Properties

Label 117.3.p.a.107.2
Level $117$
Weight $3$
Character 117.107
Analytic conductor $3.188$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(35,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.35");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.p (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 32 x^{18} + 690 x^{16} - 7984 x^{14} + 66147 x^{12} - 315440 x^{10} + 1074610 x^{8} + \cdots + 1327104 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 107.2
Root \(-2.68869 - 1.55231i\) of defining polynomial
Character \(\chi\) \(=\) 117.107
Dual form 117.3.p.a.35.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.68869 + 1.55231i) q^{2} +(2.81935 - 4.88326i) q^{4} +1.11552i q^{5} +(3.02043 - 5.23153i) q^{7} +5.08757i q^{8} +(-1.73164 - 2.99928i) q^{10} +(6.97549 - 4.02730i) q^{11} +(11.3646 + 6.31242i) q^{13} +18.7546i q^{14} +(3.37991 + 5.85418i) q^{16} +(10.8335 + 6.25475i) q^{17} +(-11.9460 + 20.6910i) q^{19} +(5.44737 + 3.14504i) q^{20} +(-12.5033 + 21.6563i) q^{22} +(4.66601 - 2.69392i) q^{23} +23.7556 q^{25} +(-40.3546 + 0.669252i) q^{26} +(-17.0313 - 29.4991i) q^{28} +(48.6098 - 28.0649i) q^{29} +5.07777 q^{31} +(-35.7989 - 20.6685i) q^{32} -38.8373 q^{34} +(5.83588 + 3.36935i) q^{35} +(-23.1859 - 40.1592i) q^{37} -74.1754i q^{38} -5.67528 q^{40} +(-43.4982 + 25.1137i) q^{41} +(26.0986 - 45.2041i) q^{43} -45.4175i q^{44} +(-8.36361 + 14.4862i) q^{46} -31.5408i q^{47} +(6.25403 + 10.8323i) q^{49} +(-63.8714 + 36.8762i) q^{50} +(62.8659 - 37.6992i) q^{52} +53.8374i q^{53} +(4.49254 + 7.78130i) q^{55} +(26.6158 + 15.3666i) q^{56} +(-87.1310 + 150.915i) q^{58} +(47.3544 + 27.3401i) q^{59} +(-24.9071 + 43.1404i) q^{61} +(-13.6525 + 7.88229i) q^{62} +101.297 q^{64} +(-7.04163 + 12.6774i) q^{65} +(-57.4929 - 99.5806i) q^{67} +(61.0872 - 35.2687i) q^{68} -20.9211 q^{70} +(55.9889 + 32.3252i) q^{71} +23.1540 q^{73} +(124.679 + 71.9837i) q^{74} +(67.3597 + 116.670i) q^{76} -48.6567i q^{77} -80.7964 q^{79} +(-6.53046 + 3.77036i) q^{80} +(77.9687 - 135.046i) q^{82} -53.2055i q^{83} +(-6.97730 + 12.0850i) q^{85} +162.053i q^{86} +(20.4892 + 35.4883i) q^{88} +(-127.780 + 73.7737i) q^{89} +(67.3495 - 40.3879i) q^{91} -30.3804i q^{92} +(48.9611 + 84.8032i) q^{94} +(-23.0812 - 13.3259i) q^{95} +(13.6694 - 23.6760i) q^{97} +(-33.6303 - 19.4164i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 24 q^{4} - 6 q^{7} + 12 q^{10} - 2 q^{13} - 104 q^{16} - 92 q^{19} + 44 q^{22} - 116 q^{25} + 76 q^{28} - 156 q^{31} + 80 q^{34} + 148 q^{37} + 328 q^{40} + 186 q^{43} + 164 q^{46} + 8 q^{49} + 392 q^{52}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.68869 + 1.55231i −1.34434 + 0.776157i −0.987441 0.157986i \(-0.949500\pi\)
−0.356901 + 0.934142i \(0.616167\pi\)
\(3\) 0 0
\(4\) 2.81935 4.88326i 0.704838 1.22082i
\(5\) 1.11552i 0.223104i 0.993759 + 0.111552i \(0.0355822\pi\)
−0.993759 + 0.111552i \(0.964418\pi\)
\(6\) 0 0
\(7\) 3.02043 5.23153i 0.431490 0.747362i −0.565512 0.824740i \(-0.691321\pi\)
0.997002 + 0.0773779i \(0.0246548\pi\)
\(8\) 5.08757i 0.635946i
\(9\) 0 0
\(10\) −1.73164 2.99928i −0.173164 0.299928i
\(11\) 6.97549 4.02730i 0.634136 0.366118i −0.148216 0.988955i \(-0.547353\pi\)
0.782352 + 0.622837i \(0.214020\pi\)
\(12\) 0 0
\(13\) 11.3646 + 6.31242i 0.874197 + 0.485571i
\(14\) 18.7546i 1.33961i
\(15\) 0 0
\(16\) 3.37991 + 5.85418i 0.211245 + 0.365886i
\(17\) 10.8335 + 6.25475i 0.637267 + 0.367926i 0.783561 0.621315i \(-0.213401\pi\)
−0.146294 + 0.989241i \(0.546734\pi\)
\(18\) 0 0
\(19\) −11.9460 + 20.6910i −0.628734 + 1.08900i 0.359072 + 0.933310i \(0.383093\pi\)
−0.987806 + 0.155690i \(0.950240\pi\)
\(20\) 5.44737 + 3.14504i 0.272369 + 0.157252i
\(21\) 0 0
\(22\) −12.5033 + 21.6563i −0.568330 + 0.984377i
\(23\) 4.66601 2.69392i 0.202870 0.117127i −0.395124 0.918628i \(-0.629298\pi\)
0.597993 + 0.801501i \(0.295965\pi\)
\(24\) 0 0
\(25\) 23.7556 0.950225
\(26\) −40.3546 + 0.669252i −1.55210 + 0.0257405i
\(27\) 0 0
\(28\) −17.0313 29.4991i −0.608261 1.05354i
\(29\) 48.6098 28.0649i 1.67620 0.967755i 0.712153 0.702024i \(-0.247720\pi\)
0.964047 0.265730i \(-0.0856130\pi\)
\(30\) 0 0
\(31\) 5.07777 0.163799 0.0818995 0.996641i \(-0.473901\pi\)
0.0818995 + 0.996641i \(0.473901\pi\)
\(32\) −35.7989 20.6685i −1.11872 0.645891i
\(33\) 0 0
\(34\) −38.8373 −1.14227
\(35\) 5.83588 + 3.36935i 0.166739 + 0.0962670i
\(36\) 0 0
\(37\) −23.1859 40.1592i −0.626647 1.08538i −0.988220 0.153041i \(-0.951093\pi\)
0.361573 0.932344i \(-0.382240\pi\)
\(38\) 74.1754i 1.95199i
\(39\) 0 0
\(40\) −5.67528 −0.141882
\(41\) −43.4982 + 25.1137i −1.06093 + 0.612530i −0.925690 0.378283i \(-0.876515\pi\)
−0.135243 + 0.990813i \(0.543181\pi\)
\(42\) 0 0
\(43\) 26.0986 45.2041i 0.606944 1.05126i −0.384797 0.923001i \(-0.625729\pi\)
0.991741 0.128257i \(-0.0409381\pi\)
\(44\) 45.4175i 1.03222i
\(45\) 0 0
\(46\) −8.36361 + 14.4862i −0.181818 + 0.314917i
\(47\) 31.5408i 0.671080i −0.942026 0.335540i \(-0.891081\pi\)
0.942026 0.335540i \(-0.108919\pi\)
\(48\) 0 0
\(49\) 6.25403 + 10.8323i 0.127633 + 0.221067i
\(50\) −63.8714 + 36.8762i −1.27743 + 0.737523i
\(51\) 0 0
\(52\) 62.8659 37.6992i 1.20896 0.724985i
\(53\) 53.8374i 1.01580i 0.861416 + 0.507900i \(0.169578\pi\)
−0.861416 + 0.507900i \(0.830422\pi\)
\(54\) 0 0
\(55\) 4.49254 + 7.78130i 0.0816825 + 0.141478i
\(56\) 26.6158 + 15.3666i 0.475282 + 0.274404i
\(57\) 0 0
\(58\) −87.1310 + 150.915i −1.50226 + 2.60199i
\(59\) 47.3544 + 27.3401i 0.802617 + 0.463391i 0.844385 0.535736i \(-0.179966\pi\)
−0.0417683 + 0.999127i \(0.513299\pi\)
\(60\) 0 0
\(61\) −24.9071 + 43.1404i −0.408314 + 0.707220i −0.994701 0.102811i \(-0.967216\pi\)
0.586387 + 0.810031i \(0.300550\pi\)
\(62\) −13.6525 + 7.88229i −0.220202 + 0.127134i
\(63\) 0 0
\(64\) 101.297 1.58276
\(65\) −7.04163 + 12.6774i −0.108333 + 0.195037i
\(66\) 0 0
\(67\) −57.4929 99.5806i −0.858103 1.48628i −0.873736 0.486400i \(-0.838310\pi\)
0.0156329 0.999878i \(-0.495024\pi\)
\(68\) 61.0872 35.2687i 0.898341 0.518657i
\(69\) 0 0
\(70\) −20.9211 −0.298873
\(71\) 55.9889 + 32.3252i 0.788576 + 0.455285i 0.839461 0.543420i \(-0.182871\pi\)
−0.0508847 + 0.998705i \(0.516204\pi\)
\(72\) 0 0
\(73\) 23.1540 0.317179 0.158589 0.987345i \(-0.449305\pi\)
0.158589 + 0.987345i \(0.449305\pi\)
\(74\) 124.679 + 71.9837i 1.68486 + 0.972752i
\(75\) 0 0
\(76\) 67.3597 + 116.670i 0.886312 + 1.53514i
\(77\) 48.6567i 0.631905i
\(78\) 0 0
\(79\) −80.7964 −1.02274 −0.511370 0.859361i \(-0.670862\pi\)
−0.511370 + 0.859361i \(0.670862\pi\)
\(80\) −6.53046 + 3.77036i −0.0816307 + 0.0471295i
\(81\) 0 0
\(82\) 77.9687 135.046i 0.950838 1.64690i
\(83\) 53.2055i 0.641031i −0.947243 0.320515i \(-0.896144\pi\)
0.947243 0.320515i \(-0.103856\pi\)
\(84\) 0 0
\(85\) −6.97730 + 12.0850i −0.0820859 + 0.142177i
\(86\) 162.053i 1.88433i
\(87\) 0 0
\(88\) 20.4892 + 35.4883i 0.232831 + 0.403276i
\(89\) −127.780 + 73.7737i −1.43573 + 0.828918i −0.997549 0.0699700i \(-0.977710\pi\)
−0.438179 + 0.898888i \(0.644376\pi\)
\(90\) 0 0
\(91\) 67.3495 40.3879i 0.740104 0.443823i
\(92\) 30.3804i 0.330222i
\(93\) 0 0
\(94\) 48.9611 + 84.8032i 0.520863 + 0.902162i
\(95\) −23.0812 13.3259i −0.242960 0.140273i
\(96\) 0 0
\(97\) 13.6694 23.6760i 0.140921 0.244083i −0.786923 0.617052i \(-0.788327\pi\)
0.927844 + 0.372969i \(0.121660\pi\)
\(98\) −33.6303 19.4164i −0.343166 0.198127i
\(99\) 0 0
\(100\) 66.9755 116.005i 0.669755 1.16005i
\(101\) −112.681 + 65.0566i −1.11566 + 0.644125i −0.940289 0.340378i \(-0.889445\pi\)
−0.175368 + 0.984503i \(0.556112\pi\)
\(102\) 0 0
\(103\) −45.0788 −0.437658 −0.218829 0.975763i \(-0.570224\pi\)
−0.218829 + 0.975763i \(0.570224\pi\)
\(104\) −32.1149 + 57.8180i −0.308797 + 0.555942i
\(105\) 0 0
\(106\) −83.5725 144.752i −0.788420 1.36558i
\(107\) −1.49273 + 0.861830i −0.0139508 + 0.00805449i −0.506959 0.861970i \(-0.669231\pi\)
0.493008 + 0.870025i \(0.335897\pi\)
\(108\) 0 0
\(109\) 51.4209 0.471751 0.235875 0.971783i \(-0.424204\pi\)
0.235875 + 0.971783i \(0.424204\pi\)
\(110\) −24.1580 13.9476i −0.219618 0.126797i
\(111\) 0 0
\(112\) 40.8351 0.364599
\(113\) 48.6041 + 28.0616i 0.430125 + 0.248333i 0.699400 0.714731i \(-0.253451\pi\)
−0.269275 + 0.963063i \(0.586784\pi\)
\(114\) 0 0
\(115\) 3.00512 + 5.20502i 0.0261315 + 0.0452611i
\(116\) 316.499i 2.72844i
\(117\) 0 0
\(118\) −169.761 −1.43866
\(119\) 65.4439 37.7840i 0.549949 0.317513i
\(120\) 0 0
\(121\) −28.0617 + 48.6042i −0.231915 + 0.401688i
\(122\) 154.655i 1.26766i
\(123\) 0 0
\(124\) 14.3160 24.7961i 0.115452 0.199968i
\(125\) 54.3879i 0.435103i
\(126\) 0 0
\(127\) −43.8145 75.8890i −0.344996 0.597551i 0.640357 0.768078i \(-0.278786\pi\)
−0.985353 + 0.170526i \(0.945453\pi\)
\(128\) −129.159 + 74.5701i −1.00906 + 0.582579i
\(129\) 0 0
\(130\) −0.746564 45.0163i −0.00574280 0.346280i
\(131\) 238.427i 1.82005i −0.414552 0.910026i \(-0.636062\pi\)
0.414552 0.910026i \(-0.363938\pi\)
\(132\) 0 0
\(133\) 72.1638 + 124.991i 0.542585 + 0.939784i
\(134\) 309.161 + 178.494i 2.30717 + 1.33204i
\(135\) 0 0
\(136\) −31.8215 + 55.1164i −0.233981 + 0.405268i
\(137\) −110.979 64.0740i −0.810068 0.467693i 0.0369112 0.999319i \(-0.488248\pi\)
−0.846980 + 0.531625i \(0.821581\pi\)
\(138\) 0 0
\(139\) −131.585 + 227.911i −0.946651 + 1.63965i −0.194241 + 0.980954i \(0.562224\pi\)
−0.752411 + 0.658694i \(0.771109\pi\)
\(140\) 32.9068 18.9988i 0.235049 0.135705i
\(141\) 0 0
\(142\) −200.715 −1.41349
\(143\) 104.695 1.73630i 0.732136 0.0121420i
\(144\) 0 0
\(145\) 31.3069 + 54.2252i 0.215910 + 0.373967i
\(146\) −62.2539 + 35.9423i −0.426397 + 0.246180i
\(147\) 0 0
\(148\) −261.477 −1.76674
\(149\) −17.5133 10.1113i −0.117539 0.0678610i 0.440078 0.897960i \(-0.354951\pi\)
−0.557617 + 0.830099i \(0.688284\pi\)
\(150\) 0 0
\(151\) 103.283 0.683994 0.341997 0.939701i \(-0.388897\pi\)
0.341997 + 0.939701i \(0.388897\pi\)
\(152\) −105.267 60.7758i −0.692545 0.399841i
\(153\) 0 0
\(154\) 75.5304 + 130.823i 0.490457 + 0.849497i
\(155\) 5.66435i 0.0365442i
\(156\) 0 0
\(157\) 163.877 1.04380 0.521901 0.853006i \(-0.325223\pi\)
0.521901 + 0.853006i \(0.325223\pi\)
\(158\) 217.236 125.421i 1.37491 0.793806i
\(159\) 0 0
\(160\) 23.0561 39.9344i 0.144101 0.249590i
\(161\) 32.5472i 0.202156i
\(162\) 0 0
\(163\) −110.733 + 191.795i −0.679344 + 1.17666i 0.295835 + 0.955239i \(0.404402\pi\)
−0.975179 + 0.221419i \(0.928931\pi\)
\(164\) 283.218i 1.72694i
\(165\) 0 0
\(166\) 82.5917 + 143.053i 0.497540 + 0.861765i
\(167\) −134.363 + 77.5747i −0.804571 + 0.464519i −0.845067 0.534660i \(-0.820440\pi\)
0.0404960 + 0.999180i \(0.487106\pi\)
\(168\) 0 0
\(169\) 89.3067 + 143.476i 0.528442 + 0.848969i
\(170\) 43.3238i 0.254846i
\(171\) 0 0
\(172\) −147.162 254.892i −0.855594 1.48193i
\(173\) −118.525 68.4304i −0.685115 0.395551i 0.116665 0.993171i \(-0.462780\pi\)
−0.801779 + 0.597620i \(0.796113\pi\)
\(174\) 0 0
\(175\) 71.7521 124.278i 0.410012 0.710162i
\(176\) 47.1531 + 27.2239i 0.267915 + 0.154681i
\(177\) 0 0
\(178\) 229.040 396.708i 1.28674 2.22870i
\(179\) 89.3566 51.5900i 0.499199 0.288213i −0.229184 0.973383i \(-0.573606\pi\)
0.728383 + 0.685171i \(0.240272\pi\)
\(180\) 0 0
\(181\) −300.340 −1.65934 −0.829668 0.558257i \(-0.811470\pi\)
−0.829668 + 0.558257i \(0.811470\pi\)
\(182\) −118.387 + 213.138i −0.650478 + 1.17109i
\(183\) 0 0
\(184\) 13.7055 + 23.7386i 0.0744864 + 0.129014i
\(185\) 44.7984 25.8644i 0.242154 0.139807i
\(186\) 0 0
\(187\) 100.759 0.538819
\(188\) −154.022 88.9245i −0.819265 0.473003i
\(189\) 0 0
\(190\) 82.7442 0.435496
\(191\) 36.4642 + 21.0526i 0.190912 + 0.110223i 0.592409 0.805637i \(-0.298177\pi\)
−0.401497 + 0.915860i \(0.631510\pi\)
\(192\) 0 0
\(193\) 43.3600 + 75.1017i 0.224663 + 0.389128i 0.956218 0.292654i \(-0.0945385\pi\)
−0.731555 + 0.681782i \(0.761205\pi\)
\(194\) 84.8765i 0.437508i
\(195\) 0 0
\(196\) 70.5293 0.359843
\(197\) −57.8728 + 33.4129i −0.293771 + 0.169609i −0.639641 0.768674i \(-0.720917\pi\)
0.345870 + 0.938282i \(0.387584\pi\)
\(198\) 0 0
\(199\) 112.545 194.933i 0.565551 0.979563i −0.431447 0.902138i \(-0.641997\pi\)
0.996998 0.0774251i \(-0.0246699\pi\)
\(200\) 120.858i 0.604291i
\(201\) 0 0
\(202\) 201.976 349.833i 0.999883 1.73185i
\(203\) 339.072i 1.67030i
\(204\) 0 0
\(205\) −28.0149 48.5231i −0.136658 0.236698i
\(206\) 121.203 69.9764i 0.588362 0.339691i
\(207\) 0 0
\(208\) 1.45719 + 87.8657i 0.00700572 + 0.422431i
\(209\) 192.440i 0.920765i
\(210\) 0 0
\(211\) −177.438 307.332i −0.840939 1.45655i −0.889102 0.457709i \(-0.848670\pi\)
0.0481632 0.998839i \(-0.484663\pi\)
\(212\) 262.902 + 151.787i 1.24010 + 0.715975i
\(213\) 0 0
\(214\) 2.67566 4.63438i 0.0125031 0.0216560i
\(215\) 50.4260 + 29.1135i 0.234540 + 0.135412i
\(216\) 0 0
\(217\) 15.3370 26.5645i 0.0706776 0.122417i
\(218\) −138.255 + 79.8213i −0.634195 + 0.366153i
\(219\) 0 0
\(220\) 50.6642 0.230292
\(221\) 83.6359 + 139.468i 0.378443 + 0.631079i
\(222\) 0 0
\(223\) 135.201 + 234.175i 0.606281 + 1.05011i 0.991848 + 0.127430i \(0.0406728\pi\)
−0.385566 + 0.922680i \(0.625994\pi\)
\(224\) −216.256 + 124.855i −0.965428 + 0.557390i
\(225\) 0 0
\(226\) −174.242 −0.770981
\(227\) −347.799 200.802i −1.53215 0.884589i −0.999262 0.0384055i \(-0.987772\pi\)
−0.532891 0.846184i \(-0.678895\pi\)
\(228\) 0 0
\(229\) 306.258 1.33737 0.668686 0.743545i \(-0.266857\pi\)
0.668686 + 0.743545i \(0.266857\pi\)
\(230\) −16.1596 9.32978i −0.0702593 0.0405642i
\(231\) 0 0
\(232\) 142.782 + 247.306i 0.615440 + 1.06597i
\(233\) 360.011i 1.54511i 0.634946 + 0.772556i \(0.281022\pi\)
−0.634946 + 0.772556i \(0.718978\pi\)
\(234\) 0 0
\(235\) 35.1843 0.149721
\(236\) 267.018 154.163i 1.13143 0.653232i
\(237\) 0 0
\(238\) −117.305 + 203.179i −0.492880 + 0.853692i
\(239\) 279.768i 1.17058i 0.810825 + 0.585289i \(0.199019\pi\)
−0.810825 + 0.585289i \(0.800981\pi\)
\(240\) 0 0
\(241\) −44.0179 + 76.2412i −0.182647 + 0.316353i −0.942781 0.333413i \(-0.891800\pi\)
0.760134 + 0.649766i \(0.225133\pi\)
\(242\) 174.242i 0.720008i
\(243\) 0 0
\(244\) 140.444 + 243.256i 0.575590 + 0.996951i
\(245\) −12.0837 + 6.97650i −0.0493210 + 0.0284755i
\(246\) 0 0
\(247\) −266.371 + 159.736i −1.07842 + 0.646706i
\(248\) 25.8335i 0.104167i
\(249\) 0 0
\(250\) −84.4270 146.232i −0.337708 0.584927i
\(251\) 206.190 + 119.044i 0.821473 + 0.474278i 0.850924 0.525289i \(-0.176043\pi\)
−0.0294512 + 0.999566i \(0.509376\pi\)
\(252\) 0 0
\(253\) 21.6985 37.5828i 0.0857647 0.148549i
\(254\) 235.607 + 136.028i 0.927586 + 0.535542i
\(255\) 0 0
\(256\) 28.9190 50.0892i 0.112965 0.195661i
\(257\) −70.5091 + 40.7085i −0.274355 + 0.158399i −0.630865 0.775893i \(-0.717300\pi\)
0.356510 + 0.934291i \(0.383966\pi\)
\(258\) 0 0
\(259\) −280.126 −1.08157
\(260\) 42.0542 + 70.1282i 0.161747 + 0.269724i
\(261\) 0 0
\(262\) 370.113 + 641.055i 1.41265 + 2.44677i
\(263\) 370.192 213.730i 1.40757 0.812663i 0.412420 0.910994i \(-0.364684\pi\)
0.995154 + 0.0983308i \(0.0313503\pi\)
\(264\) 0 0
\(265\) −60.0567 −0.226629
\(266\) −388.051 224.042i −1.45884 0.842262i
\(267\) 0 0
\(268\) −648.371 −2.41930
\(269\) −57.4246 33.1541i −0.213474 0.123250i 0.389451 0.921047i \(-0.372665\pi\)
−0.602925 + 0.797798i \(0.705998\pi\)
\(270\) 0 0
\(271\) −144.004 249.421i −0.531378 0.920375i −0.999329 0.0366200i \(-0.988341\pi\)
0.467951 0.883755i \(-0.344992\pi\)
\(272\) 84.5621i 0.310890i
\(273\) 0 0
\(274\) 397.852 1.45201
\(275\) 165.707 95.6711i 0.602571 0.347895i
\(276\) 0 0
\(277\) 17.5929 30.4717i 0.0635121 0.110006i −0.832521 0.553994i \(-0.813103\pi\)
0.896033 + 0.443987i \(0.146437\pi\)
\(278\) 817.042i 2.93900i
\(279\) 0 0
\(280\) −17.1418 + 29.6904i −0.0612206 + 0.106037i
\(281\) 346.978i 1.23480i −0.786650 0.617399i \(-0.788187\pi\)
0.786650 0.617399i \(-0.211813\pi\)
\(282\) 0 0
\(283\) −193.944 335.921i −0.685315 1.18700i −0.973338 0.229377i \(-0.926331\pi\)
0.288023 0.957624i \(-0.407002\pi\)
\(284\) 315.705 182.272i 1.11164 0.641804i
\(285\) 0 0
\(286\) −278.798 + 167.189i −0.974818 + 0.584575i
\(287\) 303.417i 1.05720i
\(288\) 0 0
\(289\) −66.2562 114.759i −0.229260 0.397090i
\(290\) −168.349 97.1963i −0.580514 0.335160i
\(291\) 0 0
\(292\) 65.2794 113.067i 0.223560 0.387217i
\(293\) −185.957 107.362i −0.634665 0.366424i 0.147891 0.989004i \(-0.452751\pi\)
−0.782557 + 0.622580i \(0.786085\pi\)
\(294\) 0 0
\(295\) −30.4984 + 52.8248i −0.103384 + 0.179067i
\(296\) 204.313 117.960i 0.690246 0.398514i
\(297\) 0 0
\(298\) 62.7836 0.210683
\(299\) 70.0323 1.16144i 0.234222 0.00388440i
\(300\) 0 0
\(301\) −157.658 273.071i −0.523780 0.907214i
\(302\) −277.696 + 160.328i −0.919522 + 0.530886i
\(303\) 0 0
\(304\) −161.505 −0.531267
\(305\) −48.1240 27.7844i −0.157784 0.0910964i
\(306\) 0 0
\(307\) −7.29485 −0.0237617 −0.0118809 0.999929i \(-0.503782\pi\)
−0.0118809 + 0.999929i \(0.503782\pi\)
\(308\) −237.603 137.180i −0.771440 0.445391i
\(309\) 0 0
\(310\) −8.79285 15.2297i −0.0283640 0.0491279i
\(311\) 80.3011i 0.258203i 0.991631 + 0.129101i \(0.0412093\pi\)
−0.991631 + 0.129101i \(0.958791\pi\)
\(312\) 0 0
\(313\) 250.123 0.799115 0.399558 0.916708i \(-0.369164\pi\)
0.399558 + 0.916708i \(0.369164\pi\)
\(314\) −440.614 + 254.388i −1.40323 + 0.810154i
\(315\) 0 0
\(316\) −227.793 + 394.550i −0.720865 + 1.24858i
\(317\) 386.141i 1.21811i 0.793128 + 0.609055i \(0.208451\pi\)
−0.793128 + 0.609055i \(0.791549\pi\)
\(318\) 0 0
\(319\) 226.052 391.533i 0.708626 1.22738i
\(320\) 112.998i 0.353120i
\(321\) 0 0
\(322\) 50.5234 + 87.5091i 0.156905 + 0.271767i
\(323\) −258.834 + 149.438i −0.801344 + 0.462656i
\(324\) 0 0
\(325\) 269.972 + 149.955i 0.830684 + 0.461401i
\(326\) 687.570i 2.10911i
\(327\) 0 0
\(328\) −127.768 221.300i −0.389536 0.674696i
\(329\) −165.007 95.2666i −0.501540 0.289564i
\(330\) 0 0
\(331\) 62.7935 108.762i 0.189709 0.328585i −0.755444 0.655213i \(-0.772579\pi\)
0.945153 + 0.326628i \(0.105912\pi\)
\(332\) −259.817 150.005i −0.782580 0.451823i
\(333\) 0 0
\(334\) 240.841 417.148i 0.721079 1.24895i
\(335\) 111.084 64.1345i 0.331595 0.191446i
\(336\) 0 0
\(337\) −264.510 −0.784896 −0.392448 0.919774i \(-0.628372\pi\)
−0.392448 + 0.919774i \(0.628372\pi\)
\(338\) −462.837 247.129i −1.36934 0.731152i
\(339\) 0 0
\(340\) 39.3429 + 68.1439i 0.115714 + 0.200423i
\(341\) 35.4199 20.4497i 0.103871 0.0599698i
\(342\) 0 0
\(343\) 371.561 1.08327
\(344\) 229.979 + 132.778i 0.668543 + 0.385983i
\(345\) 0 0
\(346\) 424.901 1.22804
\(347\) −69.3047 40.0131i −0.199725 0.115311i 0.396802 0.917904i \(-0.370120\pi\)
−0.596527 + 0.802593i \(0.703453\pi\)
\(348\) 0 0
\(349\) −58.5745 101.454i −0.167835 0.290699i 0.769823 0.638257i \(-0.220344\pi\)
−0.937658 + 0.347558i \(0.887011\pi\)
\(350\) 445.527i 1.27293i
\(351\) 0 0
\(352\) −332.953 −0.945890
\(353\) 264.477 152.696i 0.749226 0.432566i −0.0761883 0.997093i \(-0.524275\pi\)
0.825414 + 0.564528i \(0.190942\pi\)
\(354\) 0 0
\(355\) −36.0594 + 62.4568i −0.101576 + 0.175935i
\(356\) 831.976i 2.33701i
\(357\) 0 0
\(358\) −160.168 + 277.419i −0.447396 + 0.774913i
\(359\) 123.190i 0.343148i −0.985171 0.171574i \(-0.945115\pi\)
0.985171 0.171574i \(-0.0548853\pi\)
\(360\) 0 0
\(361\) −104.912 181.712i −0.290614 0.503358i
\(362\) 807.519 466.222i 2.23072 1.28790i
\(363\) 0 0
\(364\) −7.34274 442.753i −0.0201724 1.21635i
\(365\) 25.8288i 0.0707638i
\(366\) 0 0
\(367\) 206.300 + 357.322i 0.562126 + 0.973631i 0.997311 + 0.0732896i \(0.0233497\pi\)
−0.435185 + 0.900341i \(0.643317\pi\)
\(368\) 31.5414 + 18.2104i 0.0857103 + 0.0494849i
\(369\) 0 0
\(370\) −80.2992 + 139.082i −0.217025 + 0.375898i
\(371\) 281.652 + 162.612i 0.759171 + 0.438307i
\(372\) 0 0
\(373\) −241.436 + 418.179i −0.647281 + 1.12112i 0.336489 + 0.941687i \(0.390761\pi\)
−0.983770 + 0.179436i \(0.942573\pi\)
\(374\) −270.909 + 156.410i −0.724357 + 0.418208i
\(375\) 0 0
\(376\) 160.466 0.426771
\(377\) 729.587 12.0997i 1.93524 0.0320946i
\(378\) 0 0
\(379\) 33.6590 + 58.2991i 0.0888100 + 0.153823i 0.907008 0.421113i \(-0.138360\pi\)
−0.818198 + 0.574936i \(0.805027\pi\)
\(380\) −130.148 + 75.1411i −0.342495 + 0.197740i
\(381\) 0 0
\(382\) −130.721 −0.342202
\(383\) 574.563 + 331.724i 1.50016 + 0.866120i 1.00000 0.000189998i \(6.04782e-5\pi\)
0.500165 + 0.865930i \(0.333273\pi\)
\(384\) 0 0
\(385\) 54.2775 0.140981
\(386\) −233.163 134.617i −0.604049 0.348748i
\(387\) 0 0
\(388\) −77.0775 133.502i −0.198653 0.344078i
\(389\) 144.019i 0.370230i −0.982717 0.185115i \(-0.940734\pi\)
0.982717 0.185115i \(-0.0592657\pi\)
\(390\) 0 0
\(391\) 67.3992 0.172376
\(392\) −55.1101 + 31.8178i −0.140587 + 0.0811679i
\(393\) 0 0
\(394\) 103.735 179.674i 0.263286 0.456024i
\(395\) 90.1300i 0.228177i
\(396\) 0 0
\(397\) −208.061 + 360.372i −0.524082 + 0.907737i 0.475524 + 0.879702i \(0.342258\pi\)
−0.999607 + 0.0280350i \(0.991075\pi\)
\(398\) 698.818i 1.75583i
\(399\) 0 0
\(400\) 80.2919 + 139.070i 0.200730 + 0.347674i
\(401\) −150.244 + 86.7436i −0.374674 + 0.216318i −0.675498 0.737361i \(-0.736071\pi\)
0.300824 + 0.953680i \(0.402738\pi\)
\(402\) 0 0
\(403\) 57.7066 + 32.0530i 0.143193 + 0.0795360i
\(404\) 733.670i 1.81601i
\(405\) 0 0
\(406\) 526.346 + 911.657i 1.29642 + 2.24546i
\(407\) −323.467 186.754i −0.794759 0.458854i
\(408\) 0 0
\(409\) 172.368 298.549i 0.421437 0.729950i −0.574644 0.818404i \(-0.694859\pi\)
0.996080 + 0.0884541i \(0.0281927\pi\)
\(410\) 150.646 + 86.9757i 0.367430 + 0.212136i
\(411\) 0 0
\(412\) −127.093 + 220.131i −0.308478 + 0.534300i
\(413\) 286.061 165.157i 0.692642 0.399897i
\(414\) 0 0
\(415\) 59.3518 0.143016
\(416\) −276.371 460.866i −0.664352 1.10785i
\(417\) 0 0
\(418\) −298.727 517.410i −0.714658 1.23782i
\(419\) 22.9084 13.2261i 0.0546739 0.0315660i −0.472414 0.881377i \(-0.656617\pi\)
0.527088 + 0.849811i \(0.323284\pi\)
\(420\) 0 0
\(421\) 755.443 1.79440 0.897200 0.441624i \(-0.145597\pi\)
0.897200 + 0.441624i \(0.145597\pi\)
\(422\) 954.150 + 550.879i 2.26102 + 1.30540i
\(423\) 0 0
\(424\) −273.901 −0.645994
\(425\) 257.358 + 148.585i 0.605547 + 0.349613i
\(426\) 0 0
\(427\) 150.460 + 260.605i 0.352366 + 0.610316i
\(428\) 9.71921i 0.0227084i
\(429\) 0 0
\(430\) −180.773 −0.420402
\(431\) −710.453 + 410.180i −1.64838 + 0.951694i −0.670667 + 0.741759i \(0.733992\pi\)
−0.977715 + 0.209935i \(0.932675\pi\)
\(432\) 0 0
\(433\) −66.9125 + 115.896i −0.154532 + 0.267658i −0.932889 0.360165i \(-0.882720\pi\)
0.778356 + 0.627823i \(0.216054\pi\)
\(434\) 95.2315i 0.219427i
\(435\) 0 0
\(436\) 144.974 251.102i 0.332508 0.575921i
\(437\) 128.726i 0.294567i
\(438\) 0 0
\(439\) 103.467 + 179.210i 0.235688 + 0.408224i 0.959472 0.281803i \(-0.0909323\pi\)
−0.723784 + 0.690026i \(0.757599\pi\)
\(440\) −39.5879 + 22.8561i −0.0899725 + 0.0519456i
\(441\) 0 0
\(442\) −441.369 245.158i −0.998573 0.554655i
\(443\) 453.412i 1.02350i −0.859133 0.511752i \(-0.828997\pi\)
0.859133 0.511752i \(-0.171003\pi\)
\(444\) 0 0
\(445\) −82.2960 142.541i −0.184935 0.320317i
\(446\) −727.024 419.748i −1.63010 0.941138i
\(447\) 0 0
\(448\) 305.959 529.937i 0.682945 1.18289i
\(449\) −570.588 329.429i −1.27080 0.733695i −0.295659 0.955294i \(-0.595539\pi\)
−0.975138 + 0.221599i \(0.928872\pi\)
\(450\) 0 0
\(451\) −202.281 + 350.361i −0.448517 + 0.776854i
\(452\) 274.064 158.231i 0.606337 0.350069i
\(453\) 0 0
\(454\) 1246.83 2.74632
\(455\) 45.0535 + 75.1297i 0.0990187 + 0.165120i
\(456\) 0 0
\(457\) −110.001 190.527i −0.240702 0.416909i 0.720212 0.693754i \(-0.244044\pi\)
−0.960915 + 0.276845i \(0.910711\pi\)
\(458\) −823.432 + 475.409i −1.79789 + 1.03801i
\(459\) 0 0
\(460\) 33.8900 0.0736739
\(461\) 289.797 + 167.314i 0.628627 + 0.362938i 0.780220 0.625505i \(-0.215107\pi\)
−0.151593 + 0.988443i \(0.548440\pi\)
\(462\) 0 0
\(463\) 304.853 0.658431 0.329215 0.944255i \(-0.393216\pi\)
0.329215 + 0.944255i \(0.393216\pi\)
\(464\) 328.594 + 189.714i 0.708176 + 0.408866i
\(465\) 0 0
\(466\) −558.850 967.957i −1.19925 2.07716i
\(467\) 740.663i 1.58600i −0.609221 0.793001i \(-0.708518\pi\)
0.609221 0.793001i \(-0.291482\pi\)
\(468\) 0 0
\(469\) −694.613 −1.48105
\(470\) −94.5996 + 54.6171i −0.201276 + 0.116207i
\(471\) 0 0
\(472\) −139.094 + 240.919i −0.294692 + 0.510421i
\(473\) 420.428i 0.888853i
\(474\) 0 0
\(475\) −283.783 + 491.527i −0.597439 + 1.03479i
\(476\) 426.106i 0.895181i
\(477\) 0 0
\(478\) −434.288 752.209i −0.908552 1.57366i
\(479\) −407.725 + 235.400i −0.851200 + 0.491440i −0.861056 0.508511i \(-0.830196\pi\)
0.00985567 + 0.999951i \(0.496863\pi\)
\(480\) 0 0
\(481\) −9.99621 602.752i −0.0207821 1.25312i
\(482\) 273.318i 0.567050i
\(483\) 0 0
\(484\) 158.231 + 274.065i 0.326924 + 0.566250i
\(485\) 26.4111 + 15.2484i 0.0544558 + 0.0314401i
\(486\) 0 0
\(487\) −42.7761 + 74.0905i −0.0878360 + 0.152136i −0.906596 0.421999i \(-0.861328\pi\)
0.818760 + 0.574136i \(0.194662\pi\)
\(488\) −219.480 126.717i −0.449754 0.259665i
\(489\) 0 0
\(490\) 21.6594 37.5152i 0.0442029 0.0765617i
\(491\) −444.713 + 256.755i −0.905730 + 0.522923i −0.879055 0.476721i \(-0.841825\pi\)
−0.0266752 + 0.999644i \(0.508492\pi\)
\(492\) 0 0
\(493\) 702.155 1.42425
\(494\) 468.227 842.972i 0.947827 1.70642i
\(495\) 0 0
\(496\) 17.1624 + 29.7262i 0.0346017 + 0.0599318i
\(497\) 338.221 195.272i 0.680525 0.392901i
\(498\) 0 0
\(499\) 52.0404 0.104289 0.0521447 0.998640i \(-0.483394\pi\)
0.0521447 + 0.998640i \(0.483394\pi\)
\(500\) 265.590 + 153.339i 0.531180 + 0.306677i
\(501\) 0 0
\(502\) −739.172 −1.47245
\(503\) −251.465 145.184i −0.499931 0.288635i 0.228754 0.973484i \(-0.426535\pi\)
−0.728685 + 0.684849i \(0.759868\pi\)
\(504\) 0 0
\(505\) −72.5719 125.698i −0.143707 0.248907i
\(506\) 134.731i 0.266267i
\(507\) 0 0
\(508\) −494.114 −0.972666
\(509\) 215.641 124.500i 0.423655 0.244598i −0.272985 0.962018i \(-0.588011\pi\)
0.696640 + 0.717421i \(0.254677\pi\)
\(510\) 0 0
\(511\) 69.9351 121.131i 0.136859 0.237047i
\(512\) 416.995i 0.814444i
\(513\) 0 0
\(514\) 126.385 218.905i 0.245884 0.425884i
\(515\) 50.2863i 0.0976432i
\(516\) 0 0
\(517\) −127.024 220.012i −0.245695 0.425556i
\(518\) 753.170 434.843i 1.45400 0.839465i
\(519\) 0 0
\(520\) −64.4971 35.8248i −0.124033 0.0688938i
\(521\) 164.653i 0.316033i 0.987436 + 0.158017i \(0.0505100\pi\)
−0.987436 + 0.158017i \(0.949490\pi\)
\(522\) 0 0
\(523\) 78.0624 + 135.208i 0.149259 + 0.258524i 0.930954 0.365137i \(-0.118978\pi\)
−0.781695 + 0.623661i \(0.785645\pi\)
\(524\) −1164.30 672.209i −2.22195 1.28284i
\(525\) 0 0
\(526\) −663.553 + 1149.31i −1.26151 + 2.18500i
\(527\) 55.0102 + 31.7602i 0.104384 + 0.0602660i
\(528\) 0 0
\(529\) −249.986 + 432.988i −0.472563 + 0.818502i
\(530\) 161.474 93.2268i 0.304667 0.175900i
\(531\) 0 0
\(532\) 813.820 1.52974
\(533\) −652.867 + 10.8273i −1.22489 + 0.0203140i
\(534\) 0 0
\(535\) −0.961389 1.66517i −0.00179699 0.00311247i
\(536\) 506.623 292.499i 0.945192 0.545707i
\(537\) 0 0
\(538\) 205.862 0.382644
\(539\) 87.2499 + 50.3738i 0.161874 + 0.0934578i
\(540\) 0 0
\(541\) −563.218 −1.04107 −0.520534 0.853841i \(-0.674267\pi\)
−0.520534 + 0.853841i \(0.674267\pi\)
\(542\) 774.361 + 447.077i 1.42871 + 0.824866i
\(543\) 0 0
\(544\) −258.553 447.826i −0.475281 0.823210i
\(545\) 57.3610i 0.105250i
\(546\) 0 0
\(547\) −432.234 −0.790190 −0.395095 0.918640i \(-0.629288\pi\)
−0.395095 + 0.918640i \(0.629288\pi\)
\(548\) −625.780 + 361.294i −1.14193 + 0.659296i
\(549\) 0 0
\(550\) −297.023 + 514.459i −0.540042 + 0.935380i
\(551\) 1341.05i 2.43384i
\(552\) 0 0
\(553\) −244.040 + 422.689i −0.441301 + 0.764356i
\(554\) 109.239i 0.197181i
\(555\) 0 0
\(556\) 741.966 + 1285.12i 1.33447 + 2.31137i
\(557\) 157.788 91.0992i 0.283283 0.163553i −0.351626 0.936141i \(-0.614371\pi\)
0.634909 + 0.772587i \(0.281038\pi\)
\(558\) 0 0
\(559\) 581.946 348.979i 1.04105 0.624292i
\(560\) 45.5524i 0.0813436i
\(561\) 0 0
\(562\) 538.619 + 932.915i 0.958396 + 1.65999i
\(563\) −706.461 407.875i −1.25481 0.724468i −0.282753 0.959193i \(-0.591248\pi\)
−0.972062 + 0.234725i \(0.924581\pi\)
\(564\) 0 0
\(565\) −31.3033 + 54.2189i −0.0554040 + 0.0959626i
\(566\) 1042.91 + 602.124i 1.84260 + 1.06382i
\(567\) 0 0
\(568\) −164.457 + 284.847i −0.289536 + 0.501492i
\(569\) −124.183 + 71.6970i −0.218248 + 0.126005i −0.605139 0.796120i \(-0.706882\pi\)
0.386891 + 0.922125i \(0.373549\pi\)
\(570\) 0 0
\(571\) −301.875 −0.528678 −0.264339 0.964430i \(-0.585154\pi\)
−0.264339 + 0.964430i \(0.585154\pi\)
\(572\) 286.695 516.151i 0.501214 0.902361i
\(573\) 0 0
\(574\) −470.998 815.792i −0.820554 1.42124i
\(575\) 110.844 63.9957i 0.192772 0.111297i
\(576\) 0 0
\(577\) −132.688 −0.229962 −0.114981 0.993368i \(-0.536681\pi\)
−0.114981 + 0.993368i \(0.536681\pi\)
\(578\) 356.284 + 205.701i 0.616409 + 0.355884i
\(579\) 0 0
\(580\) 353.061 0.608726
\(581\) −278.347 160.704i −0.479082 0.276598i
\(582\) 0 0
\(583\) 216.820 + 375.543i 0.371903 + 0.644155i
\(584\) 117.798i 0.201708i
\(585\) 0 0
\(586\) 666.639 1.13761
\(587\) −657.935 + 379.859i −1.12084 + 0.647119i −0.941616 0.336689i \(-0.890693\pi\)
−0.179227 + 0.983808i \(0.557360\pi\)
\(588\) 0 0
\(589\) −60.6588 + 105.064i −0.102986 + 0.178377i
\(590\) 189.372i 0.320970i
\(591\) 0 0
\(592\) 156.733 271.469i 0.264752 0.458563i
\(593\) 629.225i 1.06109i −0.847657 0.530544i \(-0.821988\pi\)
0.847657 0.530544i \(-0.178012\pi\)
\(594\) 0 0
\(595\) 42.1488 + 73.0039i 0.0708384 + 0.122696i
\(596\) −98.7522 + 57.0146i −0.165692 + 0.0956621i
\(597\) 0 0
\(598\) −186.492 + 111.835i −0.311859 + 0.187015i
\(599\) 503.343i 0.840305i 0.907453 + 0.420153i \(0.138023\pi\)
−0.907453 + 0.420153i \(0.861977\pi\)
\(600\) 0 0
\(601\) −264.955 458.915i −0.440857 0.763586i 0.556896 0.830582i \(-0.311992\pi\)
−0.997753 + 0.0669956i \(0.978659\pi\)
\(602\) 847.784 + 489.469i 1.40828 + 0.813071i
\(603\) 0 0
\(604\) 291.191 504.358i 0.482105 0.835030i
\(605\) −54.2190 31.3033i −0.0896181 0.0517411i
\(606\) 0 0
\(607\) −189.318 + 327.908i −0.311891 + 0.540211i −0.978772 0.204953i \(-0.934296\pi\)
0.666881 + 0.745165i \(0.267629\pi\)
\(608\) 855.304 493.810i 1.40675 0.812187i
\(609\) 0 0
\(610\) 172.520 0.282820
\(611\) 199.099 358.447i 0.325857 0.586656i
\(612\) 0 0
\(613\) −303.520 525.712i −0.495139 0.857605i 0.504846 0.863210i \(-0.331549\pi\)
−0.999984 + 0.00560423i \(0.998216\pi\)
\(614\) 19.6136 11.3239i 0.0319439 0.0184428i
\(615\) 0 0
\(616\) 247.544 0.401858
\(617\) 104.350 + 60.2467i 0.169125 + 0.0976445i 0.582173 0.813065i \(-0.302203\pi\)
−0.413048 + 0.910709i \(0.635536\pi\)
\(618\) 0 0
\(619\) −805.505 −1.30130 −0.650650 0.759378i \(-0.725504\pi\)
−0.650650 + 0.759378i \(0.725504\pi\)
\(620\) 27.6605 + 15.9698i 0.0446137 + 0.0257578i
\(621\) 0 0
\(622\) −124.652 215.904i −0.200406 0.347113i
\(623\) 891.312i 1.43068i
\(624\) 0 0
\(625\) 533.220 0.853151
\(626\) −672.502 + 388.269i −1.07429 + 0.620239i
\(627\) 0 0
\(628\) 462.027 800.254i 0.735712 1.27429i
\(629\) 580.089i 0.922240i
\(630\) 0 0
\(631\) 339.183 587.483i 0.537533 0.931035i −0.461503 0.887139i \(-0.652690\pi\)
0.999036 0.0438961i \(-0.0139770\pi\)
\(632\) 411.057i 0.650407i
\(633\) 0 0
\(634\) −599.412 1038.21i −0.945444 1.63756i
\(635\) 84.6557 48.8760i 0.133316 0.0769700i
\(636\) 0 0
\(637\) 2.69632 + 162.583i 0.00423284 + 0.255232i
\(638\) 1403.61i 2.20002i
\(639\) 0 0
\(640\) −83.1844 144.080i −0.129976 0.225124i
\(641\) 128.742 + 74.3289i 0.200845 + 0.115958i 0.597049 0.802204i \(-0.296340\pi\)
−0.396205 + 0.918162i \(0.629673\pi\)
\(642\) 0 0
\(643\) −142.221 + 246.333i −0.221183 + 0.383100i −0.955167 0.296066i \(-0.904325\pi\)
0.733985 + 0.679166i \(0.237658\pi\)
\(644\) −158.936 91.7619i −0.246795 0.142487i
\(645\) 0 0
\(646\) 463.949 803.583i 0.718187 1.24394i
\(647\) −258.536 + 149.266i −0.399592 + 0.230704i −0.686308 0.727311i \(-0.740770\pi\)
0.286716 + 0.958016i \(0.407436\pi\)
\(648\) 0 0
\(649\) 440.427 0.678624
\(650\) −958.648 + 15.8985i −1.47484 + 0.0244592i
\(651\) 0 0
\(652\) 624.391 + 1081.48i 0.957655 + 1.65871i
\(653\) 840.205 485.093i 1.28668 0.742868i 0.308623 0.951184i \(-0.400132\pi\)
0.978061 + 0.208317i \(0.0667984\pi\)
\(654\) 0 0
\(655\) 265.970 0.406061
\(656\) −294.041 169.764i −0.448233 0.258787i
\(657\) 0 0
\(658\) 591.534 0.898988
\(659\) −668.610 386.022i −1.01458 0.585769i −0.102052 0.994779i \(-0.532541\pi\)
−0.912530 + 0.409010i \(0.865874\pi\)
\(660\) 0 0
\(661\) −245.612 425.412i −0.371576 0.643588i 0.618232 0.785995i \(-0.287849\pi\)
−0.989808 + 0.142407i \(0.954516\pi\)
\(662\) 389.901i 0.588974i
\(663\) 0 0
\(664\) 270.687 0.407661
\(665\) −139.430 + 80.5001i −0.209670 + 0.121053i
\(666\) 0 0
\(667\) 151.209 261.902i 0.226700 0.392656i
\(668\) 874.842i 1.30964i
\(669\) 0 0
\(670\) −199.114 + 344.875i −0.297184 + 0.514739i
\(671\) 401.234i 0.597965i
\(672\) 0 0
\(673\) −34.5009 59.7573i −0.0512644 0.0887925i 0.839255 0.543739i \(-0.182992\pi\)
−0.890519 + 0.454946i \(0.849658\pi\)
\(674\) 711.184 410.602i 1.05517 0.609202i
\(675\) 0 0
\(676\) 952.417 31.5990i 1.40890 0.0467441i
\(677\) 188.294i 0.278129i 0.990283 + 0.139065i \(0.0444096\pi\)
−0.990283 + 0.139065i \(0.955590\pi\)
\(678\) 0 0
\(679\) −82.5747 143.024i −0.121612 0.210638i
\(680\) −61.4834 35.4975i −0.0904168 0.0522022i
\(681\) 0 0
\(682\) −63.4887 + 109.966i −0.0930920 + 0.161240i
\(683\) −863.397 498.483i −1.26412 0.729843i −0.290255 0.956949i \(-0.593740\pi\)
−0.973870 + 0.227107i \(0.927073\pi\)
\(684\) 0 0
\(685\) 71.4758 123.800i 0.104344 0.180729i
\(686\) −999.012 + 576.780i −1.45628 + 0.840787i
\(687\) 0 0
\(688\) 352.844 0.512854
\(689\) −339.844 + 611.839i −0.493243 + 0.888010i
\(690\) 0 0
\(691\) 79.7989 + 138.216i 0.115483 + 0.200023i 0.917973 0.396643i \(-0.129825\pi\)
−0.802490 + 0.596666i \(0.796492\pi\)
\(692\) −668.327 + 385.859i −0.965790 + 0.557599i
\(693\) 0 0
\(694\) 248.451 0.357999
\(695\) −254.239 146.785i −0.365812 0.211202i
\(696\) 0 0
\(697\) −628.320 −0.901464
\(698\) 314.977 + 181.852i 0.451256 + 0.260533i
\(699\) 0 0
\(700\) −404.589 700.769i −0.577984 1.00110i
\(701\) 238.018i 0.339541i −0.985484 0.169771i \(-0.945697\pi\)
0.985484 0.169771i \(-0.0543027\pi\)
\(702\) 0 0
\(703\) 1107.91 1.57598
\(704\) 706.594 407.952i 1.00368 0.579478i
\(705\) 0 0
\(706\) −474.063 + 821.101i −0.671477 + 1.16303i
\(707\) 785.995i 1.11173i
\(708\) 0 0
\(709\) 25.6161 44.3684i 0.0361299 0.0625789i −0.847395 0.530963i \(-0.821830\pi\)
0.883525 + 0.468384i \(0.155164\pi\)
\(710\) 223.902i 0.315355i
\(711\) 0 0
\(712\) −375.329 650.088i −0.527147 0.913045i
\(713\) 23.6929 13.6791i 0.0332299 0.0191853i
\(714\) 0 0
\(715\) 1.93688 + 116.790i 0.00270892 + 0.163342i
\(716\) 581.802i 0.812573i
\(717\) 0 0
\(718\) 191.230 + 331.220i 0.266337 + 0.461309i
\(719\) 1030.21 + 594.790i 1.43283 + 0.827246i 0.997336 0.0729446i \(-0.0232396\pi\)
0.435496 + 0.900191i \(0.356573\pi\)
\(720\) 0 0
\(721\) −136.157 + 235.831i −0.188845 + 0.327089i
\(722\) 564.149 + 325.711i 0.781369 + 0.451124i
\(723\) 0 0
\(724\) −846.764 + 1466.64i −1.16956 + 2.02574i
\(725\) 1154.76 666.699i 1.59277 0.919584i
\(726\) 0 0
\(727\) −0.404850 −0.000556877 −0.000278439 1.00000i \(-0.500089\pi\)
−0.000278439 1.00000i \(0.500089\pi\)
\(728\) 205.476 + 342.645i 0.282247 + 0.470666i
\(729\) 0 0
\(730\) −40.0944 69.4455i −0.0549238 0.0951308i
\(731\) 565.480 326.480i 0.773571 0.446622i
\(732\) 0 0
\(733\) −559.319 −0.763055 −0.381527 0.924358i \(-0.624602\pi\)
−0.381527 + 0.924358i \(0.624602\pi\)
\(734\) −1109.35 640.485i −1.51138 0.872596i
\(735\) 0 0
\(736\) −222.717 −0.302605
\(737\) −802.083 463.083i −1.08831 0.628335i
\(738\) 0 0
\(739\) 209.810 + 363.402i 0.283911 + 0.491748i 0.972344 0.233551i \(-0.0750347\pi\)
−0.688434 + 0.725299i \(0.741701\pi\)
\(740\) 291.683i 0.394166i
\(741\) 0 0
\(742\) −1009.70 −1.36078
\(743\) 729.497 421.175i 0.981827 0.566858i 0.0790056 0.996874i \(-0.474825\pi\)
0.902821 + 0.430016i \(0.141492\pi\)
\(744\) 0 0
\(745\) 11.2793 19.5364i 0.0151401 0.0262234i
\(746\) 1499.14i 2.00956i
\(747\) 0 0
\(748\) 284.075 492.033i 0.379780 0.657798i
\(749\) 10.4124i 0.0139017i
\(750\) 0 0
\(751\) 416.741 + 721.816i 0.554915 + 0.961140i 0.997910 + 0.0646165i \(0.0205824\pi\)
−0.442996 + 0.896524i \(0.646084\pi\)
\(752\) 184.645 106.605i 0.245539 0.141762i
\(753\) 0 0
\(754\) −1942.85 + 1165.08i −2.57672 + 1.54520i
\(755\) 115.214i 0.152602i
\(756\) 0 0
\(757\) −376.168 651.541i −0.496919 0.860689i 0.503075 0.864243i \(-0.332202\pi\)
−0.999994 + 0.00355402i \(0.998869\pi\)
\(758\) −180.997 104.499i −0.238782 0.137861i
\(759\) 0 0
\(760\) 67.7966 117.427i 0.0892061 0.154510i
\(761\) 974.738 + 562.765i 1.28086 + 0.739508i 0.977007 0.213209i \(-0.0683917\pi\)
0.303858 + 0.952717i \(0.401725\pi\)
\(762\) 0 0
\(763\) 155.313 269.010i 0.203556 0.352569i
\(764\) 205.611 118.709i 0.269124 0.155379i
\(765\) 0 0
\(766\) −2059.76 −2.68898
\(767\) 365.580 + 609.629i 0.476637 + 0.794823i
\(768\) 0 0
\(769\) 746.826 + 1293.54i 0.971166 + 1.68211i 0.692048 + 0.721851i \(0.256708\pi\)
0.279117 + 0.960257i \(0.409958\pi\)
\(770\) −145.935 + 84.2557i −0.189526 + 0.109423i
\(771\) 0 0
\(772\) 488.989 0.633405
\(773\) 653.621 + 377.368i 0.845564 + 0.488187i 0.859152 0.511721i \(-0.170992\pi\)
−0.0135876 + 0.999908i \(0.504325\pi\)
\(774\) 0 0
\(775\) 120.626 0.155646
\(776\) 120.453 + 69.5438i 0.155223 + 0.0896183i
\(777\) 0 0
\(778\) 223.563 + 387.223i 0.287356 + 0.497715i
\(779\) 1200.03i 1.54047i
\(780\) 0 0
\(781\) 520.734 0.666753
\(782\) −181.215 + 104.625i −0.231733 + 0.133791i
\(783\) 0 0
\(784\) −42.2762 + 73.2245i −0.0539237 + 0.0933986i
\(785\) 182.808i 0.232876i
\(786\) 0 0
\(787\) 147.007 254.623i 0.186794 0.323536i −0.757386 0.652968i \(-0.773524\pi\)
0.944179 + 0.329431i \(0.106857\pi\)
\(788\) 376.811i 0.478187i
\(789\) 0 0
\(790\) 139.910 + 242.331i 0.177101 + 0.306748i
\(791\) 293.611 169.516i 0.371189 0.214306i
\(792\) 0 0
\(793\) −555.379 + 333.048i −0.700352 + 0.419985i
\(794\) 1291.90i 1.62708i
\(795\) 0 0
\(796\) −634.606 1099.17i −0.797244 1.38087i
\(797\) −686.295 396.232i −0.861097 0.497155i 0.00328220 0.999995i \(-0.498955\pi\)
−0.864380 + 0.502840i \(0.832289\pi\)
\(798\) 0 0
\(799\) 197.280 341.698i 0.246908 0.427657i
\(800\) −850.425 490.993i −1.06303 0.613741i
\(801\) 0 0
\(802\) 269.306 466.452i 0.335793 0.581611i
\(803\) 161.511 93.2483i 0.201134 0.116125i
\(804\) 0 0
\(805\) 36.3070 0.0451019
\(806\) −204.911 + 3.39831i −0.254232 + 0.00421626i
\(807\) 0 0
\(808\) −330.980 573.274i −0.409628 0.709497i
\(809\) −303.661 + 175.319i −0.375353 + 0.216710i −0.675795 0.737090i \(-0.736199\pi\)
0.300441 + 0.953800i \(0.402866\pi\)
\(810\) 0 0
\(811\) −276.945 −0.341485 −0.170743 0.985316i \(-0.554617\pi\)
−0.170743 + 0.985316i \(0.554617\pi\)
\(812\) −1655.78 955.963i −2.03913 1.17729i
\(813\) 0 0
\(814\) 1159.60 1.42457
\(815\) −213.951 123.525i −0.262517 0.151564i
\(816\) 0 0
\(817\) 623.545 + 1080.01i 0.763213 + 1.32192i
\(818\) 1070.27i 1.30840i
\(819\) 0 0
\(820\) −315.935 −0.385287
\(821\) 976.609 563.845i 1.18954 0.686779i 0.231334 0.972874i \(-0.425691\pi\)
0.958201 + 0.286096i \(0.0923575\pi\)
\(822\) 0 0
\(823\) −434.072 + 751.835i −0.527426 + 0.913529i 0.472063 + 0.881565i \(0.343510\pi\)
−0.999489 + 0.0319643i \(0.989824\pi\)
\(824\) 229.341i 0.278327i
\(825\) 0 0
\(826\) −512.752 + 888.113i −0.620765 + 1.07520i
\(827\) 173.580i 0.209891i −0.994478 0.104946i \(-0.966533\pi\)
0.994478 0.104946i \(-0.0334669\pi\)
\(828\) 0 0
\(829\) −159.773 276.735i −0.192730 0.333818i 0.753424 0.657535i \(-0.228401\pi\)
−0.946154 + 0.323717i \(0.895067\pi\)
\(830\) −159.578 + 92.1326i −0.192263 + 0.111003i
\(831\) 0 0
\(832\) 1151.19 + 639.427i 1.38364 + 0.768542i
\(833\) 156.470i 0.187839i
\(834\) 0 0
\(835\) −86.5361 149.885i −0.103636 0.179503i
\(836\) 939.734 + 542.556i 1.12408 + 0.648990i
\(837\) 0 0
\(838\) −41.0622 + 71.1219i −0.0490003 + 0.0848710i
\(839\) 298.945 + 172.596i 0.356311 + 0.205717i 0.667462 0.744644i \(-0.267381\pi\)
−0.311150 + 0.950361i \(0.600714\pi\)
\(840\) 0 0
\(841\) 1154.78 2000.13i 1.37310 2.37828i
\(842\) −2031.15 + 1172.68i −2.41229 + 1.39274i
\(843\) 0 0
\(844\) −2001.04 −2.37090
\(845\) −160.050 + 99.6234i −0.189408 + 0.117897i
\(846\) 0 0
\(847\) 169.516 + 293.611i 0.200137 + 0.346648i
\(848\) −315.174 + 181.966i −0.371667 + 0.214582i
\(849\) 0 0
\(850\) −922.605 −1.08542
\(851\) −216.371 124.922i −0.254255 0.146794i
\(852\) 0 0
\(853\) 671.330 0.787022 0.393511 0.919320i \(-0.371260\pi\)
0.393511 + 0.919320i \(0.371260\pi\)
\(854\) −809.081 467.123i −0.947402 0.546983i
\(855\) 0 0
\(856\) −4.38462 7.59438i −0.00512222 0.00887194i
\(857\) 56.0776i 0.0654348i 0.999465 + 0.0327174i \(0.0104161\pi\)
−0.999465 + 0.0327174i \(0.989584\pi\)
\(858\) 0 0
\(859\) −929.971 −1.08262 −0.541310 0.840823i \(-0.682072\pi\)
−0.541310 + 0.840823i \(0.682072\pi\)
\(860\) 284.338 164.162i 0.330625 0.190886i
\(861\) 0 0
\(862\) 1273.46 2205.69i 1.47733 2.55881i
\(863\) 2.59692i 0.00300918i −0.999999 0.00150459i \(-0.999521\pi\)
0.999999 0.00150459i \(-0.000478926\pi\)
\(864\) 0 0
\(865\) 76.3354 132.217i 0.0882490 0.152852i
\(866\) 415.477i 0.479765i
\(867\) 0 0
\(868\) −86.4810 149.790i −0.0996325 0.172569i
\(869\) −563.595 + 325.391i −0.648555 + 0.374444i
\(870\) 0 0
\(871\) −24.7871 1494.61i −0.0284582 1.71597i
\(872\) 261.607i 0.300008i
\(873\) 0 0
\(874\) −199.823 346.103i −0.228630 0.395999i
\(875\) 284.532 + 164.275i 0.325179 + 0.187742i
\(876\) 0 0
\(877\) 350.928 607.826i 0.400146 0.693074i −0.593597 0.804763i \(-0.702293\pi\)
0.993743 + 0.111689i \(0.0356260\pi\)
\(878\) −556.381 321.227i −0.633691 0.365862i
\(879\) 0 0
\(880\) −30.3688 + 52.6002i −0.0345100 + 0.0597730i
\(881\) 1308.98 755.738i 1.48579 0.857819i 0.485917 0.874005i \(-0.338486\pi\)
0.999869 + 0.0161862i \(0.00515244\pi\)
\(882\) 0 0
\(883\) 200.173 0.226696 0.113348 0.993555i \(-0.463842\pi\)
0.113348 + 0.993555i \(0.463842\pi\)
\(884\) 916.860 15.2055i 1.03717 0.0172008i
\(885\) 0 0
\(886\) 703.838 + 1219.08i 0.794399 + 1.37594i
\(887\) −1321.28 + 762.841i −1.48961 + 0.860024i −0.999929 0.0118806i \(-0.996218\pi\)
−0.489676 + 0.871905i \(0.662885\pi\)
\(888\) 0 0
\(889\) −529.354 −0.595449
\(890\) 442.536 + 255.498i 0.497232 + 0.287077i
\(891\) 0 0
\(892\) 1524.71 1.70932
\(893\) 652.610 + 376.784i 0.730806 + 0.421931i
\(894\) 0 0
\(895\) 57.5497 + 99.6790i 0.0643014 + 0.111373i
\(896\) 900.934i 1.00551i
\(897\) 0 0
\(898\) 2045.51 2.27785
\(899\) 246.829 142.507i 0.274560 0.158517i
\(900\) 0 0
\(901\) −336.740 + 583.250i −0.373740 + 0.647336i
\(902\) 1256.01i 1.39248i
\(903\) 0 0
\(904\) −142.765 + 247.277i −0.157926 + 0.273536i
\(905\) 335.035i 0.370204i
\(906\) 0 0
\(907\) 252.352 + 437.087i 0.278227 + 0.481904i 0.970944 0.239306i \(-0.0769198\pi\)
−0.692717 + 0.721210i \(0.743586\pi\)
\(908\) −1961.14 + 1132.26i −2.15984 + 1.24698i
\(909\) 0 0
\(910\) −237.759 132.063i −0.261274 0.145124i
\(911\) 1079.70i 1.18518i −0.805504 0.592591i \(-0.798105\pi\)
0.805504 0.592591i \(-0.201895\pi\)
\(912\) 0 0
\(913\) −214.275 371.135i −0.234693 0.406500i
\(914\) 591.516 + 341.512i 0.647173 + 0.373645i
\(915\) 0 0
\(916\) 863.450 1495.54i 0.942631 1.63268i
\(917\) −1247.34 720.151i −1.36024 0.785333i
\(918\) 0 0
\(919\) 193.794 335.660i 0.210874 0.365245i −0.741114 0.671379i \(-0.765702\pi\)
0.951988 + 0.306134i \(0.0990356\pi\)
\(920\) −26.4809 + 15.2887i −0.0287836 + 0.0166182i
\(921\) 0 0
\(922\) −1038.90 −1.12679
\(923\) 432.239 + 720.788i 0.468298 + 0.780918i
\(924\) 0 0
\(925\) −550.796 954.007i −0.595455 1.03136i
\(926\) −819.655 + 473.228i −0.885156 + 0.511045i
\(927\) 0 0
\(928\) −2320.24 −2.50025
\(929\) 552.771 + 319.143i 0.595018 + 0.343534i 0.767079 0.641553i \(-0.221709\pi\)
−0.172061 + 0.985086i \(0.555043\pi\)
\(930\) 0 0
\(931\) −298.842 −0.320990
\(932\) 1758.03 + 1015.00i 1.88630 + 1.08905i
\(933\) 0 0
\(934\) 1149.74 + 1991.41i 1.23099 + 2.13213i
\(935\) 112.399i 0.120213i
\(936\) 0 0
\(937\) −563.143 −0.601006 −0.300503 0.953781i \(-0.597155\pi\)
−0.300503 + 0.953781i \(0.597155\pi\)
\(938\) 1867.59 1078.26i 1.99104 1.14953i
\(939\) 0 0
\(940\) 99.1971 171.814i 0.105529 0.182781i
\(941\) 1382.05i 1.46871i 0.678766 + 0.734354i \(0.262515\pi\)
−0.678766 + 0.734354i \(0.737485\pi\)
\(942\) 0 0
\(943\) −135.309 + 234.362i −0.143487 + 0.248528i
\(944\) 369.628i 0.391556i
\(945\) 0 0
\(946\) 652.635 + 1130.40i 0.689889 + 1.19492i
\(947\) 736.141 425.011i 0.777341 0.448798i −0.0581464 0.998308i \(-0.518519\pi\)
0.835487 + 0.549510i \(0.185186\pi\)
\(948\) 0 0
\(949\) 263.136 + 146.158i 0.277277 + 0.154013i
\(950\) 1762.08i 1.85482i
\(951\) 0 0
\(952\) 192.229 + 332.950i 0.201921 + 0.349737i
\(953\) 1202.46 + 694.239i 1.26176 + 0.728478i 0.973415 0.229049i \(-0.0735615\pi\)
0.288346 + 0.957526i \(0.406895\pi\)
\(954\) 0 0
\(955\) −23.4846 + 40.6765i −0.0245912 + 0.0425932i
\(956\) 1366.18 + 788.765i 1.42906 + 0.825068i
\(957\) 0 0
\(958\) 730.829 1265.83i 0.762870 1.32133i
\(959\) −670.410 + 387.062i −0.699072 + 0.403610i
\(960\) 0 0
\(961\) −935.216 −0.973170
\(962\) 962.536 + 1605.09i 1.00056 + 1.66849i
\(963\) 0 0
\(964\) 248.204 + 429.901i 0.257473 + 0.445956i
\(965\) −83.7775 + 48.3689i −0.0868160 + 0.0501233i
\(966\) 0 0
\(967\) 1422.40 1.47094 0.735468 0.677559i \(-0.236962\pi\)
0.735468 + 0.677559i \(0.236962\pi\)
\(968\) −247.277 142.766i −0.255452 0.147485i
\(969\) 0 0
\(970\) −94.6815 −0.0976098
\(971\) −576.305 332.730i −0.593517 0.342667i 0.172970 0.984927i \(-0.444664\pi\)
−0.766487 + 0.642260i \(0.777997\pi\)
\(972\) 0 0
\(973\) 794.883 + 1376.78i 0.816940 + 1.41498i
\(974\) 265.608i 0.272698i
\(975\) 0 0
\(976\) −336.736 −0.345016
\(977\) −213.789 + 123.431i −0.218821 + 0.126337i −0.605404 0.795918i \(-0.706989\pi\)
0.386583 + 0.922255i \(0.373655\pi\)
\(978\) 0 0
\(979\) −594.218 + 1029.22i −0.606964 + 1.05129i
\(980\) 78.6768i 0.0802825i
\(981\) 0 0
\(982\) 797.130 1380.67i 0.811741 1.40598i
\(983\) 1946.29i 1.97995i 0.141245 + 0.989975i \(0.454889\pi\)
−0.141245 + 0.989975i \(0.545111\pi\)
\(984\) 0 0
\(985\) −37.2728 64.5583i −0.0378404 0.0655414i
\(986\) −1887.87 + 1089.97i −1.91468 + 1.10544i
\(987\) 0 0
\(988\) 29.0409 + 1751.11i 0.0293937 + 1.77238i
\(989\) 281.230i 0.284358i
\(990\) 0 0
\(991\) −268.271 464.660i −0.270708 0.468880i 0.698335 0.715771i \(-0.253924\pi\)
−0.969043 + 0.246891i \(0.920591\pi\)
\(992\) −181.779 104.950i −0.183244 0.105796i
\(993\) 0 0
\(994\) −606.247 + 1050.05i −0.609906 + 1.05639i
\(995\) 217.452 + 125.546i 0.218544 + 0.126177i
\(996\) 0 0
\(997\) 306.414 530.725i 0.307336 0.532322i −0.670442 0.741962i \(-0.733896\pi\)
0.977779 + 0.209639i \(0.0672290\pi\)
\(998\) −139.920 + 80.7829i −0.140201 + 0.0809448i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.p.a.107.2 yes 20
3.2 odd 2 inner 117.3.p.a.107.9 yes 20
13.9 even 3 inner 117.3.p.a.35.9 yes 20
39.35 odd 6 inner 117.3.p.a.35.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.p.a.35.2 20 39.35 odd 6 inner
117.3.p.a.35.9 yes 20 13.9 even 3 inner
117.3.p.a.107.2 yes 20 1.1 even 1 trivial
117.3.p.a.107.9 yes 20 3.2 odd 2 inner