664.956i 0.459775 + 0.796354i
\(836\) −296.851 171.387i −0.355085 0.205009i
\(837\) 0 0
\(838\) 276.239 478.460i 0.329641 0.570955i
\(839\) −745.749 430.559i −0.888855 0.513181i −0.0152871 0.999883i \(-0.504866\pi\)
−0.873568 + 0.486703i \(0.838200\pi\)
\(840\) 0 0
\(841\) −164.756 + 285.366i −0.195905 + 0.339318i
\(842\) −268.032 + 154.748i −0.318328 + 0.183787i
\(843\) 0 0
\(844\) −702.987 −0.832923
\(845\) −573.733 131.472i −0.678974 0.155588i
\(846\) 0 0
\(847\) −464.276 804.149i −0.548141 0.949409i
\(848\) −1259.03 + 726.900i −1.48470 + 0.857193i
\(849\) 0 0
\(850\) −2.69294 −0.00316817
\(851\) 365.834 + 211.215i 0.429888 + 0.248196i
\(852\) 0 0
\(853\) 944.016 1.10670 0.553350 0.832949i \(-0.313349\pi\)
0.553350 + 0.832949i \(0.313349\pi\)
\(854\) −2470.05 1426.08i −2.89232 1.66988i
\(855\) 0 0
\(856\) 2331.39 + 4038.09i 2.72359 + 4.71740i
\(857\) 616.763i 0.719677i −0.933015 0.359838i \(-0.882832\pi\)
0.933015 0.359838i \(-0.117168\pi\)
\(858\) 0 0
\(859\) −756.640 −0.880838 −0.440419 0.897792i \(-0.645170\pi\)
−0.440419 + 0.897792i \(0.645170\pi\)
\(860\) 1246.77 719.824i 1.44974 0.837005i
\(861\) 0 0
\(862\) 1084.39 1878.22i 1.25799 2.17891i
\(863\) 86.8008i 0.100580i 0.998735 + 0.0502901i \(0.0160146\pi\)
−0.998735 + 0.0502901i \(0.983985\pi\)
\(864\) 0 0
\(865\) −420.587 + 728.478i −0.486228 + 0.842171i
\(866\) 2898.43i 3.34691i
\(867\) 0 0
\(868\) −1313.93 2275.79i −1.51374 2.62188i
\(869\) −80.1704 + 46.2864i −0.0922560 + 0.0532640i
\(870\) 0 0
\(871\) 209.319 + 82.2558i 0.240320 + 0.0944383i
\(872\) 3184.84i 3.65234i
\(873\) 0 0
\(874\) 1050.64 + 1819.76i 1.20211 + 2.08211i
\(875\) 894.401 + 516.382i 1.02217 + 0.590151i
\(876\) 0 0
\(877\) 498.768 863.891i 0.568720 0.985052i −0.427973 0.903792i \(-0.640772\pi\)
0.996693 0.0812606i \(-0.0258946\pi\)
\(878\) 1668.02 + 963.031i 1.89979 + 1.09685i
\(879\) 0 0
\(880\) 195.196 338.089i 0.221814 0.384193i
\(881\) 171.821 99.2009i 0.195030 0.112600i −0.399305 0.916818i \(-0.630749\pi\)
0.594335 + 0.804218i \(0.297415\pi\)
\(882\) 0 0
\(883\) 56.1693 0.0636119 0.0318059 0.999494i \(-0.489874\pi\)
0.0318059 + 0.999494i \(0.489874\pi\)
\(884\) −2.92179 + 7.43515i −0.00330519 + 0.00841081i
\(885\) 0 0
\(886\) 1237.93 + 2144.15i 1.39721 + 2.42004i
\(887\) −1231.56 + 711.043i −1.38846 + 0.801626i −0.993141 0.116919i \(-0.962698\pi\)
−0.395316 + 0.918545i \(0.629365\pi\)
\(888\) 0 0
\(889\) −931.383 −1.04768
\(890\) 99.8598 + 57.6541i 0.112202 + 0.0647799i
\(891\) 0 0
\(892\) 1672.30 1.87478
\(893\) −415.110 239.664i −0.464849 0.268381i
\(894\) 0 0
\(895\) −250.998 434.741i −0.280445 0.485744i
\(896\) 6049.79i 6.75200i
\(897\) 0 0
\(898\) −1315.26 −1.46465
\(899\) 566.707 327.188i 0.630374 0.363947i
\(900\) 0 0
\(901\) 0.533845 0.924647i 0.000592503 0.00102625i
\(902\) 76.6818i 0.0850131i
\(903\) 0 0
\(904\) −548.508 + 950.044i −0.606757 + 1.05093i
\(905\) 618.548i 0.683479i
\(906\) 0 0
\(907\) 135.284 + 234.319i 0.149155 + 0.258345i 0.930916 0.365234i \(-0.119011\pi\)
−0.781760 + 0.623579i \(0.785678\pi\)
\(908\) 1288.01 743.635i 1.41852 0.818982i
\(909\) 0 0
\(910\) 1095.12 872.558i 1.20343 0.958855i
\(911\) 1546.05i 1.69709i 0.529123 + 0.848545i \(0.322521\pi\)
−0.529123 + 0.848545i \(0.677479\pi\)
\(912\) 0 0
\(913\) 53.8726 + 93.3101i 0.0590061 + 0.102202i
\(914\) 1218.05 + 703.242i 1.33266 + 0.769411i
\(915\) 0 0
\(916\) −1663.28 + 2880.88i −1.81580 + 3.14506i
\(917\) −114.604 66.1667i −0.124977 0.0721556i
\(918\) 0 0
\(919\) −611.934 + 1059.90i −0.665870 + 1.15332i 0.313179 + 0.949694i \(0.398606\pi\)
−0.979049 + 0.203626i \(0.934727\pi\)
\(920\) −2532.24 + 1461.99i −2.75244 + 1.58912i
\(921\) 0 0
\(922\) −1006.23 −1.09135
\(923\) −99.5243 + 14.9569i −0.107827 + 0.0162047i
\(924\) 0 0
\(925\) −97.1744 168.311i −0.105053 0.181958i
\(926\) 999.744 577.203i 1.07964 0.623329i
\(927\) 0 0
\(928\) −3728.67 −4.01796
\(929\) −910.762 525.829i −0.980368 0.566016i −0.0779869 0.996954i \(-0.524849\pi\)
−0.902381 + 0.430939i \(0.858183\pi\)
\(930\) 0 0
\(931\) 234.172 0.251527
\(932\) 575.528 + 332.281i 0.617519 + 0.356525i
\(933\) 0 0
\(934\) −751.963 1302.44i −0.805100 1.39447i
\(935\) 0.286709i 0.000306641i
\(936\) 0 0
\(937\) 1042.09 1.11216 0.556078 0.831130i \(-0.312305\pi\)
0.556078 + 0.831130i \(0.312305\pi\)
\(938\) −463.339 + 267.509i −0.493965 + 0.285191i
\(939\) 0 0
\(940\) 509.048 881.698i 0.541541 0.937976i
\(941\) 1592.89i 1.69277i 0.532575 + 0.846383i \(0.321224\pi\)
−0.532575 + 0.846383i \(0.678776\pi\)
\(942\) 0 0
\(943\) 174.768 302.707i 0.185332 0.321004i
\(944\) 6053.50i 6.41261i
\(945\) 0 0
\(946\) 109.349 + 189.397i 0.115591 + 0.200209i
\(947\) 1342.65 775.177i 1.41779 0.818561i 0.421685 0.906742i \(-0.361439\pi\)
0.996104 + 0.0881814i \(0.0281055\pi\)
\(948\) 0 0
\(949\) 612.417 487.954i 0.645328 0.514177i
\(950\) 966.746i 1.01763i
\(951\) 0 0
\(952\) −6.22522 10.7824i −0.00653909 0.0113260i
\(953\) 1598.10 + 922.664i 1.67692 + 0.968168i 0.963609 + 0.267317i \(0.0861371\pi\)
0.713308 + 0.700851i \(0.247196\pi\)
\(954\) 0 0
\(955\) 508.937 881.505i 0.532918 0.923041i
\(956\) −1915.21 1105.74i −2.00335 1.15664i
\(957\) 0 0
\(958\) 367.467 636.471i 0.383577 0.664374i
\(959\) 1010.82 583.595i 1.05403 0.608546i
\(960\) 0 0
\(961\) −123.817 −0.128841
\(962\) −766.752 + 115.231i −0.797039 + 0.119782i
\(963\) 0 0
\(964\) −2265.75 3924.39i −2.35036 4.07095i
\(965\) 769.365 444.193i 0.797270 0.460304i
\(966\) 0 0
\(967\) 1552.78 1.60577 0.802884 0.596136i \(-0.203298\pi\)
0.802884 + 0.596136i \(0.203298\pi\)
\(968\) −3082.21 1779.51i −3.18410 1.83834i
\(969\) 0 0
\(970\) 689.968 0.711307
\(971\) 321.867 + 185.830i 0.331480 + 0.191380i 0.656498 0.754328i \(-0.272037\pi\)
−0.325018 + 0.945708i \(0.605370\pi\)
\(972\) 0 0
\(973\) −97.3148 168.554i −0.100015 0.173231i
\(974\) 2264.71i 2.32516i
\(975\) 0 0
\(976\) −6653.11 −6.81671
\(977\) −212.337 + 122.593i −0.217336 + 0.125479i −0.604716 0.796441i \(-0.706713\pi\)
0.387380 + 0.921920i \(0.373380\pi\)
\(978\) 0 0
\(979\) −6.51239 + 11.2798i −0.00665208 + 0.0115217i
\(980\) 497.383i 0.507534i
\(981\) 0 0
\(982\) −826.287 + 1431.17i −0.841433 + 1.45740i
\(983\) 1242.04i 1.26352i 0.775164 + 0.631761i \(0.217667\pi\)
−0.775164 + 0.631761i \(0.782333\pi\)
\(984\) 0 0
\(985\) −222.948 386.157i −0.226343 0.392038i
\(986\) 4.09833 2.36617i 0.00415652 0.00239977i
\(987\) 0 0
\(988\) −2669.17 1048.90i −2.70158 1.06164i
\(989\) 996.879i 1.00797i
\(990\) 0 0
\(991\) −454.832 787.793i −0.458963 0.794947i 0.539943 0.841701i \(-0.318446\pi\)
−0.998906 + 0.0467541i \(0.985112\pi\)
\(992\) −4131.21 2385.16i −4.16453 2.40439i
\(993\) 0 0
\(994\) 119.709 207.342i 0.120431 0.208593i
\(995\) 594.370 + 343.160i 0.597357 + 0.344884i
\(996\) 0 0
\(997\) −174.462 + 302.176i −0.174987 + 0.303086i −0.940157 0.340743i \(-0.889322\pi\)
0.765170 + 0.643828i \(0.222655\pi\)
\(998\) −1526.24 + 881.176i −1.52930 + 0.882942i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.p.a.107.1 yes 20
3.2 odd 2 inner 117.3.p.a.107.10 yes 20
13.9 even 3 inner 117.3.p.a.35.10 yes 20
39.35 odd 6 inner 117.3.p.a.35.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.p.a.35.1 20 39.35 odd 6 inner
117.3.p.a.35.10 yes 20 13.9 even 3 inner
117.3.p.a.107.1 yes 20 1.1 even 1 trivial
117.3.p.a.107.10 yes 20 3.2 odd 2 inner