Properties

Label 117.3.u.a.68.3
Level $117$
Weight $3$
Character 117.68
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(68,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.68");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.u (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 68.3
Character \(\chi\) \(=\) 117.68
Dual form 117.3.u.a.74.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.83378 - 1.63609i) q^{2} +(0.158993 - 2.99578i) q^{3} +(3.35355 + 5.80853i) q^{4} +(-3.48512 - 2.01214i) q^{5} +(-5.35191 + 8.22928i) q^{6} -2.80059 q^{7} -8.85812i q^{8} +(-8.94944 - 0.952618i) q^{9} +(6.58406 + 11.4039i) q^{10} +(-9.14343 - 5.27896i) q^{11} +(17.9343 - 9.12301i) q^{12} +(8.36009 + 9.95535i) q^{13} +(7.93627 + 4.58201i) q^{14} +(-6.58204 + 10.1208i) q^{15} +(-1.07844 + 1.86791i) q^{16} +(13.9728 + 8.06719i) q^{17} +(23.8022 + 17.3416i) q^{18} +(-11.6456 + 20.1708i) q^{19} -26.9912i q^{20} +(-0.445274 + 8.38996i) q^{21} +(17.2737 + 29.9189i) q^{22} +11.1273i q^{23} +(-26.5370 - 1.40838i) q^{24} +(-4.40262 - 7.62555i) q^{25} +(-7.40288 - 41.8891i) q^{26} +(-4.27674 + 26.6591i) q^{27} +(-9.39193 - 16.2673i) q^{28} +(-21.4537 - 12.3863i) q^{29} +(35.2105 - 17.9113i) q^{30} +(4.04316 - 7.00296i) q^{31} +(-24.5733 + 14.1874i) q^{32} +(-17.2684 + 26.5524i) q^{33} +(-26.3972 - 45.7213i) q^{34} +(9.76040 + 5.63517i) q^{35} +(-24.4791 - 55.1777i) q^{36} +(-33.7864 - 58.5198i) q^{37} +(66.0022 - 38.1064i) q^{38} +(31.1533 - 23.4622i) q^{39} +(-17.8238 + 30.8716i) q^{40} -9.86048i q^{41} +(14.9885 - 23.0468i) q^{42} -3.41456 q^{43} -70.8132i q^{44} +(29.2731 + 21.3275i) q^{45} +(18.2053 - 31.5325i) q^{46} +(-80.2410 + 46.3271i) q^{47} +(5.42438 + 3.52774i) q^{48} -41.1567 q^{49} +28.8122i q^{50} +(26.3891 - 40.5768i) q^{51} +(-29.7899 + 81.9456i) q^{52} +36.1018i q^{53} +(55.7360 - 68.5491i) q^{54} +(21.2440 + 36.7957i) q^{55} +24.8080i q^{56} +(58.5757 + 38.0947i) q^{57} +(40.5301 + 70.2002i) q^{58} +(14.6081 - 8.43398i) q^{59} +(-80.8599 - 4.29142i) q^{60} -17.8181 q^{61} +(-22.9149 + 13.2299i) q^{62} +(25.0637 + 2.66789i) q^{63} +101.475 q^{64} +(-9.10442 - 51.5172i) q^{65} +(92.3769 - 46.9913i) q^{66} -54.9439 q^{67} +108.215i q^{68} +(33.3351 + 1.76917i) q^{69} +(-18.4392 - 31.9377i) q^{70} +(-76.3871 - 44.1021i) q^{71} +(-8.43840 + 79.2753i) q^{72} +86.4607 q^{73} +221.110i q^{74} +(-23.5445 + 11.9769i) q^{75} -156.217 q^{76} +(25.6070 + 14.7842i) q^{77} +(-126.668 + 15.5174i) q^{78} +(-62.9550 - 109.041i) q^{79} +(7.51696 - 4.33992i) q^{80} +(79.1850 + 17.0508i) q^{81} +(-16.1326 + 27.9425i) q^{82} +(1.94262 - 1.12157i) q^{83} +(-50.2266 + 25.5498i) q^{84} +(-32.4646 - 56.2303i) q^{85} +(9.67611 + 5.58651i) q^{86} +(-40.5177 + 62.3013i) q^{87} +(-46.7617 + 80.9937i) q^{88} +(66.8494 - 38.5955i) q^{89} +(-48.0601 - 108.331i) q^{90} +(-23.4132 - 27.8808i) q^{91} +(-64.6334 + 37.3161i) q^{92} +(-20.3365 - 13.2259i) q^{93} +303.181 q^{94} +(81.1726 - 46.8650i) q^{95} +(38.5955 + 75.8721i) q^{96} +98.9671 q^{97} +(116.629 + 67.3359i) q^{98} +(76.7998 + 55.9540i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 3 q^{2} - q^{3} + 49 q^{4} - 6 q^{5} - 3 q^{6} + 2 q^{7} - 3 q^{9} - 6 q^{10} + 33 q^{11} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 28 q^{15} - 83 q^{16} + 34 q^{18} + 5 q^{19} - 91 q^{21} - 15 q^{22}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.83378 1.63609i −1.41689 0.818043i −0.420867 0.907122i \(-0.638274\pi\)
−0.996025 + 0.0890792i \(0.971608\pi\)
\(3\) 0.158993 2.99578i 0.0529977 0.998595i
\(4\) 3.35355 + 5.80853i 0.838389 + 1.45213i
\(5\) −3.48512 2.01214i −0.697024 0.402427i 0.109214 0.994018i \(-0.465167\pi\)
−0.806238 + 0.591591i \(0.798500\pi\)
\(6\) −5.35191 + 8.22928i −0.891985 + 1.37155i
\(7\) −2.80059 −0.400084 −0.200042 0.979787i \(-0.564108\pi\)
−0.200042 + 0.979787i \(0.564108\pi\)
\(8\) 8.85812i 1.10727i
\(9\) −8.94944 0.952618i −0.994382 0.105846i
\(10\) 6.58406 + 11.4039i 0.658406 + 1.14039i
\(11\) −9.14343 5.27896i −0.831221 0.479906i 0.0230495 0.999734i \(-0.492662\pi\)
−0.854271 + 0.519829i \(0.825996\pi\)
\(12\) 17.9343 9.12301i 1.49452 0.760251i
\(13\) 8.36009 + 9.95535i 0.643084 + 0.765796i
\(14\) 7.93627 + 4.58201i 0.566876 + 0.327286i
\(15\) −6.58204 + 10.1208i −0.438802 + 0.674717i
\(16\) −1.07844 + 1.86791i −0.0674022 + 0.116744i
\(17\) 13.9728 + 8.06719i 0.821928 + 0.474540i 0.851081 0.525035i \(-0.175948\pi\)
−0.0291528 + 0.999575i \(0.509281\pi\)
\(18\) 23.8022 + 17.3416i 1.32235 + 0.963421i
\(19\) −11.6456 + 20.1708i −0.612926 + 1.06162i 0.377819 + 0.925880i \(0.376674\pi\)
−0.990745 + 0.135739i \(0.956659\pi\)
\(20\) 26.9912i 1.34956i
\(21\) −0.445274 + 8.38996i −0.0212035 + 0.399522i
\(22\) 17.2737 + 29.9189i 0.785167 + 1.35995i
\(23\) 11.1273i 0.483797i 0.970302 + 0.241899i \(0.0777701\pi\)
−0.970302 + 0.241899i \(0.922230\pi\)
\(24\) −26.5370 1.40838i −1.10571 0.0586825i
\(25\) −4.40262 7.62555i −0.176105 0.305022i
\(26\) −7.40288 41.8891i −0.284726 1.61112i
\(27\) −4.27674 + 26.6591i −0.158398 + 0.987375i
\(28\) −9.39193 16.2673i −0.335426 0.580975i
\(29\) −21.4537 12.3863i −0.739783 0.427114i 0.0822074 0.996615i \(-0.473803\pi\)
−0.821990 + 0.569501i \(0.807136\pi\)
\(30\) 35.2105 17.9113i 1.17368 0.597042i
\(31\) 4.04316 7.00296i 0.130425 0.225902i −0.793416 0.608680i \(-0.791699\pi\)
0.923840 + 0.382778i \(0.125033\pi\)
\(32\) −24.5733 + 14.1874i −0.767917 + 0.443357i
\(33\) −17.2684 + 26.5524i −0.523284 + 0.804619i
\(34\) −26.3972 45.7213i −0.776389 1.34475i
\(35\) 9.76040 + 5.63517i 0.278869 + 0.161005i
\(36\) −24.4791 55.1777i −0.679976 1.53271i
\(37\) −33.7864 58.5198i −0.913146 1.58162i −0.809593 0.586992i \(-0.800312\pi\)
−0.103553 0.994624i \(-0.533021\pi\)
\(38\) 66.0022 38.1064i 1.73690 1.00280i
\(39\) 31.1533 23.4622i 0.798802 0.601595i
\(40\) −17.8238 + 30.8716i −0.445594 + 0.771791i
\(41\) 9.86048i 0.240500i −0.992744 0.120250i \(-0.961630\pi\)
0.992744 0.120250i \(-0.0383696\pi\)
\(42\) 14.9885 23.0468i 0.356869 0.548734i
\(43\) −3.41456 −0.0794083 −0.0397041 0.999211i \(-0.512642\pi\)
−0.0397041 + 0.999211i \(0.512642\pi\)
\(44\) 70.8132i 1.60939i
\(45\) 29.2731 + 21.3275i 0.650513 + 0.473944i
\(46\) 18.2053 31.5325i 0.395767 0.685488i
\(47\) −80.2410 + 46.3271i −1.70725 + 0.985684i −0.769326 + 0.638857i \(0.779408\pi\)
−0.937929 + 0.346827i \(0.887259\pi\)
\(48\) 5.42438 + 3.52774i 0.113008 + 0.0734947i
\(49\) −41.1567 −0.839933
\(50\) 28.8122i 0.576245i
\(51\) 26.3891 40.5768i 0.517434 0.795623i
\(52\) −29.7899 + 81.9456i −0.572882 + 1.57588i
\(53\) 36.1018i 0.681167i 0.940214 + 0.340583i \(0.110625\pi\)
−0.940214 + 0.340583i \(0.889375\pi\)
\(54\) 55.7360 68.5491i 1.03215 1.26943i
\(55\) 21.2440 + 36.7957i 0.386254 + 0.669012i
\(56\) 24.8080i 0.443000i
\(57\) 58.5757 + 38.0947i 1.02764 + 0.668328i
\(58\) 40.5301 + 70.2002i 0.698795 + 1.21035i
\(59\) 14.6081 8.43398i 0.247595 0.142949i −0.371068 0.928606i \(-0.621008\pi\)
0.618662 + 0.785657i \(0.287675\pi\)
\(60\) −80.8599 4.29142i −1.34766 0.0715236i
\(61\) −17.8181 −0.292100 −0.146050 0.989277i \(-0.546656\pi\)
−0.146050 + 0.989277i \(0.546656\pi\)
\(62\) −22.9149 + 13.2299i −0.369595 + 0.213386i
\(63\) 25.0637 + 2.66789i 0.397837 + 0.0423475i
\(64\) 101.475 1.58554
\(65\) −9.10442 51.5172i −0.140068 0.792573i
\(66\) 92.3769 46.9913i 1.39965 0.711989i
\(67\) −54.9439 −0.820059 −0.410029 0.912072i \(-0.634482\pi\)
−0.410029 + 0.912072i \(0.634482\pi\)
\(68\) 108.215i 1.59140i
\(69\) 33.3351 + 1.76917i 0.483117 + 0.0256401i
\(70\) −18.4392 31.9377i −0.263418 0.456253i
\(71\) −76.3871 44.1021i −1.07587 0.621156i −0.146094 0.989271i \(-0.546670\pi\)
−0.929780 + 0.368115i \(0.880003\pi\)
\(72\) −8.43840 + 79.2753i −0.117200 + 1.10105i
\(73\) 86.4607 1.18439 0.592196 0.805794i \(-0.298261\pi\)
0.592196 + 0.805794i \(0.298261\pi\)
\(74\) 221.110i 2.98797i
\(75\) −23.5445 + 11.9769i −0.313927 + 0.159692i
\(76\) −156.217 −2.05548
\(77\) 25.6070 + 14.7842i 0.332558 + 0.192003i
\(78\) −126.668 + 15.5174i −1.62395 + 0.198941i
\(79\) −62.9550 109.041i −0.796899 1.38027i −0.921626 0.388079i \(-0.873139\pi\)
0.124727 0.992191i \(-0.460195\pi\)
\(80\) 7.51696 4.33992i 0.0939620 0.0542490i
\(81\) 79.1850 + 17.0508i 0.977593 + 0.210504i
\(82\) −16.1326 + 27.9425i −0.196739 + 0.340762i
\(83\) 1.94262 1.12157i 0.0234051 0.0135129i −0.488252 0.872703i \(-0.662365\pi\)
0.511657 + 0.859190i \(0.329032\pi\)
\(84\) −50.2266 + 25.5498i −0.597935 + 0.304164i
\(85\) −32.4646 56.2303i −0.381936 0.661533i
\(86\) 9.67611 + 5.58651i 0.112513 + 0.0649594i
\(87\) −40.5177 + 62.3013i −0.465720 + 0.716107i
\(88\) −46.7617 + 80.9937i −0.531383 + 0.920382i
\(89\) 66.8494 38.5955i 0.751117 0.433658i −0.0749801 0.997185i \(-0.523889\pi\)
0.826098 + 0.563527i \(0.190556\pi\)
\(90\) −48.0601 108.331i −0.534001 1.20368i
\(91\) −23.4132 27.8808i −0.257288 0.306383i
\(92\) −64.6334 + 37.3161i −0.702537 + 0.405610i
\(93\) −20.3365 13.2259i −0.218672 0.142214i
\(94\) 303.181 3.22533
\(95\) 81.1726 46.8650i 0.854449 0.493316i
\(96\) 38.5955 + 75.8721i 0.402036 + 0.790334i
\(97\) 98.9671 1.02028 0.510140 0.860092i \(-0.329594\pi\)
0.510140 + 0.860092i \(0.329594\pi\)
\(98\) 116.629 + 67.3359i 1.19009 + 0.687101i
\(99\) 76.7998 + 55.9540i 0.775755 + 0.565192i
\(100\) 29.5288 51.1454i 0.295288 0.511454i
\(101\) 79.2782 + 45.7713i 0.784932 + 0.453181i 0.838175 0.545401i \(-0.183622\pi\)
−0.0532431 + 0.998582i \(0.516956\pi\)
\(102\) −141.168 + 71.8110i −1.38400 + 0.704029i
\(103\) 46.6869 80.8641i 0.453271 0.785089i −0.545316 0.838231i \(-0.683590\pi\)
0.998587 + 0.0531421i \(0.0169236\pi\)
\(104\) 88.1857 74.0547i 0.847939 0.712064i
\(105\) 18.4336 28.3441i 0.175558 0.269944i
\(106\) 59.0657 102.305i 0.557224 0.965139i
\(107\) −66.3985 + 38.3352i −0.620547 + 0.358273i −0.777082 0.629400i \(-0.783301\pi\)
0.156535 + 0.987672i \(0.449968\pi\)
\(108\) −169.193 + 64.5613i −1.56660 + 0.597790i
\(109\) −157.860 −1.44826 −0.724128 0.689666i \(-0.757757\pi\)
−0.724128 + 0.689666i \(0.757757\pi\)
\(110\) 139.028i 1.26389i
\(111\) −180.684 + 91.9125i −1.62779 + 0.828041i
\(112\) 3.02026 5.23124i 0.0269666 0.0467075i
\(113\) 103.615 59.8219i 0.916943 0.529397i 0.0342847 0.999412i \(-0.489085\pi\)
0.882659 + 0.470015i \(0.155751\pi\)
\(114\) −103.665 203.787i −0.909339 1.78760i
\(115\) 22.3897 38.7801i 0.194693 0.337218i
\(116\) 166.153i 1.43235i
\(117\) −65.3345 97.0588i −0.558414 0.829562i
\(118\) −55.1949 −0.467753
\(119\) −39.1320 22.5929i −0.328841 0.189856i
\(120\) 89.6509 + 58.3045i 0.747091 + 0.485871i
\(121\) −4.76510 8.25340i −0.0393810 0.0682099i
\(122\) 50.4926 + 29.1519i 0.413874 + 0.238950i
\(123\) −29.5399 1.56775i −0.240162 0.0127459i
\(124\) 54.2359 0.437386
\(125\) 136.041i 1.08833i
\(126\) −66.6603 48.5666i −0.529050 0.385449i
\(127\) 95.7996 + 165.930i 0.754327 + 1.30653i 0.945708 + 0.325017i \(0.105370\pi\)
−0.191381 + 0.981516i \(0.561296\pi\)
\(128\) −189.264 109.272i −1.47863 0.853687i
\(129\) −0.542891 + 10.2293i −0.00420845 + 0.0792967i
\(130\) −58.4867 + 160.884i −0.449897 + 1.23757i
\(131\) −208.472 120.361i −1.59139 0.918789i −0.993069 0.117533i \(-0.962502\pi\)
−0.598321 0.801257i \(-0.704165\pi\)
\(132\) −212.141 11.2588i −1.60713 0.0852939i
\(133\) 32.6145 56.4900i 0.245222 0.424737i
\(134\) 155.699 + 89.8930i 1.16193 + 0.670843i
\(135\) 68.5468 84.3050i 0.507754 0.624481i
\(136\) 71.4601 123.773i 0.525442 0.910093i
\(137\) 20.7768i 0.151656i 0.997121 + 0.0758278i \(0.0241599\pi\)
−0.997121 + 0.0758278i \(0.975840\pi\)
\(138\) −91.5699 59.5525i −0.663550 0.431540i
\(139\) −126.995 219.962i −0.913634 1.58246i −0.808890 0.587960i \(-0.799931\pi\)
−0.104744 0.994499i \(-0.533402\pi\)
\(140\) 75.5914i 0.539938i
\(141\) 126.028 + 247.750i 0.893818 + 1.75709i
\(142\) 144.310 + 249.952i 1.01626 + 1.76022i
\(143\) −23.8860 135.159i −0.167035 0.945165i
\(144\) 11.4308 15.6894i 0.0793805 0.108954i
\(145\) 49.8459 + 86.3356i 0.343765 + 0.595418i
\(146\) −245.011 141.457i −1.67816 0.968884i
\(147\) −6.54363 + 123.297i −0.0445145 + 0.838752i
\(148\) 226.609 392.499i 1.53114 2.65202i
\(149\) 126.485 73.0260i 0.848891 0.490107i −0.0113858 0.999935i \(-0.503624\pi\)
0.860276 + 0.509828i \(0.170291\pi\)
\(150\) 86.3152 + 4.58094i 0.575435 + 0.0305396i
\(151\) 140.864 + 243.983i 0.932871 + 1.61578i 0.778386 + 0.627786i \(0.216039\pi\)
0.154485 + 0.987995i \(0.450628\pi\)
\(152\) 178.675 + 103.158i 1.17549 + 0.678672i
\(153\) −117.364 85.5075i −0.767083 0.558873i
\(154\) −48.3765 83.7905i −0.314133 0.544094i
\(155\) −28.1818 + 16.2708i −0.181818 + 0.104973i
\(156\) 240.755 + 102.273i 1.54330 + 0.655595i
\(157\) −66.6730 + 115.481i −0.424669 + 0.735548i −0.996389 0.0849002i \(-0.972943\pi\)
0.571720 + 0.820448i \(0.306276\pi\)
\(158\) 411.999i 2.60759i
\(159\) 108.153 + 5.73994i 0.680209 + 0.0361002i
\(160\) 114.188 0.713676
\(161\) 31.1631i 0.193560i
\(162\) −196.497 177.872i −1.21294 1.09797i
\(163\) −15.9767 + 27.6724i −0.0980163 + 0.169769i −0.910863 0.412708i \(-0.864583\pi\)
0.812847 + 0.582477i \(0.197916\pi\)
\(164\) 57.2749 33.0677i 0.349237 0.201632i
\(165\) 113.609 57.7921i 0.688542 0.350255i
\(166\) −7.33996 −0.0442166
\(167\) 166.767i 0.998607i −0.866427 0.499303i \(-0.833589\pi\)
0.866427 0.499303i \(-0.166411\pi\)
\(168\) 74.3193 + 3.94430i 0.442377 + 0.0234779i
\(169\) −29.2178 + 166.455i −0.172887 + 0.984942i
\(170\) 212.459i 1.24976i
\(171\) 123.437 169.423i 0.721851 0.990779i
\(172\) −11.4509 19.8335i −0.0665750 0.115311i
\(173\) 65.8542i 0.380660i 0.981720 + 0.190330i \(0.0609558\pi\)
−0.981720 + 0.190330i \(0.939044\pi\)
\(174\) 216.749 110.258i 1.24568 0.633667i
\(175\) 12.3299 + 21.3561i 0.0704567 + 0.122035i
\(176\) 19.7212 11.3860i 0.112052 0.0646934i
\(177\) −22.9438 45.1036i −0.129626 0.254823i
\(178\) −252.583 −1.41900
\(179\) 210.321 121.429i 1.17498 0.678374i 0.220130 0.975470i \(-0.429352\pi\)
0.954847 + 0.297097i \(0.0960184\pi\)
\(180\) −25.7123 + 241.556i −0.142846 + 1.34198i
\(181\) −117.666 −0.650086 −0.325043 0.945699i \(-0.605379\pi\)
−0.325043 + 0.945699i \(0.605379\pi\)
\(182\) 20.7324 + 117.314i 0.113915 + 0.644584i
\(183\) −2.83295 + 53.3791i −0.0154806 + 0.291689i
\(184\) 98.5673 0.535692
\(185\) 271.931i 1.46990i
\(186\) 35.9907 + 70.7515i 0.193498 + 0.380385i
\(187\) −85.1728 147.524i −0.455469 0.788896i
\(188\) −538.185 310.721i −2.86269 1.65277i
\(189\) 11.9774 74.6613i 0.0633724 0.395033i
\(190\) −306.701 −1.61422
\(191\) 212.597i 1.11307i 0.830824 + 0.556535i \(0.187870\pi\)
−0.830824 + 0.556535i \(0.812130\pi\)
\(192\) 16.1338 303.997i 0.0840302 1.58332i
\(193\) 62.2756 0.322672 0.161336 0.986900i \(-0.448420\pi\)
0.161336 + 0.986900i \(0.448420\pi\)
\(194\) −280.451 161.919i −1.44563 0.834632i
\(195\) −155.782 + 19.0840i −0.798882 + 0.0978666i
\(196\) −138.021 239.060i −0.704190 1.21969i
\(197\) 248.948 143.730i 1.26369 0.729594i 0.289906 0.957055i \(-0.406376\pi\)
0.973787 + 0.227461i \(0.0730425\pi\)
\(198\) −126.088 284.212i −0.636811 1.43542i
\(199\) −106.633 + 184.694i −0.535845 + 0.928111i 0.463277 + 0.886214i \(0.346674\pi\)
−0.999122 + 0.0418972i \(0.986660\pi\)
\(200\) −67.5481 + 38.9989i −0.337741 + 0.194995i
\(201\) −8.73570 + 164.600i −0.0434612 + 0.818906i
\(202\) −149.771 259.412i −0.741443 1.28422i
\(203\) 60.0830 + 34.6890i 0.295976 + 0.170882i
\(204\) 324.189 + 17.2054i 1.58916 + 0.0843404i
\(205\) −19.8406 + 34.3650i −0.0967836 + 0.167634i
\(206\) −264.601 + 152.768i −1.28447 + 0.741590i
\(207\) 10.6001 99.5834i 0.0512082 0.481079i
\(208\) −27.6115 + 4.87965i −0.132747 + 0.0234599i
\(209\) 212.961 122.953i 1.01895 0.588293i
\(210\) −98.6102 + 50.1621i −0.469572 + 0.238867i
\(211\) −355.201 −1.68342 −0.841708 0.539932i \(-0.818450\pi\)
−0.841708 + 0.539932i \(0.818450\pi\)
\(212\) −209.698 + 121.069i −0.989144 + 0.571082i
\(213\) −144.265 + 221.827i −0.677302 + 1.04144i
\(214\) 250.879 1.17233
\(215\) 11.9001 + 6.87055i 0.0553495 + 0.0319560i
\(216\) 236.150 + 37.8839i 1.09329 + 0.175388i
\(217\) −11.3232 + 19.6124i −0.0521808 + 0.0903798i
\(218\) 447.341 + 258.272i 2.05202 + 1.18474i
\(219\) 13.7466 259.017i 0.0627701 1.18273i
\(220\) −142.486 + 246.792i −0.647662 + 1.12178i
\(221\) 36.5020 + 206.546i 0.165168 + 0.934598i
\(222\) 662.397 + 35.1549i 2.98377 + 0.158356i
\(223\) 13.3802 23.1752i 0.0600008 0.103925i −0.834465 0.551061i \(-0.814223\pi\)
0.894466 + 0.447137i \(0.147556\pi\)
\(224\) 68.8198 39.7332i 0.307231 0.177380i
\(225\) 32.1367 + 72.4385i 0.142830 + 0.321949i
\(226\) −391.495 −1.73228
\(227\) 304.787i 1.34267i −0.741152 0.671337i \(-0.765720\pi\)
0.741152 0.671337i \(-0.234280\pi\)
\(228\) −24.8373 + 467.991i −0.108936 + 2.05259i
\(229\) 4.51573 7.82147i 0.0197193 0.0341549i −0.855997 0.516980i \(-0.827056\pi\)
0.875717 + 0.482825i \(0.160389\pi\)
\(230\) −126.895 + 73.2630i −0.551718 + 0.318535i
\(231\) 48.3616 74.3625i 0.209358 0.321915i
\(232\) −109.719 + 190.040i −0.472928 + 0.819136i
\(233\) 104.668i 0.449218i −0.974449 0.224609i \(-0.927889\pi\)
0.974449 0.224609i \(-0.0721105\pi\)
\(234\) 26.3474 + 381.936i 0.112596 + 1.63221i
\(235\) 372.866 1.58666
\(236\) 97.9780 + 56.5676i 0.415161 + 0.239693i
\(237\) −336.674 + 171.263i −1.42056 + 0.722628i
\(238\) 73.9278 + 128.047i 0.310621 + 0.538011i
\(239\) 97.9341 + 56.5423i 0.409766 + 0.236579i 0.690689 0.723152i \(-0.257307\pi\)
−0.280923 + 0.959730i \(0.590641\pi\)
\(240\) −11.8063 23.2092i −0.0491930 0.0967050i
\(241\) 166.540 0.691035 0.345518 0.938412i \(-0.387703\pi\)
0.345518 + 0.938412i \(0.387703\pi\)
\(242\) 31.1845i 0.128861i
\(243\) 63.6704 234.510i 0.262018 0.965063i
\(244\) −59.7539 103.497i −0.244893 0.424167i
\(245\) 143.436 + 82.8129i 0.585454 + 0.338012i
\(246\) 81.1447 + 52.7724i 0.329856 + 0.214522i
\(247\) −298.165 + 52.6934i −1.20715 + 0.213334i
\(248\) −62.0331 35.8148i −0.250134 0.144415i
\(249\) −3.05113 5.99800i −0.0122535 0.0240883i
\(250\) 222.576 385.512i 0.890302 1.54205i
\(251\) −98.5267 56.8844i −0.392537 0.226631i 0.290722 0.956808i \(-0.406105\pi\)
−0.683259 + 0.730176i \(0.739438\pi\)
\(252\) 68.5560 + 154.530i 0.272048 + 0.613215i
\(253\) 58.7408 101.742i 0.232177 0.402142i
\(254\) 626.945i 2.46829i
\(255\) −173.615 + 88.3166i −0.680845 + 0.346340i
\(256\) 154.607 + 267.787i 0.603932 + 1.04604i
\(257\) 100.670i 0.391713i −0.980633 0.195857i \(-0.937251\pi\)
0.980633 0.195857i \(-0.0627487\pi\)
\(258\) 18.2744 28.0993i 0.0708310 0.108912i
\(259\) 94.6219 + 163.890i 0.365335 + 0.632780i
\(260\) 268.707 225.649i 1.03349 0.867881i
\(261\) 180.199 + 131.288i 0.690419 + 0.503018i
\(262\) 393.843 + 682.156i 1.50322 + 2.60365i
\(263\) −49.4311 28.5390i −0.187951 0.108513i 0.403072 0.915168i \(-0.367942\pi\)
−0.591023 + 0.806655i \(0.701276\pi\)
\(264\) 235.205 + 152.965i 0.890927 + 0.579414i
\(265\) 72.6418 125.819i 0.274120 0.474790i
\(266\) −184.845 + 106.720i −0.694906 + 0.401204i
\(267\) −104.995 206.403i −0.393241 0.773045i
\(268\) −184.257 319.143i −0.687528 1.19083i
\(269\) −407.684 235.377i −1.51556 0.875006i −0.999833 0.0182500i \(-0.994191\pi\)
−0.515722 0.856756i \(-0.672476\pi\)
\(270\) −332.177 + 126.754i −1.23028 + 0.469458i
\(271\) 23.6165 + 40.9050i 0.0871457 + 0.150941i 0.906304 0.422627i \(-0.138892\pi\)
−0.819158 + 0.573568i \(0.805559\pi\)
\(272\) −30.1375 + 17.3999i −0.110800 + 0.0639702i
\(273\) −87.2475 + 65.7080i −0.319588 + 0.240689i
\(274\) 33.9927 58.8770i 0.124061 0.214880i
\(275\) 92.9650i 0.338054i
\(276\) 101.515 + 199.561i 0.367807 + 0.723046i
\(277\) −203.740 −0.735522 −0.367761 0.929920i \(-0.619876\pi\)
−0.367761 + 0.929920i \(0.619876\pi\)
\(278\) 831.099i 2.98957i
\(279\) −42.8552 + 58.8210i −0.153603 + 0.210828i
\(280\) 49.9170 86.4588i 0.178275 0.308781i
\(281\) −37.9875 + 21.9321i −0.135187 + 0.0780502i −0.566068 0.824358i \(-0.691536\pi\)
0.430881 + 0.902409i \(0.358203\pi\)
\(282\) 48.2036 908.264i 0.170935 3.22079i
\(283\) 147.292 0.520468 0.260234 0.965546i \(-0.416200\pi\)
0.260234 + 0.965546i \(0.416200\pi\)
\(284\) 591.595i 2.08308i
\(285\) −127.492 250.627i −0.447339 0.879393i
\(286\) −153.443 + 422.090i −0.536515 + 1.47584i
\(287\) 27.6152i 0.0962201i
\(288\) 233.433 103.561i 0.810531 0.359585i
\(289\) −14.3410 24.8393i −0.0496228 0.0859491i
\(290\) 326.208i 1.12486i
\(291\) 15.7351 296.484i 0.0540724 1.01885i
\(292\) 289.951 + 502.209i 0.992981 + 1.71989i
\(293\) 317.860 183.516i 1.08485 0.626336i 0.152646 0.988281i \(-0.451221\pi\)
0.932199 + 0.361945i \(0.117887\pi\)
\(294\) 220.267 338.690i 0.749208 1.15201i
\(295\) −67.8813 −0.230106
\(296\) −518.375 + 299.284i −1.75127 + 1.01110i
\(297\) 179.837 221.179i 0.605511 0.744711i
\(298\) −477.907 −1.60371
\(299\) −110.776 + 93.0255i −0.370490 + 0.311122i
\(300\) −148.526 96.5937i −0.495086 0.321979i
\(301\) 9.56277 0.0317700
\(302\) 921.860i 3.05252i
\(303\) 149.726 230.223i 0.494144 0.759812i
\(304\) −25.1180 43.5057i −0.0826251 0.143111i
\(305\) 62.0982 + 35.8524i 0.203601 + 0.117549i
\(306\) 192.685 + 434.327i 0.629691 + 1.41937i
\(307\) −39.1332 −0.127470 −0.0637348 0.997967i \(-0.520301\pi\)
−0.0637348 + 0.997967i \(0.520301\pi\)
\(308\) 198.319i 0.643892i
\(309\) −234.829 152.721i −0.759963 0.494242i
\(310\) 106.482 0.343489
\(311\) −245.318 141.635i −0.788805 0.455417i 0.0507366 0.998712i \(-0.483843\pi\)
−0.839542 + 0.543295i \(0.817176\pi\)
\(312\) −207.831 275.959i −0.666125 0.884485i
\(313\) −59.1441 102.441i −0.188959 0.327286i 0.755945 0.654636i \(-0.227178\pi\)
−0.944903 + 0.327349i \(0.893845\pi\)
\(314\) 377.874 218.166i 1.20342 0.694795i
\(315\) −81.9820 59.7295i −0.260260 0.189618i
\(316\) 422.246 731.352i 1.33622 2.31441i
\(317\) −373.019 + 215.363i −1.17672 + 0.679378i −0.955253 0.295791i \(-0.904417\pi\)
−0.221464 + 0.975169i \(0.571083\pi\)
\(318\) −297.092 193.214i −0.934252 0.607591i
\(319\) 130.774 + 226.507i 0.409949 + 0.710052i
\(320\) −353.652 204.181i −1.10516 0.638066i
\(321\) 104.287 + 205.011i 0.324882 + 0.638662i
\(322\) −50.9855 + 88.3095i −0.158340 + 0.274253i
\(323\) −325.443 + 187.894i −1.00756 + 0.581716i
\(324\) 166.511 + 517.129i 0.513924 + 1.59608i
\(325\) 39.1088 107.580i 0.120335 0.331015i
\(326\) 90.5488 52.2784i 0.277757 0.160363i
\(327\) −25.0986 + 472.914i −0.0767542 + 1.44622i
\(328\) −87.3454 −0.266297
\(329\) 224.722 129.743i 0.683046 0.394357i
\(330\) −416.498 22.1045i −1.26211 0.0669833i
\(331\) 139.751 0.422208 0.211104 0.977464i \(-0.432294\pi\)
0.211104 + 0.977464i \(0.432294\pi\)
\(332\) 13.0294 + 7.52251i 0.0392451 + 0.0226582i
\(333\) 246.623 + 555.905i 0.740608 + 1.66938i
\(334\) −272.846 + 472.583i −0.816903 + 1.41492i
\(335\) 191.486 + 110.555i 0.571601 + 0.330014i
\(336\) −15.1915 9.87976i −0.0452127 0.0294041i
\(337\) −58.9960 + 102.184i −0.175062 + 0.303217i −0.940183 0.340670i \(-0.889346\pi\)
0.765120 + 0.643887i \(0.222679\pi\)
\(338\) 355.132 423.895i 1.05069 1.25413i
\(339\) −162.740 319.918i −0.480058 0.943712i
\(340\) 217.743 377.142i 0.640422 1.10924i
\(341\) −73.9368 + 42.6874i −0.216823 + 0.125183i
\(342\) −626.984 + 278.156i −1.83329 + 0.813322i
\(343\) 252.492 0.736128
\(344\) 30.2466i 0.0879260i
\(345\) −112.617 73.2405i −0.326426 0.212291i
\(346\) 107.743 186.616i 0.311396 0.539354i
\(347\) 177.144 102.274i 0.510503 0.294739i −0.222537 0.974924i \(-0.571434\pi\)
0.733040 + 0.680185i \(0.238101\pi\)
\(348\) −497.757 26.4171i −1.43034 0.0759112i
\(349\) 187.605 324.941i 0.537550 0.931063i −0.461486 0.887148i \(-0.652683\pi\)
0.999035 0.0439155i \(-0.0139832\pi\)
\(350\) 80.6912i 0.230546i
\(351\) −301.155 + 180.296i −0.857991 + 0.513665i
\(352\) 299.580 0.851078
\(353\) 40.3285 + 23.2837i 0.114245 + 0.0659594i 0.556034 0.831160i \(-0.312323\pi\)
−0.441789 + 0.897119i \(0.645656\pi\)
\(354\) −8.77560 + 165.352i −0.0247898 + 0.467096i
\(355\) 177.479 + 307.402i 0.499940 + 0.865922i
\(356\) 448.367 + 258.865i 1.25946 + 0.727148i
\(357\) −73.9051 + 113.639i −0.207017 + 0.318316i
\(358\) −794.672 −2.21976
\(359\) 18.4512i 0.0513962i 0.999670 + 0.0256981i \(0.00818086\pi\)
−0.999670 + 0.0256981i \(0.991819\pi\)
\(360\) 188.922 259.305i 0.524782 0.720291i
\(361\) −90.7397 157.166i −0.251357 0.435362i
\(362\) 333.439 + 192.511i 0.921102 + 0.531798i
\(363\) −25.4830 + 12.9630i −0.0702012 + 0.0357107i
\(364\) 83.4292 229.496i 0.229201 0.630483i
\(365\) −301.326 173.971i −0.825551 0.476632i
\(366\) 95.3608 146.630i 0.260549 0.400628i
\(367\) −64.3876 + 111.523i −0.175443 + 0.303876i −0.940314 0.340307i \(-0.889469\pi\)
0.764872 + 0.644183i \(0.222802\pi\)
\(368\) −20.7848 12.0001i −0.0564804 0.0326090i
\(369\) −9.39327 + 88.2458i −0.0254560 + 0.239149i
\(370\) 444.903 770.595i 1.20244 2.08269i
\(371\) 101.106i 0.272524i
\(372\) 8.62312 162.479i 0.0231804 0.436771i
\(373\) 78.4433 + 135.868i 0.210304 + 0.364257i 0.951810 0.306690i \(-0.0992214\pi\)
−0.741506 + 0.670946i \(0.765888\pi\)
\(374\) 557.400i 1.49037i
\(375\) 407.551 + 21.6296i 1.08680 + 0.0576791i
\(376\) 410.372 + 710.785i 1.09141 + 1.89038i
\(377\) −56.0450 317.130i −0.148660 0.841193i
\(378\) −156.094 + 191.978i −0.412946 + 0.507878i
\(379\) −148.248 256.773i −0.391156 0.677501i 0.601447 0.798913i \(-0.294591\pi\)
−0.992602 + 0.121412i \(0.961258\pi\)
\(380\) 544.434 + 314.329i 1.43272 + 0.827181i
\(381\) 512.321 260.613i 1.34467 0.684024i
\(382\) 347.826 602.453i 0.910540 1.57710i
\(383\) −179.559 + 103.669i −0.468823 + 0.270675i −0.715747 0.698360i \(-0.753914\pi\)
0.246924 + 0.969035i \(0.420580\pi\)
\(384\) −357.447 + 549.622i −0.930851 + 1.43131i
\(385\) −59.4957 103.050i −0.154534 0.267661i
\(386\) −176.476 101.888i −0.457191 0.263959i
\(387\) 30.5584 + 3.25277i 0.0789622 + 0.00840508i
\(388\) 331.891 + 574.853i 0.855390 + 1.48158i
\(389\) 116.285 67.1372i 0.298933 0.172589i −0.343030 0.939324i \(-0.611453\pi\)
0.641964 + 0.766735i \(0.278120\pi\)
\(390\) 472.676 + 200.793i 1.21199 + 0.514854i
\(391\) −89.7663 + 155.480i −0.229581 + 0.397646i
\(392\) 364.571i 0.930028i
\(393\) −393.722 + 605.401i −1.00184 + 1.54046i
\(394\) −940.618 −2.38736
\(395\) 506.696i 1.28278i
\(396\) −67.4579 + 633.738i −0.170348 + 1.60035i
\(397\) −244.628 + 423.709i −0.616192 + 1.06728i 0.373982 + 0.927436i \(0.377992\pi\)
−0.990174 + 0.139841i \(0.955341\pi\)
\(398\) 604.351 348.922i 1.51847 0.876688i
\(399\) −164.046 106.688i −0.411144 0.267388i
\(400\) 18.9918 0.0474794
\(401\) 767.165i 1.91313i 0.291520 + 0.956565i \(0.405839\pi\)
−0.291520 + 0.956565i \(0.594161\pi\)
\(402\) 294.055 452.149i 0.731480 1.12475i
\(403\) 103.518 18.2943i 0.256869 0.0453953i
\(404\) 613.986i 1.51977i
\(405\) −241.661 218.755i −0.596694 0.540136i
\(406\) −113.508 196.602i −0.279577 0.484241i
\(407\) 713.429i 1.75290i
\(408\) −359.434 233.758i −0.880966 0.572937i
\(409\) 129.124 + 223.649i 0.315706 + 0.546819i 0.979587 0.201019i \(-0.0644254\pi\)
−0.663881 + 0.747838i \(0.731092\pi\)
\(410\) 112.448 64.9220i 0.274264 0.158346i
\(411\) 62.2429 + 3.30337i 0.151442 + 0.00803740i
\(412\) 626.268 1.52007
\(413\) −40.9113 + 23.6201i −0.0990587 + 0.0571916i
\(414\) −192.965 + 264.855i −0.466100 + 0.639747i
\(415\) −9.02703 −0.0217519
\(416\) −346.676 126.028i −0.833356 0.302952i
\(417\) −679.150 + 345.477i −1.62866 + 0.828483i
\(418\) −804.649 −1.92500
\(419\) 372.973i 0.890150i 0.895493 + 0.445075i \(0.146823\pi\)
−0.895493 + 0.445075i \(0.853177\pi\)
\(420\) 226.455 + 12.0185i 0.539180 + 0.0286155i
\(421\) −211.181 365.776i −0.501617 0.868826i −0.999998 0.00186824i \(-0.999405\pi\)
0.498381 0.866958i \(-0.333928\pi\)
\(422\) 1006.56 + 581.139i 2.38522 + 1.37711i
\(423\) 762.244 338.163i 1.80200 0.799440i
\(424\) 319.794 0.754232
\(425\) 142.067i 0.334275i
\(426\) 771.745 392.580i 1.81161 0.921549i
\(427\) 49.9011 0.116864
\(428\) −445.342 257.118i −1.04052 0.600744i
\(429\) −408.704 + 50.0680i −0.952689 + 0.116709i
\(430\) −22.4816 38.9393i −0.0522828 0.0905565i
\(431\) −353.148 + 203.890i −0.819369 + 0.473063i −0.850199 0.526462i \(-0.823518\pi\)
0.0308300 + 0.999525i \(0.490185\pi\)
\(432\) −45.1846 36.7387i −0.104594 0.0850433i
\(433\) 228.343 395.502i 0.527351 0.913399i −0.472141 0.881523i \(-0.656519\pi\)
0.999492 0.0318757i \(-0.0101481\pi\)
\(434\) 64.1752 37.0516i 0.147869 0.0853723i
\(435\) 266.568 135.601i 0.612800 0.311726i
\(436\) −529.392 916.933i −1.21420 2.10306i
\(437\) −224.447 129.584i −0.513608 0.296532i
\(438\) −462.730 + 711.509i −1.05646 + 1.62445i
\(439\) −206.715 + 358.041i −0.470877 + 0.815584i −0.999445 0.0333076i \(-0.989396\pi\)
0.528568 + 0.848891i \(0.322729\pi\)
\(440\) 325.941 188.182i 0.740774 0.427686i
\(441\) 368.329 + 39.2066i 0.835214 + 0.0889038i
\(442\) 234.489 645.028i 0.530517 1.45934i
\(443\) −469.005 + 270.780i −1.05870 + 0.611242i −0.925073 0.379790i \(-0.875996\pi\)
−0.133629 + 0.991031i \(0.542663\pi\)
\(444\) −1139.81 741.276i −2.56714 1.66954i
\(445\) −310.638 −0.698063
\(446\) −75.8331 + 43.7823i −0.170029 + 0.0981665i
\(447\) −198.660 390.531i −0.444429 0.873672i
\(448\) −284.189 −0.634351
\(449\) 462.566 + 267.062i 1.03021 + 0.594794i 0.917046 0.398782i \(-0.130567\pi\)
0.113167 + 0.993576i \(0.463900\pi\)
\(450\) 27.4470 257.853i 0.0609934 0.573008i
\(451\) −52.0531 + 90.1587i −0.115417 + 0.199908i
\(452\) 694.954 + 401.232i 1.53751 + 0.887682i
\(453\) 753.316 383.205i 1.66295 0.845928i
\(454\) −498.658 + 863.700i −1.09836 + 1.90242i
\(455\) 25.4977 + 144.279i 0.0560390 + 0.317096i
\(456\) 337.448 518.871i 0.740017 1.13787i
\(457\) 323.791 560.822i 0.708513 1.22718i −0.256895 0.966439i \(-0.582700\pi\)
0.965409 0.260742i \(-0.0839672\pi\)
\(458\) −25.5932 + 14.7762i −0.0558803 + 0.0322625i
\(459\) −274.822 + 338.001i −0.598741 + 0.736386i
\(460\) 300.340 0.652914
\(461\) 250.728i 0.543879i 0.962314 + 0.271940i \(0.0876651\pi\)
−0.962314 + 0.271940i \(0.912335\pi\)
\(462\) −258.710 + 131.603i −0.559978 + 0.284856i
\(463\) 16.3357 28.2943i 0.0352823 0.0611108i −0.847845 0.530244i \(-0.822100\pi\)
0.883127 + 0.469133i \(0.155434\pi\)
\(464\) 46.2729 26.7157i 0.0997260 0.0575768i
\(465\) 44.2630 + 87.0136i 0.0951893 + 0.187126i
\(466\) −171.246 + 296.606i −0.367480 + 0.636494i
\(467\) 102.067i 0.218560i −0.994011 0.109280i \(-0.965146\pi\)
0.994011 0.109280i \(-0.0348545\pi\)
\(468\) 344.666 704.989i 0.736465 1.50639i
\(469\) 153.875 0.328093
\(470\) −1056.62 610.041i −2.24813 1.29796i
\(471\) 335.356 + 218.099i 0.712008 + 0.463055i
\(472\) −74.7093 129.400i −0.158282 0.274153i
\(473\) 31.2208 + 18.0253i 0.0660058 + 0.0381085i
\(474\) 1234.26 + 65.5050i 2.60393 + 0.138196i
\(475\) 205.084 0.431756
\(476\) 303.066i 0.636693i
\(477\) 34.3912 323.091i 0.0720990 0.677340i
\(478\) −185.016 320.457i −0.387063 0.670413i
\(479\) −492.592 284.398i −1.02837 0.593732i −0.111856 0.993724i \(-0.535680\pi\)
−0.916519 + 0.399992i \(0.869013\pi\)
\(480\) 18.1551 342.083i 0.0378232 0.712673i
\(481\) 300.127 825.586i 0.623965 1.71639i
\(482\) −471.937 272.473i −0.979122 0.565297i
\(483\) −93.3579 4.95472i −0.193288 0.0102582i
\(484\) 31.9601 55.3565i 0.0660332 0.114373i
\(485\) −344.912 199.135i −0.711159 0.410588i
\(486\) −564.107 + 560.381i −1.16071 + 1.15305i
\(487\) −175.779 + 304.458i −0.360942 + 0.625171i −0.988116 0.153709i \(-0.950878\pi\)
0.627174 + 0.778879i \(0.284212\pi\)
\(488\) 157.835i 0.323432i
\(489\) 80.3603 + 52.2623i 0.164336 + 0.106876i
\(490\) −270.978 469.348i −0.553016 0.957852i
\(491\) 665.890i 1.35619i −0.734973 0.678096i \(-0.762805\pi\)
0.734973 0.678096i \(-0.237195\pi\)
\(492\) −89.9573 176.841i −0.182840 0.359432i
\(493\) −199.845 346.142i −0.405366 0.702114i
\(494\) 931.146 + 338.502i 1.88491 + 0.685227i
\(495\) −155.070 349.538i −0.313272 0.706137i
\(496\) 8.72058 + 15.1045i 0.0175818 + 0.0304526i
\(497\) 213.929 + 123.512i 0.430440 + 0.248515i
\(498\) −1.16700 + 21.9889i −0.00234338 + 0.0441545i
\(499\) 284.011 491.922i 0.569161 0.985816i −0.427488 0.904021i \(-0.640601\pi\)
0.996649 0.0817951i \(-0.0260653\pi\)
\(500\) −790.200 + 456.222i −1.58040 + 0.912445i
\(501\) −499.599 26.5148i −0.997203 0.0529238i
\(502\) 186.136 + 322.396i 0.370788 + 0.642224i
\(503\) −424.010 244.802i −0.842961 0.486684i 0.0153084 0.999883i \(-0.495127\pi\)
−0.858270 + 0.513199i \(0.828460\pi\)
\(504\) 23.6325 222.018i 0.0468899 0.440511i
\(505\) −184.196 319.037i −0.364745 0.631756i
\(506\) −332.917 + 192.210i −0.657939 + 0.379862i
\(507\) 494.018 + 113.996i 0.974395 + 0.224843i
\(508\) −642.538 + 1112.91i −1.26484 + 2.19077i
\(509\) 688.817i 1.35327i 0.736316 + 0.676637i \(0.236563\pi\)
−0.736316 + 0.676637i \(0.763437\pi\)
\(510\) 636.482 + 33.7795i 1.24800 + 0.0662344i
\(511\) −242.141 −0.473857
\(512\) 137.624i 0.268797i
\(513\) −487.930 396.726i −0.951130 0.773346i
\(514\) −164.705 + 285.278i −0.320438 + 0.555015i
\(515\) −325.419 + 187.881i −0.631882 + 0.364817i
\(516\) −61.2376 + 31.1510i −0.118678 + 0.0603702i
\(517\) 978.237 1.89214
\(518\) 619.238i 1.19544i
\(519\) 197.285 + 10.4704i 0.380125 + 0.0201741i
\(520\) −456.346 + 80.6481i −0.877589 + 0.155092i
\(521\) 248.194i 0.476379i −0.971219 0.238190i \(-0.923446\pi\)
0.971219 0.238190i \(-0.0765540\pi\)
\(522\) −295.848 666.862i −0.566758 1.27751i
\(523\) 241.642 + 418.536i 0.462031 + 0.800261i 0.999062 0.0433015i \(-0.0137876\pi\)
−0.537031 + 0.843562i \(0.680454\pi\)
\(524\) 1614.55i 3.08121i
\(525\) 65.9385 33.5423i 0.125597 0.0638901i
\(526\) 93.3847 + 161.747i 0.177537 + 0.307504i
\(527\) 112.988 65.2339i 0.214399 0.123783i
\(528\) −30.9746 60.8908i −0.0586640 0.115323i
\(529\) 405.182 0.765940
\(530\) −411.702 + 237.696i −0.776797 + 0.448484i
\(531\) −138.769 + 61.5635i −0.261334 + 0.115939i
\(532\) 437.498 0.822365
\(533\) 98.1645 82.4345i 0.184174 0.154661i
\(534\) −40.1589 + 756.683i −0.0752039 + 1.41701i
\(535\) 308.543 0.576715
\(536\) 486.700i 0.908023i
\(537\) −330.335 649.383i −0.615149 1.20928i
\(538\) 770.193 + 1334.01i 1.43159 + 2.47958i
\(539\) 376.313 + 217.265i 0.698170 + 0.403088i
\(540\) 719.563 + 115.434i 1.33252 + 0.213767i
\(541\) −64.9904 −0.120130 −0.0600650 0.998194i \(-0.519131\pi\)
−0.0600650 + 0.998194i \(0.519131\pi\)
\(542\) 154.554i 0.285156i
\(543\) −18.7080 + 352.501i −0.0344531 + 0.649172i
\(544\) −457.810 −0.841563
\(545\) 550.161 + 317.636i 1.00947 + 0.582817i
\(546\) 354.744 43.4578i 0.649715 0.0795930i
\(547\) 219.952 + 380.968i 0.402106 + 0.696467i 0.993980 0.109563i \(-0.0349452\pi\)
−0.591874 + 0.806030i \(0.701612\pi\)
\(548\) −120.683 + 69.6762i −0.220224 + 0.127146i
\(549\) 159.462 + 16.9738i 0.290459 + 0.0309177i
\(550\) 152.099 263.443i 0.276543 0.478987i
\(551\) 499.682 288.492i 0.906864 0.523578i
\(552\) 15.6715 295.286i 0.0283904 0.534939i
\(553\) 176.311 + 305.380i 0.318827 + 0.552224i
\(554\) 577.354 + 333.336i 1.04216 + 0.601689i
\(555\) 814.648 + 43.2352i 1.46783 + 0.0779013i
\(556\) 851.770 1475.31i 1.53196 2.65343i
\(557\) 365.644 211.105i 0.656452 0.379003i −0.134472 0.990917i \(-0.542934\pi\)
0.790924 + 0.611915i \(0.209600\pi\)
\(558\) 217.679 96.5713i 0.390105 0.173067i
\(559\) −28.5460 33.9931i −0.0510662 0.0608105i
\(560\) −21.0519 + 12.1543i −0.0375927 + 0.0217042i
\(561\) −455.491 + 231.704i −0.811926 + 0.413020i
\(562\) 143.531 0.255394
\(563\) 660.046 381.078i 1.17237 0.676870i 0.218135 0.975919i \(-0.430003\pi\)
0.954238 + 0.299049i \(0.0966693\pi\)
\(564\) −1016.42 + 1562.88i −1.80217 + 2.77107i
\(565\) −481.479 −0.852176
\(566\) −417.395 240.983i −0.737447 0.425765i
\(567\) −221.765 47.7523i −0.391120 0.0842192i
\(568\) −390.662 + 676.646i −0.687785 + 1.19128i
\(569\) −229.202 132.330i −0.402816 0.232566i 0.284883 0.958562i \(-0.408045\pi\)
−0.687698 + 0.725997i \(0.741379\pi\)
\(570\) −48.7633 + 918.810i −0.0855497 + 1.61195i
\(571\) 200.357 347.029i 0.350889 0.607757i −0.635517 0.772087i \(-0.719213\pi\)
0.986405 + 0.164330i \(0.0525462\pi\)
\(572\) 704.969 592.004i 1.23246 1.03497i
\(573\) 636.893 + 33.8014i 1.11151 + 0.0589902i
\(574\) 45.1808 78.2554i 0.0787122 0.136334i
\(575\) 84.8521 48.9894i 0.147569 0.0851989i
\(576\) −908.143 96.6667i −1.57664 0.167824i
\(577\) −1041.61 −1.80522 −0.902610 0.430460i \(-0.858351\pi\)
−0.902610 + 0.430460i \(0.858351\pi\)
\(578\) 93.8523i 0.162374i
\(579\) 9.90139 186.564i 0.0171009 0.322218i
\(580\) −334.322 + 579.062i −0.576416 + 0.998383i
\(581\) −5.44049 + 3.14107i −0.00936400 + 0.00540631i
\(582\) −529.663 + 814.428i −0.910074 + 1.39936i
\(583\) 190.580 330.095i 0.326896 0.566200i
\(584\) 765.879i 1.31144i
\(585\) 32.4032 + 469.724i 0.0553902 + 0.802946i
\(586\) −1200.99 −2.04948
\(587\) −17.0097 9.82055i −0.0289773 0.0167301i 0.485441 0.874269i \(-0.338659\pi\)
−0.514419 + 0.857539i \(0.671992\pi\)
\(588\) −738.116 + 375.473i −1.25530 + 0.638559i
\(589\) 94.1700 + 163.107i 0.159881 + 0.276922i
\(590\) 192.361 + 111.060i 0.326035 + 0.188237i
\(591\) −391.003 768.645i −0.661596 1.30058i
\(592\) 145.746 0.246192
\(593\) 221.793i 0.374019i −0.982358 0.187010i \(-0.940120\pi\)
0.982358 0.187010i \(-0.0598795\pi\)
\(594\) −871.486 + 332.546i −1.46715 + 0.559842i
\(595\) 90.9199 + 157.478i 0.152807 + 0.264669i
\(596\) 848.347 + 489.793i 1.42340 + 0.821801i
\(597\) 536.349 + 348.815i 0.898408 + 0.584280i
\(598\) 466.114 82.3744i 0.779455 0.137750i
\(599\) −2.12724 1.22816i −0.00355132 0.00205035i 0.498223 0.867049i \(-0.333986\pi\)
−0.501775 + 0.864998i \(0.667319\pi\)
\(600\) 106.093 + 208.560i 0.176821 + 0.347600i
\(601\) 256.742 444.690i 0.427191 0.739916i −0.569431 0.822039i \(-0.692837\pi\)
0.996622 + 0.0821226i \(0.0261699\pi\)
\(602\) −27.0988 15.6455i −0.0450147 0.0259892i
\(603\) 491.717 + 52.3405i 0.815452 + 0.0868002i
\(604\) −944.787 + 1636.42i −1.56422 + 2.70930i
\(605\) 38.3522i 0.0633920i
\(606\) −800.954 + 407.438i −1.32171 + 0.672340i
\(607\) −5.10830 8.84784i −0.00841565 0.0145763i 0.861787 0.507270i \(-0.169345\pi\)
−0.870203 + 0.492694i \(0.836012\pi\)
\(608\) 660.884i 1.08698i
\(609\) 113.473 174.480i 0.186327 0.286503i
\(610\) −117.315 203.196i −0.192320 0.333108i
\(611\) −1132.02 411.528i −1.85274 0.673531i
\(612\) 103.088 968.464i 0.168444 1.58246i
\(613\) −178.452 309.088i −0.291113 0.504222i 0.682960 0.730456i \(-0.260692\pi\)
−0.974073 + 0.226233i \(0.927359\pi\)
\(614\) 110.895 + 64.0252i 0.180611 + 0.104276i
\(615\) 99.7956 + 64.9021i 0.162269 + 0.105532i
\(616\) 130.960 226.830i 0.212598 0.368231i
\(617\) −543.144 + 313.584i −0.880298 + 0.508240i −0.870757 0.491714i \(-0.836370\pi\)
−0.00954104 + 0.999954i \(0.503037\pi\)
\(618\) 415.589 + 816.977i 0.672474 + 1.32197i
\(619\) 438.414 + 759.355i 0.708261 + 1.22674i 0.965502 + 0.260397i \(0.0838533\pi\)
−0.257241 + 0.966347i \(0.582813\pi\)
\(620\) −189.019 109.130i −0.304869 0.176016i
\(621\) −296.645 47.5887i −0.477689 0.0766323i
\(622\) 463.453 + 802.724i 0.745101 + 1.29055i
\(623\) −187.218 + 108.090i −0.300510 + 0.173500i
\(624\) 10.2284 + 83.4938i 0.0163916 + 0.133804i
\(625\) 163.669 283.482i 0.261870 0.453572i
\(626\) 387.060i 0.618306i
\(627\) −334.482 657.535i −0.533464 1.04870i
\(628\) −894.367 −1.42415
\(629\) 1090.25i 1.73330i
\(630\) 134.596 + 303.390i 0.213645 + 0.481572i
\(631\) 182.381 315.894i 0.289035 0.500624i −0.684544 0.728971i \(-0.739999\pi\)
0.973580 + 0.228347i \(0.0733322\pi\)
\(632\) −965.902 + 557.664i −1.52833 + 0.882379i
\(633\) −56.4745 + 1064.11i −0.0892172 + 1.68105i
\(634\) 1409.41 2.22304
\(635\) 771.047i 1.21425i
\(636\) 329.357 + 647.460i 0.517857 + 1.01802i
\(637\) −344.074 409.729i −0.540147 0.643217i
\(638\) 855.828i 1.34142i
\(639\) 641.609 + 467.457i 1.00408 + 0.731544i
\(640\) 439.740 + 761.652i 0.687093 + 1.19008i
\(641\) 357.039i 0.557003i −0.960436 0.278501i \(-0.910162\pi\)
0.960436 0.278501i \(-0.0898377\pi\)
\(642\) 39.8880 751.578i 0.0621308 1.17068i
\(643\) 92.4981 + 160.211i 0.143854 + 0.249162i 0.928945 0.370218i \(-0.120717\pi\)
−0.785091 + 0.619381i \(0.787384\pi\)
\(644\) 181.012 104.507i 0.281074 0.162278i
\(645\) 22.4747 34.5579i 0.0348445 0.0535781i
\(646\) 1229.65 1.90348
\(647\) −714.972 + 412.789i −1.10506 + 0.638005i −0.937545 0.347865i \(-0.886907\pi\)
−0.167512 + 0.985870i \(0.553573\pi\)
\(648\) 151.038 701.431i 0.233083 1.08246i
\(649\) −178.091 −0.274408
\(650\) −286.836 + 240.873i −0.441286 + 0.370574i
\(651\) 56.9543 + 37.0402i 0.0874874 + 0.0568974i
\(652\) −214.314 −0.328703
\(653\) 355.596i 0.544558i −0.962218 0.272279i \(-0.912223\pi\)
0.962218 0.272279i \(-0.0877773\pi\)
\(654\) 844.852 1299.07i 1.29182 1.98635i
\(655\) 484.367 + 838.948i 0.739492 + 1.28084i
\(656\) 18.4184 + 10.6339i 0.0280769 + 0.0162102i
\(657\) −773.775 82.3640i −1.17774 0.125364i
\(658\) −849.085 −1.29040
\(659\) 203.522i 0.308835i 0.988006 + 0.154418i \(0.0493501\pi\)
−0.988006 + 0.154418i \(0.950650\pi\)
\(660\) 716.683 + 466.095i 1.08588 + 0.706204i
\(661\) −357.583 −0.540972 −0.270486 0.962724i \(-0.587184\pi\)
−0.270486 + 0.962724i \(0.587184\pi\)
\(662\) −396.024 228.645i −0.598224 0.345385i
\(663\) 624.571 76.5128i 0.942038 0.115404i
\(664\) −9.93503 17.2080i −0.0149624 0.0259156i
\(665\) −227.331 + 131.250i −0.341852 + 0.197368i
\(666\) 210.633 1978.81i 0.316266 2.97119i
\(667\) 137.827 238.723i 0.206636 0.357905i
\(668\) 968.672 559.263i 1.45011 0.837221i
\(669\) −67.3004 43.7688i −0.100599 0.0654243i
\(670\) −361.754 626.576i −0.539931 0.935188i
\(671\) 162.918 + 94.0610i 0.242799 + 0.140180i
\(672\) −108.090 212.487i −0.160848 0.316200i
\(673\) −556.547 + 963.968i −0.826965 + 1.43234i 0.0734440 + 0.997299i \(0.476601\pi\)
−0.900409 + 0.435045i \(0.856732\pi\)
\(674\) 334.364 193.045i 0.496089 0.286417i
\(675\) 222.120 84.7575i 0.329066 0.125567i
\(676\) −1064.84 + 388.504i −1.57521 + 0.574710i
\(677\) 702.163 405.394i 1.03717 0.598809i 0.118138 0.992997i \(-0.462307\pi\)
0.919030 + 0.394188i \(0.128974\pi\)
\(678\) −62.2450 + 1172.83i −0.0918068 + 1.72985i
\(679\) −277.166 −0.408198
\(680\) −498.095 + 287.575i −0.732492 + 0.422905i
\(681\) −913.076 48.4590i −1.34079 0.0711586i
\(682\) 279.361 0.409620
\(683\) 710.444 + 410.175i 1.04018 + 0.600549i 0.919885 0.392189i \(-0.128282\pi\)
0.120297 + 0.992738i \(0.461615\pi\)
\(684\) 1398.05 + 148.815i 2.04393 + 0.217565i
\(685\) 41.8058 72.4097i 0.0610303 0.105708i
\(686\) −715.508 413.098i −1.04301 0.602184i
\(687\) −22.7135 14.7717i −0.0330618 0.0215017i
\(688\) 3.68238 6.37807i 0.00535229 0.00927044i
\(689\) −359.406 + 301.815i −0.521635 + 0.438047i
\(690\) 199.305 + 391.799i 0.288847 + 0.567825i
\(691\) 368.823 638.820i 0.533752 0.924486i −0.465470 0.885063i \(-0.654115\pi\)
0.999223 0.0394225i \(-0.0125518\pi\)
\(692\) −382.516 + 220.845i −0.552768 + 0.319141i
\(693\) −215.085 156.704i −0.310368 0.226124i
\(694\) −669.319 −0.964437
\(695\) 1022.13i 1.47068i
\(696\) 551.873 + 358.911i 0.792921 + 0.515676i
\(697\) 79.5464 137.778i 0.114127 0.197673i
\(698\) −1063.26 + 613.875i −1.52330 + 0.879477i
\(699\) −313.562 16.6415i −0.448587 0.0238075i
\(700\) −82.6981 + 143.237i −0.118140 + 0.204625i
\(701\) 1169.94i 1.66896i 0.551039 + 0.834480i \(0.314232\pi\)
−0.551039 + 0.834480i \(0.685768\pi\)
\(702\) 1148.39 18.2058i 1.63588 0.0259342i
\(703\) 1573.85 2.23876
\(704\) −927.828 535.682i −1.31794 0.760912i
\(705\) 59.2831 1117.03i 0.0840895 1.58443i
\(706\) −76.1882 131.962i −0.107915 0.186915i
\(707\) −222.026 128.187i −0.314039 0.181311i
\(708\) 185.042 284.527i 0.261359 0.401874i
\(709\) −1053.52 −1.48593 −0.742964 0.669331i \(-0.766581\pi\)
−0.742964 + 0.669331i \(0.766581\pi\)
\(710\) 1161.48i 1.63589i
\(711\) 459.538 + 1035.83i 0.646326 + 1.45687i
\(712\) −341.884 592.161i −0.480174 0.831686i
\(713\) 77.9243 + 44.9896i 0.109291 + 0.0630990i
\(714\) 395.354 201.113i 0.553717 0.281671i
\(715\) −188.712 + 519.106i −0.263933 + 0.726023i
\(716\) 1410.65 + 814.437i 1.97018 + 1.13748i
\(717\) 184.959 284.400i 0.257963 0.396652i
\(718\) 30.1878 52.2868i 0.0420443 0.0728228i
\(719\) 895.444 + 516.985i 1.24540 + 0.719033i 0.970189 0.242350i \(-0.0779184\pi\)
0.275213 + 0.961383i \(0.411252\pi\)
\(720\) −71.4069 + 31.6791i −0.0991762 + 0.0439987i
\(721\) −130.751 + 226.467i −0.181347 + 0.314102i
\(722\) 593.832i 0.822482i
\(723\) 26.4786 498.916i 0.0366233 0.690064i
\(724\) −394.598 683.464i −0.545025 0.944010i
\(725\) 218.129i 0.300867i
\(726\) 93.4220 + 4.95812i 0.128680 + 0.00682936i
\(727\) 334.678 + 579.679i 0.460355 + 0.797358i 0.998978 0.0451886i \(-0.0143889\pi\)
−0.538624 + 0.842546i \(0.681056\pi\)
\(728\) −246.972 + 207.397i −0.339247 + 0.284886i
\(729\) −692.419 228.028i −0.949820 0.312796i
\(730\) 569.262 + 985.990i 0.779811 + 1.35067i
\(731\) −47.7108 27.5459i −0.0652679 0.0376824i
\(732\) −319.554 + 162.555i −0.436550 + 0.222069i
\(733\) −409.264 + 708.867i −0.558342 + 0.967076i 0.439294 + 0.898344i \(0.355229\pi\)
−0.997635 + 0.0687324i \(0.978105\pi\)
\(734\) 364.921 210.687i 0.497167 0.287040i
\(735\) 270.895 416.537i 0.368564 0.566717i
\(736\) −157.868 273.436i −0.214495 0.371516i
\(737\) 502.376 + 290.047i 0.681650 + 0.393551i
\(738\) 170.996 234.701i 0.231702 0.318024i
\(739\) −616.781 1068.30i −0.834616 1.44560i −0.894343 0.447383i \(-0.852356\pi\)
0.0597263 0.998215i \(-0.480977\pi\)
\(740\) −1579.52 + 911.937i −2.13449 + 1.23235i
\(741\) 110.452 + 901.616i 0.149058 + 1.21676i
\(742\) −165.419 + 286.514i −0.222936 + 0.386137i
\(743\) 207.085i 0.278714i 0.990242 + 0.139357i \(0.0445036\pi\)
−0.990242 + 0.139357i \(0.955496\pi\)
\(744\) −117.156 + 180.143i −0.157468 + 0.242128i
\(745\) −587.753 −0.788930
\(746\) 513.360i 0.688150i
\(747\) −18.4538 + 8.18688i −0.0247039 + 0.0109597i
\(748\) 571.263 989.456i 0.763721 1.32280i
\(749\) 185.955 107.361i 0.248271 0.143339i
\(750\) −1119.52 728.082i −1.49270 0.970776i
\(751\) 909.331 1.21083 0.605414 0.795911i \(-0.293008\pi\)
0.605414 + 0.795911i \(0.293008\pi\)
\(752\) 199.843i 0.265749i
\(753\) −186.079 + 286.121i −0.247116 + 0.379974i
\(754\) −360.032 + 990.371i −0.477496 + 1.31349i
\(755\) 1133.75i 1.50165i
\(756\) 473.839 180.810i 0.626771 0.239166i
\(757\) 143.376 + 248.334i 0.189400 + 0.328050i 0.945050 0.326925i \(-0.106012\pi\)
−0.755650 + 0.654975i \(0.772679\pi\)
\(758\) 970.186i 1.27993i
\(759\) −295.458 192.151i −0.389272 0.253163i
\(760\) −415.136 719.037i −0.546232 0.946102i
\(761\) 57.1790 33.0123i 0.0751367 0.0433802i −0.461961 0.886900i \(-0.652854\pi\)
0.537098 + 0.843520i \(0.319521\pi\)
\(762\) −1878.19 99.6799i −2.46482 0.130814i
\(763\) 442.101 0.579424
\(764\) −1234.87 + 712.954i −1.61633 + 0.933186i
\(765\) 236.974 + 534.156i 0.309770 + 0.698243i
\(766\) 678.443 0.885696
\(767\) 206.088 + 74.9197i 0.268694 + 0.0976789i
\(768\) 826.812 420.592i 1.07658 0.547646i
\(769\) −993.806 −1.29234 −0.646168 0.763196i \(-0.723629\pi\)
−0.646168 + 0.763196i \(0.723629\pi\)
\(770\) 389.360i 0.505663i
\(771\) −301.586 16.0059i −0.391163 0.0207599i
\(772\) 208.845 + 361.730i 0.270524 + 0.468562i
\(773\) −229.750 132.646i −0.297219 0.171600i 0.343974 0.938979i \(-0.388227\pi\)
−0.641193 + 0.767380i \(0.721560\pi\)
\(774\) −81.2740 59.2137i −0.105005 0.0765036i
\(775\) −71.2020 −0.0918735
\(776\) 876.663i 1.12972i
\(777\) 506.023 257.409i 0.651252 0.331286i
\(778\) −439.369 −0.564742
\(779\) 198.893 + 114.831i 0.255319 + 0.147408i
\(780\) −633.273 840.865i −0.811889 1.07803i
\(781\) 465.627 + 806.489i 0.596193 + 1.03264i
\(782\) 508.757 293.731i 0.650584 0.375615i
\(783\) 421.960 518.964i 0.538902 0.662790i
\(784\) 44.3848 76.8768i 0.0566133 0.0980571i
\(785\) 464.727 268.310i 0.592009 0.341797i
\(786\) 2106.21 1071.41i 2.67966 1.36312i
\(787\) −136.093 235.720i −0.172927 0.299518i 0.766515 0.642226i \(-0.221989\pi\)
−0.939442 + 0.342709i \(0.888656\pi\)
\(788\) 1669.72 + 964.013i 2.11893 + 1.22337i
\(789\) −93.3560 + 143.547i −0.118322 + 0.181936i
\(790\) 828.999 1435.87i 1.04937 1.81755i
\(791\) −290.182 + 167.537i −0.366855 + 0.211804i
\(792\) 495.647 680.302i 0.625817 0.858967i
\(793\) −148.961 177.385i −0.187845 0.223689i
\(794\) 1386.45 800.466i 1.74616 1.00814i
\(795\) −365.378 237.624i −0.459595 0.298898i
\(796\) −1430.40 −1.79699
\(797\) −321.746 + 185.760i −0.403696 + 0.233074i −0.688078 0.725637i \(-0.741545\pi\)
0.284381 + 0.958711i \(0.408212\pi\)
\(798\) 290.322 + 570.724i 0.363812 + 0.715193i
\(799\) −1494.92 −1.87099
\(800\) 216.374 + 124.924i 0.270467 + 0.156154i
\(801\) −635.032 + 281.727i −0.792799 + 0.351719i
\(802\) 1255.15 2173.98i 1.56502 2.71070i
\(803\) −790.547 456.423i −0.984492 0.568397i
\(804\) −985.380 + 501.254i −1.22560 + 0.623450i
\(805\) −62.7044 + 108.607i −0.0778937 + 0.134916i
\(806\) −323.279 117.522i −0.401091 0.145809i
\(807\) −769.957 + 1183.91i −0.954097 + 1.46705i
\(808\) 405.448 702.256i 0.501792 0.869129i
\(809\) −286.077 + 165.167i −0.353618 + 0.204161i −0.666278 0.745704i \(-0.732113\pi\)
0.312660 + 0.949865i \(0.398780\pi\)
\(810\) 326.913 + 1015.28i 0.403596 + 1.25344i
\(811\) −222.419 −0.274252 −0.137126 0.990554i \(-0.543787\pi\)
−0.137126 + 0.990554i \(0.543787\pi\)
\(812\) 465.325i 0.573061i
\(813\) 126.297 64.2463i 0.155347 0.0790237i
\(814\) 1167.23 2021.70i 1.43394 2.48366i
\(815\) 111.361 64.2944i 0.136640 0.0788889i
\(816\) 47.3346 + 93.0518i 0.0580081 + 0.114034i
\(817\) 39.7645 68.8742i 0.0486714 0.0843013i
\(818\) 845.030i 1.03304i
\(819\) 182.975 + 271.822i 0.223413 + 0.331895i
\(820\) −266.147 −0.324569
\(821\) 1100.23 + 635.216i 1.34010 + 0.773710i 0.986822 0.161807i \(-0.0517323\pi\)
0.353282 + 0.935517i \(0.385066\pi\)
\(822\) −170.978 111.196i −0.208003 0.135275i
\(823\) 417.915 + 723.851i 0.507795 + 0.879527i 0.999959 + 0.00902451i \(0.00287263\pi\)
−0.492164 + 0.870502i \(0.663794\pi\)
\(824\) −716.304 413.559i −0.869301 0.501891i
\(825\) 278.503 + 14.7808i 0.337579 + 0.0179161i
\(826\) 154.578 0.187141
\(827\) 85.0888i 0.102889i −0.998676 0.0514443i \(-0.983618\pi\)
0.998676 0.0514443i \(-0.0163825\pi\)
\(828\) 613.981 272.388i 0.741523 0.328970i
\(829\) −363.540 629.670i −0.438528 0.759553i 0.559048 0.829135i \(-0.311167\pi\)
−0.997576 + 0.0695820i \(0.977833\pi\)
\(830\) 25.5807 + 14.7690i 0.0308201 + 0.0177940i
\(831\) −32.3932 + 610.360i −0.0389810 + 0.734488i
\(832\) 848.339 + 1010.22i 1.01964 + 1.21420i
\(833\) −575.073 332.019i −0.690364 0.398582i
\(834\) 2489.79 + 132.139i 2.98536 + 0.158440i
\(835\) −335.559 + 581.205i −0.401867 + 0.696053i
\(836\) 1428.36 + 824.661i 1.70856 + 0.986437i
\(837\) 169.401 + 137.737i 0.202391 + 0.164560i
\(838\) 610.215 1056.92i 0.728181 1.26125i
\(839\) 543.622i 0.647940i 0.946067 + 0.323970i \(0.105018\pi\)
−0.946067 + 0.323970i \(0.894982\pi\)
\(840\) −251.075 163.287i −0.298899 0.194389i
\(841\) −113.659 196.863i −0.135147 0.234082i
\(842\) 1382.04i 1.64138i
\(843\) 59.6641 + 117.290i 0.0707759 + 0.139133i
\(844\) −1191.19 2063.19i −1.41136 2.44454i
\(845\) 436.758 521.326i 0.516874 0.616954i
\(846\) −2713.30 288.815i −3.20721 0.341389i
\(847\) 13.3451 + 23.1144i 0.0157557 + 0.0272897i
\(848\) −67.4348 38.9335i −0.0795222 0.0459121i
\(849\) 23.4185 441.256i 0.0275836 0.519737i
\(850\) −232.434 + 402.587i −0.273451 + 0.473632i
\(851\) 651.169 375.953i 0.765181 0.441778i
\(852\) −1772.29 94.0595i −2.08015 0.110398i
\(853\) 176.933 + 306.458i 0.207425 + 0.359270i 0.950903 0.309490i \(-0.100158\pi\)
−0.743478 + 0.668761i \(0.766825\pi\)
\(854\) −141.409 81.6425i −0.165584 0.0956002i
\(855\) −771.094 + 342.090i −0.901865 + 0.400105i
\(856\) 339.578 + 588.166i 0.396703 + 0.687110i
\(857\) −901.625 + 520.553i −1.05207 + 0.607413i −0.923228 0.384252i \(-0.874459\pi\)
−0.128842 + 0.991665i \(0.541126\pi\)
\(858\) 1240.09 + 526.792i 1.44533 + 0.613977i
\(859\) −433.002 + 749.982i −0.504077 + 0.873087i 0.495912 + 0.868373i \(0.334834\pi\)
−0.999989 + 0.00471431i \(0.998499\pi\)
\(860\) 92.1631i 0.107166i
\(861\) 82.7291 + 4.39062i 0.0960849 + 0.00509944i
\(862\) 1334.33 1.54794
\(863\) 1037.10i 1.20174i −0.799349 0.600868i \(-0.794822\pi\)
0.799349 0.600868i \(-0.205178\pi\)
\(864\) −273.131 715.780i −0.316124 0.828449i
\(865\) 132.508 229.510i 0.153188 0.265329i
\(866\) −1294.15 + 747.178i −1.49440 + 0.862792i
\(867\) −76.6933 + 39.0132i −0.0884582 + 0.0449979i
\(868\) −151.892 −0.174991
\(869\) 1329.35i 1.52975i
\(870\) −977.250 51.8649i −1.12328 0.0596148i
\(871\) −459.336 546.986i −0.527366 0.627997i
\(872\) 1398.34i 1.60360i
\(873\) −885.700 94.2778i −1.01455 0.107993i
\(874\) 424.022 + 734.428i 0.485152 + 0.840307i
\(875\) 380.996i 0.435424i
\(876\) 1550.61 788.781i 1.77010 0.900435i
\(877\) −305.670 529.435i −0.348540 0.603689i 0.637450 0.770491i \(-0.279989\pi\)
−0.985990 + 0.166802i \(0.946656\pi\)
\(878\) 1171.57 676.408i 1.33436 0.770396i
\(879\) −499.238 981.417i −0.567961 1.11652i
\(880\) −91.6411 −0.104138
\(881\) 1054.10 608.586i 1.19648 0.690791i 0.236715 0.971579i \(-0.423929\pi\)
0.959770 + 0.280789i \(0.0905960\pi\)
\(882\) −979.621 713.722i −1.11068 0.809208i
\(883\) −915.155 −1.03642 −0.518208 0.855255i \(-0.673401\pi\)
−0.518208 + 0.855255i \(0.673401\pi\)
\(884\) −1077.32 + 904.687i −1.21869 + 1.02340i
\(885\) −10.7926 + 203.358i −0.0121951 + 0.229783i
\(886\) 1772.08 2.00009
\(887\) 182.716i 0.205993i −0.994682 0.102997i \(-0.967157\pi\)
0.994682 0.102997i \(-0.0328431\pi\)
\(888\) 814.173 + 1600.53i 0.916861 + 1.80239i
\(889\) −268.295 464.701i −0.301795 0.522723i
\(890\) 880.281 + 508.230i 0.989080 + 0.571045i
\(891\) −634.013 573.918i −0.711574 0.644128i
\(892\) 179.485 0.201216
\(893\) 2158.03i 2.41661i
\(894\) −75.9839 + 1431.71i −0.0849932 + 1.60146i
\(895\) −977.326 −1.09198
\(896\) 530.052 + 306.026i 0.591576 + 0.341547i
\(897\) 261.072 + 346.653i 0.291050 + 0.386458i
\(898\) −873.874 1513.59i −0.973134 1.68552i
\(899\) −173.482 + 100.160i −0.192972 + 0.111412i
\(900\) −312.989 + 429.593i −0.347765 + 0.477326i
\(901\) −291.240 + 504.443i −0.323241 + 0.559870i
\(902\) 295.015 170.327i 0.327067 0.188832i
\(903\) 1.52041 28.6480i 0.00168374 0.0317254i
\(904\) −529.910 917.831i −0.586184 1.01530i
\(905\) 410.079 + 236.759i 0.453126 + 0.261612i
\(906\) −2761.69 146.569i −3.04823 0.161776i
\(907\) −526.315 + 911.605i −0.580281 + 1.00508i 0.415164 + 0.909746i \(0.363724\pi\)
−0.995446 + 0.0953304i \(0.969609\pi\)
\(908\) 1770.36 1022.12i 1.94974 1.12568i
\(909\) −665.893 485.149i −0.732555 0.533717i
\(910\) 163.797 450.571i 0.179997 0.495133i
\(911\) −821.248 + 474.148i −0.901479 + 0.520469i −0.877680 0.479247i \(-0.840910\pi\)
−0.0237996 + 0.999717i \(0.507576\pi\)
\(912\) −134.327 + 68.3311i −0.147289 + 0.0749245i
\(913\) −23.6830 −0.0259397
\(914\) −1835.11 + 1059.50i −2.00777 + 1.15919i
\(915\) 117.279 180.332i 0.128174 0.197085i
\(916\) 60.5749 0.0661298
\(917\) 583.845 + 337.083i 0.636690 + 0.367593i
\(918\) 1331.79 508.189i 1.45075 0.553583i
\(919\) −155.014 + 268.492i −0.168677 + 0.292156i −0.937955 0.346758i \(-0.887283\pi\)
0.769278 + 0.638914i \(0.220616\pi\)
\(920\) −343.519 198.331i −0.373390 0.215577i
\(921\) −6.22190 + 117.234i −0.00675559 + 0.127290i
\(922\) 410.213 710.510i 0.444916 0.770618i
\(923\) −199.551 1129.16i −0.216198 1.22336i
\(924\) 594.120 + 31.5313i 0.642987 + 0.0341248i
\(925\) −297.497 + 515.280i −0.321619 + 0.557060i
\(926\) −92.5837 + 53.4533i −0.0999825 + 0.0577249i
\(927\) −494.854 + 679.214i −0.533824 + 0.732701i
\(928\) 702.919 0.757456
\(929\) 1252.17i 1.34787i −0.738790 0.673935i \(-0.764603\pi\)
0.738790 0.673935i \(-0.235397\pi\)
\(930\) 16.9298 318.996i 0.0182041 0.343006i
\(931\) 479.294 830.162i 0.514817 0.891688i
\(932\) 607.966 351.009i 0.652324 0.376619i
\(933\) −463.311 + 712.402i −0.496582 + 0.763561i
\(934\) −166.991 + 289.237i −0.178791 + 0.309675i
\(935\) 685.517i 0.733173i
\(936\) −859.759 + 578.741i −0.918546 + 0.618313i
\(937\) 1387.64 1.48094 0.740471 0.672088i \(-0.234602\pi\)
0.740471 + 0.672088i \(0.234602\pi\)
\(938\) −436.050 251.753i −0.464872 0.268394i
\(939\) −316.294 + 160.896i −0.336841 + 0.171348i
\(940\) 1250.43 + 2165.80i 1.33024 + 2.30405i
\(941\) −234.617 135.456i −0.249328 0.143949i 0.370129 0.928980i \(-0.379314\pi\)
−0.619456 + 0.785031i \(0.712647\pi\)
\(942\) −593.498 1166.72i −0.630040 1.23855i
\(943\) 109.721 0.116353
\(944\) 36.3820i 0.0385403i
\(945\) −191.971 + 236.104i −0.203144 + 0.249845i
\(946\) −58.9819 102.160i −0.0623487 0.107991i
\(947\) −532.423 307.394i −0.562220 0.324598i 0.191816 0.981431i \(-0.438562\pi\)
−0.754036 + 0.656833i \(0.771896\pi\)
\(948\) −2123.84 1381.24i −2.24034 1.45700i
\(949\) 722.819 + 860.746i 0.761664 + 0.907003i
\(950\) −581.165 335.536i −0.611752 0.353195i
\(951\) 585.873 + 1151.73i 0.616060 + 1.21107i
\(952\) −200.131 + 346.636i −0.210221 + 0.364114i
\(953\) 1053.34 + 608.146i 1.10529 + 0.638139i 0.937605 0.347702i \(-0.113038\pi\)
0.167684 + 0.985841i \(0.446371\pi\)
\(954\) −626.062 + 859.304i −0.656250 + 0.900738i
\(955\) 427.773 740.925i 0.447930 0.775838i
\(956\) 758.470i 0.793379i
\(957\) 699.357 355.757i 0.730781 0.371742i
\(958\) 930.599 + 1611.84i 0.971397 + 1.68251i
\(959\) 58.1873i 0.0606750i
\(960\) −667.911 + 1027.00i −0.695741 + 1.06979i
\(961\) 447.806 + 775.622i 0.465979 + 0.807099i
\(962\) −2201.23 + 1848.50i −2.28818 + 1.92152i
\(963\) 630.748 279.826i 0.654983 0.290578i
\(964\) 558.499 + 967.349i 0.579356 + 1.00347i
\(965\) −217.038 125.307i −0.224910 0.129852i
\(966\) 256.450 + 166.782i 0.265476 + 0.172652i
\(967\) −18.8742 + 32.6911i −0.0195183 + 0.0338067i −0.875620 0.483001i \(-0.839547\pi\)
0.856101 + 0.516808i \(0.172880\pi\)
\(968\) −73.1097 + 42.2099i −0.0755265 + 0.0436053i
\(969\) 511.148 + 1004.83i 0.527500 + 1.03698i
\(970\) 651.605 + 1128.61i 0.671757 + 1.16352i
\(971\) 989.598 + 571.345i 1.01915 + 0.588408i 0.913859 0.406033i \(-0.133088\pi\)
0.105295 + 0.994441i \(0.466421\pi\)
\(972\) 1575.68 416.612i 1.62107 0.428613i
\(973\) 355.661 + 616.023i 0.365530 + 0.633117i
\(974\) 996.239 575.179i 1.02283 0.590533i
\(975\) −316.068 134.266i −0.324172 0.137709i
\(976\) 19.2157 33.2825i 0.0196882 0.0341009i
\(977\) 945.089i 0.967338i −0.875251 0.483669i \(-0.839304\pi\)
0.875251 0.483669i \(-0.160696\pi\)
\(978\) −142.218 279.577i −0.145417 0.285866i
\(979\) −814.978 −0.832459
\(980\) 1110.87i 1.13354i
\(981\) 1412.76 + 150.380i 1.44012 + 0.153293i
\(982\) −1089.45 + 1886.99i −1.10942 + 1.92158i
\(983\) −98.2105 + 56.7018i −0.0999089 + 0.0576824i −0.549122 0.835742i \(-0.685038\pi\)
0.449213 + 0.893425i \(0.351704\pi\)
\(984\) −13.8873 + 261.668i −0.0141131 + 0.265923i
\(985\) −1156.82 −1.17443
\(986\) 1307.86i 1.32643i
\(987\) −352.954 693.847i −0.357603 0.702986i
\(988\) −1305.98 1555.19i −1.32185 1.57408i
\(989\) 37.9949i 0.0384175i
\(990\) −132.440 + 1244.22i −0.133778 + 1.25679i
\(991\) 548.175 + 949.467i 0.553153 + 0.958090i 0.998045 + 0.0625050i \(0.0199090\pi\)
−0.444891 + 0.895585i \(0.646758\pi\)
\(992\) 229.448i 0.231299i
\(993\) 22.2194 418.664i 0.0223761 0.421615i
\(994\) −404.152 700.012i −0.406592 0.704237i
\(995\) 743.259 429.121i 0.746994 0.431277i
\(996\) 24.6074 37.8372i 0.0247062 0.0379891i
\(997\) 876.332 0.878969 0.439484 0.898250i \(-0.355161\pi\)
0.439484 + 0.898250i \(0.355161\pi\)
\(998\) −1609.65 + 929.334i −1.61288 + 0.931197i
\(999\) 1704.58 650.443i 1.70629 0.651094i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.u.a.68.3 yes 52
3.2 odd 2 351.3.u.a.341.24 52
9.2 odd 6 117.3.k.a.29.3 52
9.7 even 3 351.3.k.a.224.24 52
13.9 even 3 117.3.k.a.113.24 yes 52
39.35 odd 6 351.3.k.a.152.3 52
117.61 even 3 351.3.u.a.35.24 52
117.74 odd 6 inner 117.3.u.a.74.3 yes 52
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.k.a.29.3 52 9.2 odd 6
117.3.k.a.113.24 yes 52 13.9 even 3
117.3.u.a.68.3 yes 52 1.1 even 1 trivial
117.3.u.a.74.3 yes 52 117.74 odd 6 inner
351.3.k.a.152.3 52 39.35 odd 6
351.3.k.a.224.24 52 9.7 even 3
351.3.u.a.35.24 52 117.61 even 3
351.3.u.a.341.24 52 3.2 odd 2