Properties

Label 117.3.u.a.68.6
Level $117$
Weight $3$
Character 117.68
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(68,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.68");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.u (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 68.6
Character \(\chi\) \(=\) 117.68
Dual form 117.3.u.a.74.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.23352 - 1.28952i) q^{2} +(-0.951185 + 2.84521i) q^{3} +(1.32573 + 2.29623i) q^{4} +(-0.817198 - 0.471810i) q^{5} +(5.79345 - 5.12826i) q^{6} +5.04701 q^{7} +3.47795i q^{8} +(-7.19049 - 5.41265i) q^{9} +(1.21682 + 2.10759i) q^{10} +(-13.8424 - 7.99194i) q^{11} +(-7.79428 + 1.58784i) q^{12} +(-1.19389 - 12.9451i) q^{13} +(-11.2726 - 6.50822i) q^{14} +(2.11971 - 1.87633i) q^{15} +(9.78780 - 16.9530i) q^{16} +(-21.5804 - 12.4595i) q^{17} +(9.08035 + 21.3615i) q^{18} +(-17.4215 + 30.1749i) q^{19} -2.50197i q^{20} +(-4.80064 + 14.3598i) q^{21} +(20.6116 + 35.7003i) q^{22} -20.5334i q^{23} +(-9.89551 - 3.30817i) q^{24} +(-12.0548 - 20.8795i) q^{25} +(-14.0264 + 30.4525i) q^{26} +(22.2396 - 15.3101i) q^{27} +(6.69097 + 11.5891i) q^{28} +(15.4628 + 8.92748i) q^{29} +(-7.15396 + 1.45740i) q^{30} +(10.2399 - 17.7361i) q^{31} +(-31.6745 + 18.2873i) q^{32} +(35.9055 - 31.7829i) q^{33} +(32.1335 + 55.6568i) q^{34} +(-4.12441 - 2.38123i) q^{35} +(2.89605 - 23.6867i) q^{36} +(1.09928 + 1.90401i) q^{37} +(77.8224 - 44.9308i) q^{38} +(37.9671 + 8.91629i) q^{39} +(1.64093 - 2.84217i) q^{40} +5.87340i q^{41} +(29.2396 - 25.8824i) q^{42} +1.87960 q^{43} -42.3806i q^{44} +(3.32232 + 7.81575i) q^{45} +(-26.4783 + 45.8617i) q^{46} +(-6.18058 + 3.56836i) q^{47} +(38.9248 + 43.9738i) q^{48} -23.5277 q^{49} +62.1796i q^{50} +(55.9768 - 49.5497i) q^{51} +(28.1421 - 19.9031i) q^{52} +34.1353i q^{53} +(-69.4153 + 5.51678i) q^{54} +(7.54135 + 13.0620i) q^{55} +17.5532i q^{56} +(-69.2831 - 78.2699i) q^{57} +(-23.0243 - 39.8793i) q^{58} +(-28.2515 + 16.3110i) q^{59} +(7.11863 + 2.37983i) q^{60} +13.3637 q^{61} +(-45.7421 + 26.4092i) q^{62} +(-36.2905 - 27.3177i) q^{63} +16.0248 q^{64} +(-5.13196 + 11.1420i) q^{65} +(-121.180 + 24.6867i) q^{66} -78.5770 q^{67} -66.0715i q^{68} +(58.4220 + 19.5311i) q^{69} +(6.14128 + 10.6370i) q^{70} +(121.405 + 70.0932i) q^{71} +(18.8249 - 25.0082i) q^{72} -89.5686 q^{73} -5.67018i q^{74} +(70.8730 - 14.4382i) q^{75} -92.3848 q^{76} +(-69.8630 - 40.3354i) q^{77} +(-73.3023 - 68.8740i) q^{78} +(28.9076 + 50.0695i) q^{79} +(-15.9971 + 9.23596i) q^{80} +(22.4064 + 77.8393i) q^{81} +(7.57387 - 13.1183i) q^{82} +(38.2595 - 22.0891i) q^{83} +(-39.3378 + 8.01386i) q^{84} +(11.7570 + 20.3637i) q^{85} +(-4.19812 - 2.42379i) q^{86} +(-40.1086 + 35.5034i) q^{87} +(27.7956 - 48.1433i) q^{88} +(-48.6143 + 28.0675i) q^{89} +(2.65813 - 21.7408i) q^{90} +(-6.02555 - 65.3338i) q^{91} +(47.1494 - 27.2217i) q^{92} +(40.7229 + 46.0051i) q^{93} +18.4059 q^{94} +(28.4736 - 16.4393i) q^{95} +(-21.9029 - 107.515i) q^{96} -156.758 q^{97} +(52.5495 + 30.3395i) q^{98} +(56.2764 + 132.390i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 3 q^{2} - q^{3} + 49 q^{4} - 6 q^{5} - 3 q^{6} + 2 q^{7} - 3 q^{9} - 6 q^{10} + 33 q^{11} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 28 q^{15} - 83 q^{16} + 34 q^{18} + 5 q^{19} - 91 q^{21} - 15 q^{22}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.23352 1.28952i −1.11676 0.644761i −0.176187 0.984357i \(-0.556376\pi\)
−0.940571 + 0.339596i \(0.889710\pi\)
\(3\) −0.951185 + 2.84521i −0.317062 + 0.948405i
\(4\) 1.32573 + 2.29623i 0.331432 + 0.574057i
\(5\) −0.817198 0.471810i −0.163440 0.0943619i 0.416049 0.909342i \(-0.363414\pi\)
−0.579489 + 0.814980i \(0.696748\pi\)
\(6\) 5.79345 5.12826i 0.965575 0.854710i
\(7\) 5.04701 0.721001 0.360501 0.932759i \(-0.382606\pi\)
0.360501 + 0.932759i \(0.382606\pi\)
\(8\) 3.47795i 0.434743i
\(9\) −7.19049 5.41265i −0.798944 0.601406i
\(10\) 1.21682 + 2.10759i 0.121682 + 0.210759i
\(11\) −13.8424 7.99194i −1.25840 0.726540i −0.285640 0.958337i \(-0.592206\pi\)
−0.972764 + 0.231797i \(0.925540\pi\)
\(12\) −7.79428 + 1.58784i −0.649523 + 0.132320i
\(13\) −1.19389 12.9451i −0.0918373 0.995774i
\(14\) −11.2726 6.50822i −0.805184 0.464873i
\(15\) 2.11971 1.87633i 0.141314 0.125088i
\(16\) 9.78780 16.9530i 0.611738 1.05956i
\(17\) −21.5804 12.4595i −1.26944 0.732909i −0.294555 0.955635i \(-0.595171\pi\)
−0.974881 + 0.222725i \(0.928505\pi\)
\(18\) 9.08035 + 21.3615i 0.504464 + 1.18675i
\(19\) −17.4215 + 30.1749i −0.916921 + 1.58815i −0.112858 + 0.993611i \(0.536000\pi\)
−0.804064 + 0.594543i \(0.797333\pi\)
\(20\) 2.50197i 0.125098i
\(21\) −4.80064 + 14.3598i −0.228602 + 0.683801i
\(22\) 20.6116 + 35.7003i 0.936889 + 1.62274i
\(23\) 20.5334i 0.892757i −0.894844 0.446379i \(-0.852713\pi\)
0.894844 0.446379i \(-0.147287\pi\)
\(24\) −9.89551 3.30817i −0.412313 0.137840i
\(25\) −12.0548 20.8795i −0.482192 0.835180i
\(26\) −14.0264 + 30.4525i −0.539476 + 1.17125i
\(27\) 22.2396 15.3101i 0.823691 0.567039i
\(28\) 6.69097 + 11.5891i 0.238963 + 0.413896i
\(29\) 15.4628 + 8.92748i 0.533202 + 0.307844i 0.742319 0.670046i \(-0.233726\pi\)
−0.209118 + 0.977890i \(0.567059\pi\)
\(30\) −7.15396 + 1.45740i −0.238465 + 0.0485799i
\(31\) 10.2399 17.7361i 0.330321 0.572132i −0.652254 0.758001i \(-0.726176\pi\)
0.982575 + 0.185868i \(0.0595098\pi\)
\(32\) −31.6745 + 18.2873i −0.989827 + 0.571477i
\(33\) 35.9055 31.7829i 1.08805 0.963119i
\(34\) 32.1335 + 55.6568i 0.945102 + 1.63696i
\(35\) −4.12441 2.38123i −0.117840 0.0680351i
\(36\) 2.89605 23.6867i 0.0804458 0.657965i
\(37\) 1.09928 + 1.90401i 0.0297103 + 0.0514597i 0.880498 0.474049i \(-0.157208\pi\)
−0.850788 + 0.525509i \(0.823875\pi\)
\(38\) 77.8224 44.9308i 2.04796 1.18239i
\(39\) 37.9671 + 8.91629i 0.973515 + 0.228623i
\(40\) 1.64093 2.84217i 0.0410232 0.0710543i
\(41\) 5.87340i 0.143254i 0.997431 + 0.0716268i \(0.0228191\pi\)
−0.997431 + 0.0716268i \(0.977181\pi\)
\(42\) 29.2396 25.8824i 0.696181 0.616247i
\(43\) 1.87960 0.0437117 0.0218559 0.999761i \(-0.493043\pi\)
0.0218559 + 0.999761i \(0.493043\pi\)
\(44\) 42.3806i 0.963195i
\(45\) 3.32232 + 7.81575i 0.0738293 + 0.173683i
\(46\) −26.4783 + 45.8617i −0.575615 + 0.996994i
\(47\) −6.18058 + 3.56836i −0.131502 + 0.0759225i −0.564308 0.825565i \(-0.690857\pi\)
0.432806 + 0.901487i \(0.357523\pi\)
\(48\) 38.9248 + 43.9738i 0.810934 + 0.916121i
\(49\) −23.5277 −0.480157
\(50\) 62.1796i 1.24359i
\(51\) 55.9768 49.5497i 1.09758 0.971562i
\(52\) 28.1421 19.9031i 0.541194 0.382751i
\(53\) 34.1353i 0.644062i 0.946729 + 0.322031i \(0.104366\pi\)
−0.946729 + 0.322031i \(0.895634\pi\)
\(54\) −69.4153 + 5.51678i −1.28547 + 0.102163i
\(55\) 7.54135 + 13.0620i 0.137115 + 0.237491i
\(56\) 17.5532i 0.313451i
\(57\) −69.2831 78.2699i −1.21549 1.37316i
\(58\) −23.0243 39.8793i −0.396971 0.687575i
\(59\) −28.2515 + 16.3110i −0.478839 + 0.276458i −0.719933 0.694044i \(-0.755827\pi\)
0.241093 + 0.970502i \(0.422494\pi\)
\(60\) 7.11863 + 2.37983i 0.118644 + 0.0396639i
\(61\) 13.3637 0.219076 0.109538 0.993983i \(-0.465063\pi\)
0.109538 + 0.993983i \(0.465063\pi\)
\(62\) −45.7421 + 26.4092i −0.737777 + 0.425956i
\(63\) −36.2905 27.3177i −0.576039 0.433614i
\(64\) 16.0248 0.250387
\(65\) −5.13196 + 11.1420i −0.0789533 + 0.171415i
\(66\) −121.180 + 24.6867i −1.83607 + 0.374042i
\(67\) −78.5770 −1.17279 −0.586396 0.810025i \(-0.699454\pi\)
−0.586396 + 0.810025i \(0.699454\pi\)
\(68\) 66.0715i 0.971639i
\(69\) 58.4220 + 19.5311i 0.846695 + 0.283059i
\(70\) 6.14128 + 10.6370i 0.0877326 + 0.151957i
\(71\) 121.405 + 70.0932i 1.70993 + 0.987228i 0.934622 + 0.355643i \(0.115738\pi\)
0.775307 + 0.631585i \(0.217595\pi\)
\(72\) 18.8249 25.0082i 0.261457 0.347336i
\(73\) −89.5686 −1.22697 −0.613483 0.789708i \(-0.710232\pi\)
−0.613483 + 0.789708i \(0.710232\pi\)
\(74\) 5.67018i 0.0766240i
\(75\) 70.8730 14.4382i 0.944974 0.192509i
\(76\) −92.3848 −1.21559
\(77\) −69.8630 40.3354i −0.907311 0.523836i
\(78\) −73.3023 68.8740i −0.939774 0.883000i
\(79\) 28.9076 + 50.0695i 0.365920 + 0.633791i 0.988923 0.148428i \(-0.0474212\pi\)
−0.623004 + 0.782219i \(0.714088\pi\)
\(80\) −15.9971 + 9.23596i −0.199964 + 0.115449i
\(81\) 22.4064 + 77.8393i 0.276622 + 0.960979i
\(82\) 7.57387 13.1183i 0.0923643 0.159980i
\(83\) 38.2595 22.0891i 0.460958 0.266134i −0.251489 0.967860i \(-0.580920\pi\)
0.712447 + 0.701726i \(0.247587\pi\)
\(84\) −39.3378 + 8.01386i −0.468307 + 0.0954031i
\(85\) 11.7570 + 20.3637i 0.138317 + 0.239573i
\(86\) −4.19812 2.42379i −0.0488154 0.0281836i
\(87\) −40.1086 + 35.5034i −0.461019 + 0.408085i
\(88\) 27.7956 48.1433i 0.315859 0.547083i
\(89\) −48.6143 + 28.0675i −0.546228 + 0.315365i −0.747599 0.664150i \(-0.768794\pi\)
0.201371 + 0.979515i \(0.435460\pi\)
\(90\) 2.65813 21.7408i 0.0295348 0.241564i
\(91\) −6.02555 65.3338i −0.0662148 0.717954i
\(92\) 47.1494 27.2217i 0.512494 0.295888i
\(93\) 40.7229 + 46.0051i 0.437881 + 0.494679i
\(94\) 18.4059 0.195807
\(95\) 28.4736 16.4393i 0.299723 0.173045i
\(96\) −21.9029 107.515i −0.228155 1.11995i
\(97\) −156.758 −1.61606 −0.808032 0.589139i \(-0.799467\pi\)
−0.808032 + 0.589139i \(0.799467\pi\)
\(98\) 52.5495 + 30.3395i 0.536219 + 0.309586i
\(99\) 56.2764 + 132.390i 0.568449 + 1.33728i
\(100\) 31.9628 55.3611i 0.319628 0.553611i
\(101\) −96.8462 55.9142i −0.958873 0.553606i −0.0630472 0.998011i \(-0.520082\pi\)
−0.895826 + 0.444405i \(0.853415\pi\)
\(102\) −188.920 + 38.4867i −1.85216 + 0.377321i
\(103\) 79.5352 137.759i 0.772187 1.33747i −0.164176 0.986431i \(-0.552496\pi\)
0.936362 0.351035i \(-0.114170\pi\)
\(104\) 45.0222 4.15227i 0.432906 0.0399257i
\(105\) 10.6982 9.46983i 0.101887 0.0901889i
\(106\) 44.0182 76.2417i 0.415266 0.719262i
\(107\) 172.079 99.3501i 1.60822 0.928505i 0.618450 0.785824i \(-0.287761\pi\)
0.989769 0.142681i \(-0.0455724\pi\)
\(108\) 64.6392 + 30.7703i 0.598511 + 0.284911i
\(109\) 99.6164 0.913912 0.456956 0.889489i \(-0.348940\pi\)
0.456956 + 0.889489i \(0.348940\pi\)
\(110\) 38.8989i 0.353626i
\(111\) −6.46293 + 1.31662i −0.0582246 + 0.0118615i
\(112\) 49.3991 85.5618i 0.441064 0.763945i
\(113\) 19.4882 11.2515i 0.172462 0.0995708i −0.411284 0.911507i \(-0.634920\pi\)
0.583746 + 0.811936i \(0.301586\pi\)
\(114\) 53.8142 + 264.159i 0.472055 + 2.31718i
\(115\) −9.68786 + 16.7799i −0.0842423 + 0.145912i
\(116\) 47.3417i 0.408118i
\(117\) −61.4825 + 99.5435i −0.525491 + 0.850799i
\(118\) 84.1336 0.712996
\(119\) −108.917 62.8830i −0.915265 0.528429i
\(120\) 6.52576 + 7.37223i 0.0543813 + 0.0614352i
\(121\) 67.2423 + 116.467i 0.555721 + 0.962537i
\(122\) −29.8480 17.2327i −0.244655 0.141252i
\(123\) −16.7111 5.58669i −0.135863 0.0454203i
\(124\) 54.3015 0.437916
\(125\) 46.3407i 0.370726i
\(126\) 45.8286 + 107.812i 0.363719 + 0.855650i
\(127\) −58.8631 101.954i −0.463489 0.802786i 0.535643 0.844444i \(-0.320069\pi\)
−0.999132 + 0.0416583i \(0.986736\pi\)
\(128\) 90.9062 + 52.4847i 0.710205 + 0.410037i
\(129\) −1.78785 + 5.34788i −0.0138593 + 0.0414564i
\(130\) 25.8301 18.2680i 0.198693 0.140523i
\(131\) −77.7495 44.8887i −0.593507 0.342662i 0.172976 0.984926i \(-0.444662\pi\)
−0.766483 + 0.642264i \(0.777995\pi\)
\(132\) 120.582 + 40.3118i 0.913499 + 0.305392i
\(133\) −87.9265 + 152.293i −0.661101 + 1.14506i
\(134\) 175.503 + 101.327i 1.30972 + 0.756170i
\(135\) −25.3976 + 2.01848i −0.188131 + 0.0149517i
\(136\) 43.3333 75.0556i 0.318628 0.551879i
\(137\) 9.13731i 0.0666957i −0.999444 0.0333478i \(-0.989383\pi\)
0.999444 0.0333478i \(-0.0106169\pi\)
\(138\) −105.301 118.959i −0.763048 0.862024i
\(139\) 74.3522 + 128.782i 0.534908 + 0.926488i 0.999168 + 0.0407890i \(0.0129871\pi\)
−0.464260 + 0.885699i \(0.653680\pi\)
\(140\) 12.6274i 0.0901960i
\(141\) −4.27387 20.9792i −0.0303111 0.148789i
\(142\) −180.773 313.108i −1.27305 2.20499i
\(143\) −86.9299 + 188.733i −0.607901 + 1.31981i
\(144\) −162.140 + 68.9223i −1.12597 + 0.478627i
\(145\) −8.42414 14.5910i −0.0580975 0.100628i
\(146\) 200.053 + 115.501i 1.37022 + 0.791100i
\(147\) 22.3792 66.9414i 0.152239 0.455383i
\(148\) −2.91469 + 5.04840i −0.0196939 + 0.0341108i
\(149\) 28.5068 16.4584i 0.191321 0.110459i −0.401280 0.915956i \(-0.631434\pi\)
0.592601 + 0.805496i \(0.298101\pi\)
\(150\) −176.914 59.1443i −1.17943 0.394296i
\(151\) 53.6782 + 92.9733i 0.355485 + 0.615717i 0.987201 0.159482i \(-0.0509825\pi\)
−0.631716 + 0.775200i \(0.717649\pi\)
\(152\) −104.947 60.5911i −0.690440 0.398626i
\(153\) 87.7351 + 206.397i 0.573432 + 1.34900i
\(154\) 104.027 + 180.180i 0.675498 + 1.17000i
\(155\) −16.7361 + 9.66260i −0.107975 + 0.0623394i
\(156\) 29.8602 + 99.0017i 0.191412 + 0.634627i
\(157\) −2.21063 + 3.82892i −0.0140804 + 0.0243880i −0.872980 0.487756i \(-0.837815\pi\)
0.858899 + 0.512144i \(0.171149\pi\)
\(158\) 149.108i 0.943722i
\(159\) −97.1223 32.4690i −0.610832 0.204207i
\(160\) 34.5124 0.215703
\(161\) 103.632i 0.643679i
\(162\) 50.3303 202.749i 0.310681 1.25154i
\(163\) 47.2209 81.7891i 0.289699 0.501774i −0.684039 0.729446i \(-0.739778\pi\)
0.973738 + 0.227672i \(0.0731114\pi\)
\(164\) −13.4867 + 7.78654i −0.0822358 + 0.0474789i
\(165\) −44.3374 + 9.03238i −0.268712 + 0.0547417i
\(166\) −113.938 −0.686371
\(167\) 164.333i 0.984030i −0.870587 0.492015i \(-0.836261\pi\)
0.870587 0.492015i \(-0.163739\pi\)
\(168\) −49.9427 16.6964i −0.297278 0.0993832i
\(169\) −166.149 + 30.9098i −0.983132 + 0.182898i
\(170\) 60.6435i 0.356727i
\(171\) 288.596 122.676i 1.68769 0.717404i
\(172\) 2.49184 + 4.31600i 0.0144875 + 0.0250930i
\(173\) 101.216i 0.585062i 0.956256 + 0.292531i \(0.0944974\pi\)
−0.956256 + 0.292531i \(0.905503\pi\)
\(174\) 135.366 27.5766i 0.777963 0.158486i
\(175\) −60.8406 105.379i −0.347661 0.602166i
\(176\) −270.974 + 156.447i −1.53963 + 0.888904i
\(177\) −19.5359 95.8964i −0.110372 0.541788i
\(178\) 144.774 0.813339
\(179\) −176.959 + 102.167i −0.988595 + 0.570766i −0.904854 0.425722i \(-0.860020\pi\)
−0.0837411 + 0.996488i \(0.526687\pi\)
\(180\) −13.5423 + 17.9904i −0.0752348 + 0.0999465i
\(181\) −121.248 −0.669879 −0.334939 0.942240i \(-0.608716\pi\)
−0.334939 + 0.942240i \(0.608716\pi\)
\(182\) −70.7912 + 153.694i −0.388963 + 0.844474i
\(183\) −12.7113 + 38.0225i −0.0694608 + 0.207773i
\(184\) 71.4141 0.388120
\(185\) 2.07460i 0.0112141i
\(186\) −31.6307 155.266i −0.170058 0.834765i
\(187\) 199.151 + 344.939i 1.06498 + 1.84459i
\(188\) −16.3875 9.46135i −0.0871677 0.0503263i
\(189\) 112.244 77.2700i 0.593882 0.408836i
\(190\) −84.7951 −0.446290
\(191\) 181.312i 0.949279i −0.880180 0.474640i \(-0.842578\pi\)
0.880180 0.474640i \(-0.157422\pi\)
\(192\) −15.2425 + 45.5940i −0.0793883 + 0.237469i
\(193\) −2.45422 −0.0127162 −0.00635808 0.999980i \(-0.502024\pi\)
−0.00635808 + 0.999980i \(0.502024\pi\)
\(194\) 350.122 + 202.143i 1.80475 + 1.04197i
\(195\) −26.8198 25.1996i −0.137538 0.129229i
\(196\) −31.1913 54.0250i −0.159140 0.275638i
\(197\) 300.863 173.703i 1.52722 0.881743i 0.527748 0.849401i \(-0.323037\pi\)
0.999477 0.0323423i \(-0.0102967\pi\)
\(198\) 45.0258 368.266i 0.227403 1.85993i
\(199\) 88.3111 152.959i 0.443774 0.768640i −0.554192 0.832389i \(-0.686973\pi\)
0.997966 + 0.0637495i \(0.0203059\pi\)
\(200\) 72.6178 41.9259i 0.363089 0.209630i
\(201\) 74.7413 223.569i 0.371847 1.11228i
\(202\) 144.205 + 249.770i 0.713886 + 1.23649i
\(203\) 78.0411 + 45.0571i 0.384439 + 0.221956i
\(204\) 187.987 + 62.8462i 0.921507 + 0.308070i
\(205\) 2.77113 4.79973i 0.0135177 0.0234133i
\(206\) −355.286 + 205.125i −1.72469 + 0.995751i
\(207\) −111.140 + 147.645i −0.536909 + 0.713263i
\(208\) −231.143 106.464i −1.11126 0.511845i
\(209\) 482.313 278.463i 2.30772 1.33236i
\(210\) −36.1061 + 7.35550i −0.171934 + 0.0350262i
\(211\) −272.761 −1.29270 −0.646352 0.763039i \(-0.723706\pi\)
−0.646352 + 0.763039i \(0.723706\pi\)
\(212\) −78.3825 + 45.2542i −0.369729 + 0.213463i
\(213\) −314.909 + 278.752i −1.47844 + 1.30869i
\(214\) −512.456 −2.39465
\(215\) −1.53601 0.886815i −0.00714423 0.00412472i
\(216\) 53.2476 + 77.3483i 0.246517 + 0.358094i
\(217\) 51.6811 89.5143i 0.238162 0.412508i
\(218\) −222.495 128.457i −1.02062 0.589254i
\(219\) 85.1963 254.842i 0.389024 1.16366i
\(220\) −19.9956 + 34.6333i −0.0908889 + 0.157424i
\(221\) −135.524 + 294.235i −0.613230 + 1.33138i
\(222\) 16.1329 + 5.39339i 0.0726706 + 0.0242946i
\(223\) 18.6902 32.3723i 0.0838124 0.145167i −0.821072 0.570824i \(-0.806624\pi\)
0.904885 + 0.425657i \(0.139957\pi\)
\(224\) −159.861 + 92.2960i −0.713666 + 0.412036i
\(225\) −26.3336 + 215.382i −0.117038 + 0.957255i
\(226\) −58.0362 −0.256797
\(227\) 198.854i 0.876011i 0.898972 + 0.438005i \(0.144315\pi\)
−0.898972 + 0.438005i \(0.855685\pi\)
\(228\) 87.8750 262.855i 0.385417 1.15287i
\(229\) −138.042 + 239.095i −0.602802 + 1.04408i 0.389593 + 0.920987i \(0.372616\pi\)
−0.992395 + 0.123096i \(0.960718\pi\)
\(230\) 43.2760 24.9854i 0.188156 0.108632i
\(231\) 181.216 160.409i 0.784483 0.694410i
\(232\) −31.0493 + 53.7790i −0.133833 + 0.231806i
\(233\) 106.047i 0.455137i −0.973762 0.227568i \(-0.926922\pi\)
0.973762 0.227568i \(-0.0730775\pi\)
\(234\) 265.686 143.049i 1.13541 0.611320i
\(235\) 6.73434 0.0286568
\(236\) −74.9077 43.2480i −0.317405 0.183254i
\(237\) −169.955 + 34.6231i −0.717110 + 0.146089i
\(238\) 162.178 + 280.900i 0.681420 + 1.18025i
\(239\) −331.745 191.533i −1.38805 0.801393i −0.394957 0.918700i \(-0.629241\pi\)
−0.993096 + 0.117307i \(0.962574\pi\)
\(240\) −11.0620 54.3004i −0.0460918 0.226252i
\(241\) −46.9860 −0.194963 −0.0974813 0.995237i \(-0.531079\pi\)
−0.0974813 + 0.995237i \(0.531079\pi\)
\(242\) 346.841i 1.43323i
\(243\) −242.782 10.2885i −0.999103 0.0423397i
\(244\) 17.7166 + 30.6860i 0.0726090 + 0.125762i
\(245\) 19.2268 + 11.1006i 0.0784767 + 0.0453085i
\(246\) 30.1203 + 34.0273i 0.122440 + 0.138322i
\(247\) 411.416 + 189.497i 1.66565 + 0.767195i
\(248\) 61.6852 + 35.6140i 0.248731 + 0.143605i
\(249\) 26.4565 + 129.867i 0.106251 + 0.521556i
\(250\) 59.7574 103.503i 0.239029 0.414011i
\(251\) −40.4117 23.3317i −0.161003 0.0929549i 0.417334 0.908753i \(-0.362965\pi\)
−0.578336 + 0.815798i \(0.696298\pi\)
\(252\) 14.6164 119.547i 0.0580015 0.474394i
\(253\) −164.102 + 284.233i −0.648624 + 1.12345i
\(254\) 303.621i 1.19536i
\(255\) −69.1221 + 14.0815i −0.271067 + 0.0552216i
\(256\) −167.410 289.962i −0.653945 1.13267i
\(257\) 119.957i 0.466757i −0.972386 0.233379i \(-0.925022\pi\)
0.972386 0.233379i \(-0.0749782\pi\)
\(258\) 10.8894 9.63910i 0.0422069 0.0373608i
\(259\) 5.54808 + 9.60955i 0.0214211 + 0.0371025i
\(260\) −32.3881 + 2.98706i −0.124570 + 0.0114887i
\(261\) −62.8642 147.888i −0.240859 0.566621i
\(262\) 115.770 + 200.519i 0.441869 + 0.765340i
\(263\) −293.463 169.431i −1.11583 0.644225i −0.175497 0.984480i \(-0.556153\pi\)
−0.940333 + 0.340255i \(0.889487\pi\)
\(264\) 110.539 + 124.878i 0.418710 + 0.473021i
\(265\) 16.1054 27.8953i 0.0607749 0.105265i
\(266\) 392.770 226.766i 1.47658 0.852504i
\(267\) −33.6168 165.015i −0.125906 0.618035i
\(268\) −104.172 180.431i −0.388701 0.673250i
\(269\) −194.820 112.479i −0.724236 0.418138i 0.0920735 0.995752i \(-0.470651\pi\)
−0.816310 + 0.577614i \(0.803984\pi\)
\(270\) 59.3289 + 28.2425i 0.219737 + 0.104602i
\(271\) 2.75897 + 4.77868i 0.0101807 + 0.0176335i 0.871071 0.491157i \(-0.163426\pi\)
−0.860890 + 0.508791i \(0.830093\pi\)
\(272\) −422.450 + 243.901i −1.55312 + 0.896696i
\(273\) 191.620 + 45.0006i 0.701906 + 0.164837i
\(274\) −11.7828 + 20.4083i −0.0430027 + 0.0744829i
\(275\) 385.365i 1.40133i
\(276\) 32.6039 + 160.043i 0.118130 + 0.579867i
\(277\) 232.341 0.838775 0.419387 0.907807i \(-0.362245\pi\)
0.419387 + 0.907807i \(0.362245\pi\)
\(278\) 383.515i 1.37955i
\(279\) −169.630 + 72.1061i −0.607991 + 0.258445i
\(280\) 8.28178 14.3445i 0.0295778 0.0512302i
\(281\) 108.117 62.4211i 0.384757 0.222139i −0.295129 0.955457i \(-0.595363\pi\)
0.679886 + 0.733318i \(0.262029\pi\)
\(282\) −17.5074 + 52.3687i −0.0620830 + 0.185705i
\(283\) 428.800 1.51519 0.757597 0.652722i \(-0.226373\pi\)
0.757597 + 0.652722i \(0.226373\pi\)
\(284\) 371.698i 1.30880i
\(285\) 19.6895 + 96.6504i 0.0690861 + 0.339124i
\(286\) 437.534 309.440i 1.52984 1.08196i
\(287\) 29.6431i 0.103286i
\(288\) 326.738 + 39.9484i 1.13451 + 0.138710i
\(289\) 165.976 + 287.479i 0.574312 + 0.994738i
\(290\) 43.4524i 0.149836i
\(291\) 149.106 446.011i 0.512392 1.53268i
\(292\) −118.744 205.670i −0.406656 0.704349i
\(293\) −132.057 + 76.2431i −0.450706 + 0.260215i −0.708128 0.706084i \(-0.750460\pi\)
0.257422 + 0.966299i \(0.417127\pi\)
\(294\) −136.307 + 120.656i −0.463628 + 0.410395i
\(295\) 30.7828 0.104348
\(296\) −6.62204 + 3.82324i −0.0223718 + 0.0129163i
\(297\) −430.208 + 34.1908i −1.44851 + 0.115121i
\(298\) −84.8940 −0.284879
\(299\) −265.806 + 24.5145i −0.888984 + 0.0819884i
\(300\) 127.112 + 143.600i 0.423706 + 0.478665i
\(301\) 9.48638 0.0315162
\(302\) 276.877i 0.916810i
\(303\) 251.207 222.363i 0.829064 0.733873i
\(304\) 341.036 + 590.692i 1.12183 + 1.94307i
\(305\) −10.9208 6.30510i −0.0358058 0.0206725i
\(306\) 70.1954 574.127i 0.229397 1.87623i
\(307\) 559.739 1.82325 0.911627 0.411019i \(-0.134827\pi\)
0.911627 + 0.411019i \(0.134827\pi\)
\(308\) 213.895i 0.694465i
\(309\) 316.301 + 357.329i 1.02363 + 1.15641i
\(310\) 49.8405 0.160776
\(311\) 278.602 + 160.851i 0.895827 + 0.517206i 0.875844 0.482594i \(-0.160305\pi\)
0.0199832 + 0.999800i \(0.493639\pi\)
\(312\) −31.0104 + 132.048i −0.0993923 + 0.423229i
\(313\) −174.107 301.562i −0.556252 0.963456i −0.997805 0.0662213i \(-0.978906\pi\)
0.441553 0.897235i \(-0.354428\pi\)
\(314\) 9.87494 5.70130i 0.0314488 0.0181570i
\(315\) 16.7678 + 39.4462i 0.0532310 + 0.125226i
\(316\) −76.6474 + 132.757i −0.242555 + 0.420118i
\(317\) −74.3159 + 42.9063i −0.234435 + 0.135351i −0.612616 0.790380i \(-0.709883\pi\)
0.378181 + 0.925732i \(0.376550\pi\)
\(318\) 175.055 + 197.761i 0.550486 + 0.621891i
\(319\) −142.696 247.156i −0.447322 0.774785i
\(320\) −13.0954 7.56065i −0.0409232 0.0236270i
\(321\) 118.993 + 584.103i 0.370695 + 1.81964i
\(322\) −133.636 + 231.464i −0.415019 + 0.718834i
\(323\) 751.927 434.125i 2.32795 1.34404i
\(324\) −149.032 + 154.644i −0.459975 + 0.477296i
\(325\) −255.895 + 180.978i −0.787368 + 0.556855i
\(326\) −210.937 + 121.785i −0.647047 + 0.373573i
\(327\) −94.7536 + 283.430i −0.289766 + 0.866758i
\(328\) −20.4274 −0.0622786
\(329\) −31.1934 + 18.0095i −0.0948128 + 0.0547402i
\(330\) 110.676 + 37.0001i 0.335381 + 0.112121i
\(331\) 6.04410 0.0182601 0.00913006 0.999958i \(-0.497094\pi\)
0.00913006 + 0.999958i \(0.497094\pi\)
\(332\) 101.443 + 58.5684i 0.305553 + 0.176411i
\(333\) 2.40137 19.6408i 0.00721132 0.0589813i
\(334\) −211.911 + 367.040i −0.634464 + 1.09892i
\(335\) 64.2130 + 37.0734i 0.191681 + 0.110667i
\(336\) 196.454 + 221.936i 0.584684 + 0.660524i
\(337\) 201.907 349.714i 0.599132 1.03773i −0.393818 0.919189i \(-0.628846\pi\)
0.992950 0.118538i \(-0.0378208\pi\)
\(338\) 410.956 + 145.215i 1.21585 + 0.429631i
\(339\) 13.4761 + 66.1503i 0.0397524 + 0.195134i
\(340\) −31.1731 + 53.9935i −0.0916857 + 0.158804i
\(341\) −283.492 + 163.674i −0.831354 + 0.479983i
\(342\) −802.776 98.1511i −2.34730 0.286991i
\(343\) −366.048 −1.06720
\(344\) 6.53716i 0.0190034i
\(345\) −38.5274 43.5248i −0.111674 0.126159i
\(346\) 130.520 226.067i 0.377225 0.653372i
\(347\) 254.992 147.220i 0.734847 0.424264i −0.0853458 0.996351i \(-0.527199\pi\)
0.820193 + 0.572087i \(0.193866\pi\)
\(348\) −134.697 45.0307i −0.387061 0.129398i
\(349\) 255.135 441.906i 0.731045 1.26621i −0.225393 0.974268i \(-0.572366\pi\)
0.956437 0.291938i \(-0.0943002\pi\)
\(350\) 313.821i 0.896632i
\(351\) −224.741 269.615i −0.640289 0.768134i
\(352\) 584.603 1.66080
\(353\) −434.981 251.137i −1.23224 0.711435i −0.264745 0.964318i \(-0.585288\pi\)
−0.967497 + 0.252883i \(0.918621\pi\)
\(354\) −80.0266 + 239.378i −0.226064 + 0.676209i
\(355\) −66.1413 114.560i −0.186313 0.322704i
\(356\) −128.899 74.4197i −0.362075 0.209044i
\(357\) 282.515 250.078i 0.791360 0.700498i
\(358\) 526.986 1.47203
\(359\) 258.046i 0.718791i 0.933185 + 0.359395i \(0.117017\pi\)
−0.933185 + 0.359395i \(0.882983\pi\)
\(360\) −27.1828 + 11.5548i −0.0755077 + 0.0320968i
\(361\) −426.518 738.750i −1.18149 2.04640i
\(362\) 270.809 + 156.352i 0.748092 + 0.431911i
\(363\) −395.334 + 80.5370i −1.08907 + 0.221865i
\(364\) 142.033 100.451i 0.390201 0.275964i
\(365\) 73.1953 + 42.2593i 0.200535 + 0.115779i
\(366\) 77.4217 68.5323i 0.211535 0.187247i
\(367\) 58.6436 101.574i 0.159792 0.276768i −0.775002 0.631959i \(-0.782251\pi\)
0.934794 + 0.355192i \(0.115584\pi\)
\(368\) −348.102 200.977i −0.945930 0.546133i
\(369\) 31.7907 42.2327i 0.0861536 0.114452i
\(370\) −2.67524 + 4.63366i −0.00723039 + 0.0125234i
\(371\) 172.281i 0.464370i
\(372\) −51.6508 + 154.500i −0.138846 + 0.415321i
\(373\) −351.544 608.892i −0.942476 1.63242i −0.760727 0.649072i \(-0.775157\pi\)
−0.181750 0.983345i \(-0.558176\pi\)
\(374\) 1027.24i 2.74662i
\(375\) −131.849 44.0786i −0.351598 0.117543i
\(376\) −12.4106 21.4957i −0.0330068 0.0571695i
\(377\) 97.1059 210.826i 0.257575 0.559220i
\(378\) −350.339 + 27.8432i −0.926824 + 0.0736594i
\(379\) 166.355 + 288.136i 0.438932 + 0.760252i 0.997607 0.0691341i \(-0.0220236\pi\)
−0.558676 + 0.829386i \(0.688690\pi\)
\(380\) 75.4967 + 43.5880i 0.198675 + 0.114705i
\(381\) 346.070 70.5011i 0.908321 0.185042i
\(382\) −233.806 + 404.964i −0.612058 + 1.06012i
\(383\) −288.687 + 166.673i −0.753751 + 0.435179i −0.827048 0.562132i \(-0.809981\pi\)
0.0732964 + 0.997310i \(0.476648\pi\)
\(384\) −235.799 + 208.725i −0.614060 + 0.543555i
\(385\) 38.0613 + 65.9240i 0.0988604 + 0.171231i
\(386\) 5.48154 + 3.16477i 0.0142009 + 0.00819888i
\(387\) −13.5153 10.1736i −0.0349232 0.0262885i
\(388\) −207.819 359.953i −0.535615 0.927713i
\(389\) 505.351 291.765i 1.29910 0.750038i 0.318855 0.947804i \(-0.396702\pi\)
0.980249 + 0.197766i \(0.0633685\pi\)
\(390\) 27.4071 + 90.8685i 0.0702746 + 0.232996i
\(391\) −255.835 + 443.120i −0.654310 + 1.13330i
\(392\) 81.8281i 0.208745i
\(393\) 201.672 178.516i 0.513160 0.454240i
\(394\) −895.977 −2.27405
\(395\) 54.5556i 0.138115i
\(396\) −229.391 + 304.737i −0.579271 + 0.769539i
\(397\) −107.622 + 186.406i −0.271088 + 0.469538i −0.969141 0.246508i \(-0.920717\pi\)
0.698053 + 0.716046i \(0.254050\pi\)
\(398\) −394.488 + 227.758i −0.991177 + 0.572256i
\(399\) −349.672 395.029i −0.876372 0.990047i
\(400\) −471.960 −1.17990
\(401\) 131.881i 0.328880i −0.986387 0.164440i \(-0.947418\pi\)
0.986387 0.164440i \(-0.0525817\pi\)
\(402\) −455.232 + 402.963i −1.13242 + 1.00240i
\(403\) −241.820 111.382i −0.600050 0.276382i
\(404\) 296.508i 0.733931i
\(405\) 18.4148 74.1817i 0.0454688 0.183165i
\(406\) −116.204 201.271i −0.286217 0.495742i
\(407\) 35.1415i 0.0863428i
\(408\) 172.331 + 194.684i 0.422380 + 0.477168i
\(409\) 29.9756 + 51.9192i 0.0732899 + 0.126942i 0.900341 0.435184i \(-0.143317\pi\)
−0.827051 + 0.562126i \(0.809983\pi\)
\(410\) −12.3787 + 7.14685i −0.0301920 + 0.0174313i
\(411\) 25.9976 + 8.69127i 0.0632545 + 0.0211467i
\(412\) 421.769 1.02371
\(413\) −142.586 + 82.3218i −0.345244 + 0.199326i
\(414\) 438.625 186.451i 1.05948 0.450364i
\(415\) −41.6875 −0.100452
\(416\) 274.545 + 388.195i 0.659965 + 0.933161i
\(417\) −437.135 + 89.0527i −1.04828 + 0.213556i
\(418\) −1436.34 −3.43621
\(419\) 415.938i 0.992691i 0.868125 + 0.496346i \(0.165325\pi\)
−0.868125 + 0.496346i \(0.834675\pi\)
\(420\) 35.9278 + 12.0110i 0.0855424 + 0.0285977i
\(421\) −3.52056 6.09779i −0.00836237 0.0144841i 0.861814 0.507225i \(-0.169329\pi\)
−0.870176 + 0.492740i \(0.835995\pi\)
\(422\) 609.215 + 351.731i 1.44364 + 0.833485i
\(423\) 63.7557 + 7.79506i 0.150723 + 0.0184280i
\(424\) −118.721 −0.280002
\(425\) 600.785i 1.41361i
\(426\) 1062.81 216.515i 2.49486 0.508250i
\(427\) 67.4465 0.157954
\(428\) 456.261 + 263.423i 1.06603 + 0.615473i
\(429\) −454.299 426.854i −1.05897 0.994998i
\(430\) 2.28713 + 3.96143i 0.00531891 + 0.00921263i
\(431\) 28.5577 16.4878i 0.0662592 0.0382548i −0.466504 0.884519i \(-0.654487\pi\)
0.532764 + 0.846264i \(0.321153\pi\)
\(432\) −41.8738 526.880i −0.0969301 1.21963i
\(433\) 169.487 293.559i 0.391424 0.677966i −0.601214 0.799088i \(-0.705316\pi\)
0.992638 + 0.121122i \(0.0386492\pi\)
\(434\) −230.861 + 133.288i −0.531938 + 0.307114i
\(435\) 49.5275 10.0897i 0.113856 0.0231947i
\(436\) 132.064 + 228.742i 0.302900 + 0.524638i
\(437\) 619.594 + 357.723i 1.41784 + 0.818588i
\(438\) −518.911 + 459.331i −1.18473 + 1.04870i
\(439\) −245.419 + 425.079i −0.559042 + 0.968289i 0.438535 + 0.898714i \(0.355498\pi\)
−0.997577 + 0.0695749i \(0.977836\pi\)
\(440\) −45.4289 + 26.2284i −0.103248 + 0.0596100i
\(441\) 169.176 + 127.347i 0.383619 + 0.288769i
\(442\) 682.117 482.418i 1.54325 1.09144i
\(443\) −182.064 + 105.115i −0.410980 + 0.237279i −0.691211 0.722653i \(-0.742922\pi\)
0.280231 + 0.959933i \(0.409589\pi\)
\(444\) −11.5914 13.0949i −0.0261067 0.0294930i
\(445\) 52.9700 0.119034
\(446\) −83.4896 + 48.2027i −0.187196 + 0.108078i
\(447\) 19.7125 + 96.7631i 0.0440995 + 0.216472i
\(448\) 80.8773 0.180530
\(449\) −70.3212 40.6000i −0.156617 0.0904231i 0.419643 0.907689i \(-0.362155\pi\)
−0.576260 + 0.817266i \(0.695489\pi\)
\(450\) 336.557 447.102i 0.747904 0.993560i
\(451\) 46.9399 81.3023i 0.104080 0.180271i
\(452\) 51.6720 + 29.8329i 0.114319 + 0.0660019i
\(453\) −315.587 + 64.2911i −0.696660 + 0.141923i
\(454\) 256.427 444.145i 0.564817 0.978292i
\(455\) −25.9011 + 56.2336i −0.0569254 + 0.123590i
\(456\) 272.218 240.963i 0.596970 0.528427i
\(457\) −10.9124 + 18.9008i −0.0238782 + 0.0413583i −0.877718 0.479178i \(-0.840935\pi\)
0.853839 + 0.520537i \(0.174268\pi\)
\(458\) 616.636 356.015i 1.34637 0.777326i
\(459\) −670.696 + 53.3036i −1.46121 + 0.116130i
\(460\) −51.3739 −0.111682
\(461\) 466.479i 1.01188i −0.862567 0.505942i \(-0.831145\pi\)
0.862567 0.505942i \(-0.168855\pi\)
\(462\) −611.598 + 124.594i −1.32381 + 0.269684i
\(463\) 132.919 230.222i 0.287081 0.497239i −0.686031 0.727573i \(-0.740648\pi\)
0.973112 + 0.230333i \(0.0739817\pi\)
\(464\) 302.694 174.761i 0.652359 0.376640i
\(465\) −11.5730 56.8088i −0.0248882 0.122169i
\(466\) −136.750 + 236.857i −0.293454 + 0.508278i
\(467\) 534.686i 1.14494i 0.819926 + 0.572469i \(0.194014\pi\)
−0.819926 + 0.572469i \(0.805986\pi\)
\(468\) −310.084 9.21027i −0.662572 0.0196801i
\(469\) −396.579 −0.845584
\(470\) −15.0413 8.68407i −0.0320027 0.0184767i
\(471\) −8.79137 9.93171i −0.0186653 0.0210864i
\(472\) −56.7289 98.2573i −0.120188 0.208172i
\(473\) −26.0183 15.0217i −0.0550070 0.0317583i
\(474\) 424.244 + 141.829i 0.895030 + 0.299218i
\(475\) 840.050 1.76853
\(476\) 333.463i 0.700553i
\(477\) 184.763 245.450i 0.387343 0.514570i
\(478\) 493.971 + 855.583i 1.03341 + 1.78992i
\(479\) 137.211 + 79.2191i 0.286454 + 0.165384i 0.636342 0.771407i \(-0.280447\pi\)
−0.349888 + 0.936792i \(0.613780\pi\)
\(480\) −32.8277 + 98.1952i −0.0683910 + 0.204573i
\(481\) 23.3351 16.5034i 0.0485137 0.0343106i
\(482\) 104.944 + 60.5894i 0.217726 + 0.125704i
\(483\) 294.856 + 98.5735i 0.610468 + 0.204086i
\(484\) −178.290 + 308.807i −0.368368 + 0.638032i
\(485\) 128.102 + 73.9600i 0.264129 + 0.152495i
\(486\) 528.990 + 336.052i 1.08846 + 0.691466i
\(487\) 280.748 486.271i 0.576486 0.998502i −0.419393 0.907805i \(-0.637757\pi\)
0.995878 0.0906974i \(-0.0289096\pi\)
\(488\) 46.4781i 0.0952420i
\(489\) 187.792 + 212.150i 0.384032 + 0.433845i
\(490\) −28.6289 49.5867i −0.0584263 0.101197i
\(491\) 462.966i 0.942904i 0.881892 + 0.471452i \(0.156270\pi\)
−0.881892 + 0.471452i \(0.843730\pi\)
\(492\) −9.32604 45.7789i −0.0189554 0.0930466i
\(493\) −222.463 385.317i −0.451244 0.781577i
\(494\) −674.543 953.774i −1.36547 1.93072i
\(495\) 16.4740 134.741i 0.0332809 0.272204i
\(496\) −200.453 347.195i −0.404139 0.699990i
\(497\) 612.732 + 353.761i 1.23286 + 0.711793i
\(498\) 108.376 324.177i 0.217622 0.650958i
\(499\) 161.354 279.473i 0.323354 0.560065i −0.657824 0.753172i \(-0.728523\pi\)
0.981178 + 0.193106i \(0.0618563\pi\)
\(500\) −106.409 + 61.4353i −0.212818 + 0.122871i
\(501\) 467.563 + 156.311i 0.933259 + 0.311998i
\(502\) 60.1734 + 104.223i 0.119867 + 0.207616i
\(503\) 278.116 + 160.570i 0.552915 + 0.319225i 0.750297 0.661101i \(-0.229911\pi\)
−0.197382 + 0.980327i \(0.563244\pi\)
\(504\) 95.0095 126.216i 0.188511 0.250429i
\(505\) 52.7617 + 91.3859i 0.104479 + 0.180962i
\(506\) 733.048 423.226i 1.44871 0.836414i
\(507\) 70.0936 502.131i 0.138252 0.990397i
\(508\) 156.073 270.326i 0.307230 0.532138i
\(509\) 728.101i 1.43045i −0.698893 0.715226i \(-0.746324\pi\)
0.698893 0.715226i \(-0.253676\pi\)
\(510\) 172.544 + 57.6832i 0.338321 + 0.113104i
\(511\) −452.053 −0.884645
\(512\) 443.636i 0.866477i
\(513\) 74.5320 + 937.804i 0.145287 + 1.82808i
\(514\) −154.687 + 267.925i −0.300947 + 0.521255i
\(515\) −129.992 + 75.0509i −0.252412 + 0.145730i
\(516\) −14.6502 + 2.98452i −0.0283918 + 0.00578395i
\(517\) 114.072 0.220643
\(518\) 28.6174i 0.0552460i
\(519\) −287.980 96.2748i −0.554875 0.185501i
\(520\) −38.7512 17.8487i −0.0745215 0.0343244i
\(521\) 819.761i 1.57344i 0.617311 + 0.786719i \(0.288222\pi\)
−0.617311 + 0.786719i \(0.711778\pi\)
\(522\) −50.2965 + 411.375i −0.0963535 + 0.788074i
\(523\) 485.658 + 841.184i 0.928601 + 1.60838i 0.785666 + 0.618651i \(0.212321\pi\)
0.142935 + 0.989732i \(0.454346\pi\)
\(524\) 238.041i 0.454276i
\(525\) 357.697 72.8697i 0.681327 0.138799i
\(526\) 436.970 + 756.854i 0.830741 + 1.43889i
\(527\) −441.964 + 255.168i −0.838642 + 0.484190i
\(528\) −187.379 919.790i −0.354884 1.74203i
\(529\) 107.379 0.202985
\(530\) −71.9432 + 41.5364i −0.135742 + 0.0783706i
\(531\) 291.428 + 35.6313i 0.548829 + 0.0671023i
\(532\) −466.267 −0.876441
\(533\) 76.0315 7.01217i 0.142648 0.0131560i
\(534\) −137.707 + 411.914i −0.257879 + 0.771375i
\(535\) −187.497 −0.350462
\(536\) 273.287i 0.509863i
\(537\) −122.367 600.665i −0.227871 1.11856i
\(538\) 290.088 + 502.448i 0.539198 + 0.933918i
\(539\) 325.681 + 188.032i 0.604232 + 0.348853i
\(540\) −38.3053 55.6428i −0.0709357 0.103042i
\(541\) −850.073 −1.57130 −0.785650 0.618672i \(-0.787671\pi\)
−0.785650 + 0.618672i \(0.787671\pi\)
\(542\) 14.2310i 0.0262565i
\(543\) 115.329 344.977i 0.212393 0.635316i
\(544\) 911.397 1.67536
\(545\) −81.4063 46.9999i −0.149369 0.0862384i
\(546\) −369.958 347.608i −0.677578 0.636644i
\(547\) −290.185 502.616i −0.530503 0.918859i −0.999367 0.0355881i \(-0.988670\pi\)
0.468863 0.883271i \(-0.344664\pi\)
\(548\) 20.9814 12.1136i 0.0382872 0.0221051i
\(549\) −96.0913 72.3329i −0.175030 0.131754i
\(550\) 496.936 860.718i 0.903520 1.56494i
\(551\) −538.772 + 311.060i −0.977808 + 0.564538i
\(552\) −67.9281 + 203.189i −0.123058 + 0.368095i
\(553\) 145.897 + 252.701i 0.263828 + 0.456964i
\(554\) −518.936 299.608i −0.936708 0.540809i
\(555\) 5.90269 + 1.97333i 0.0106355 + 0.00355555i
\(556\) −197.142 + 341.460i −0.354572 + 0.614136i
\(557\) −76.5165 + 44.1768i −0.137373 + 0.0793121i −0.567111 0.823641i \(-0.691939\pi\)
0.429739 + 0.902953i \(0.358606\pi\)
\(558\) 471.853 + 57.6908i 0.845614 + 0.103389i
\(559\) −2.24403 24.3316i −0.00401437 0.0435270i
\(560\) −80.7377 + 46.6140i −0.144175 + 0.0832392i
\(561\) −1170.85 + 238.525i −2.08708 + 0.425179i
\(562\) −321.974 −0.572907
\(563\) −736.014 + 424.938i −1.30731 + 0.754774i −0.981646 0.190712i \(-0.938920\pi\)
−0.325662 + 0.945486i \(0.605587\pi\)
\(564\) 42.5071 37.6266i 0.0753673 0.0667138i
\(565\) −21.2343 −0.0375828
\(566\) −957.732 552.947i −1.69211 0.976937i
\(567\) 113.085 + 392.856i 0.199445 + 0.692867i
\(568\) −243.780 + 422.240i −0.429191 + 0.743380i
\(569\) 264.713 + 152.832i 0.465225 + 0.268598i 0.714239 0.699902i \(-0.246773\pi\)
−0.249014 + 0.968500i \(0.580106\pi\)
\(570\) 80.6558 241.260i 0.141501 0.423264i
\(571\) −76.3088 + 132.171i −0.133641 + 0.231472i −0.925077 0.379779i \(-0.876000\pi\)
0.791437 + 0.611251i \(0.209333\pi\)
\(572\) −548.619 + 50.5976i −0.959125 + 0.0884573i
\(573\) 515.873 + 172.462i 0.900301 + 0.300980i
\(574\) 38.2254 66.2084i 0.0665948 0.115346i
\(575\) −428.728 + 247.526i −0.745613 + 0.430480i
\(576\) −115.226 86.7366i −0.200045 0.150584i
\(577\) −357.654 −0.619851 −0.309926 0.950761i \(-0.600304\pi\)
−0.309926 + 0.950761i \(0.600304\pi\)
\(578\) 856.120i 1.48118i
\(579\) 2.33442 6.98278i 0.00403181 0.0120601i
\(580\) 22.3362 38.6875i 0.0385108 0.0667026i
\(581\) 193.096 111.484i 0.332351 0.191883i
\(582\) −908.171 + 803.896i −1.56043 + 1.38127i
\(583\) 272.807 472.516i 0.467937 0.810491i
\(584\) 311.515i 0.533416i
\(585\) 97.2089 52.3387i 0.166169 0.0894679i
\(586\) 393.268 0.671106
\(587\) −699.202 403.685i −1.19115 0.687708i −0.232579 0.972577i \(-0.574716\pi\)
−0.958566 + 0.284869i \(0.908050\pi\)
\(588\) 183.381 37.3583i 0.311873 0.0635345i
\(589\) 356.790 + 617.979i 0.605756 + 1.04920i
\(590\) −68.7538 39.6950i −0.116532 0.0672797i
\(591\) 208.047 + 1021.24i 0.352025 + 1.72799i
\(592\) 43.0381 0.0726996
\(593\) 246.824i 0.416230i −0.978104 0.208115i \(-0.933267\pi\)
0.978104 0.208115i \(-0.0667328\pi\)
\(594\) 1004.97 + 478.397i 1.69186 + 0.805382i
\(595\) 59.3376 + 102.776i 0.0997271 + 0.172732i
\(596\) 75.5847 + 43.6388i 0.126820 + 0.0732195i
\(597\) 351.202 + 396.757i 0.588278 + 0.664584i
\(598\) 625.295 + 288.009i 1.04564 + 0.481621i
\(599\) 120.864 + 69.7811i 0.201777 + 0.116496i 0.597484 0.801881i \(-0.296167\pi\)
−0.395707 + 0.918377i \(0.629500\pi\)
\(600\) 50.2153 + 246.493i 0.0836921 + 0.410821i
\(601\) 484.572 839.304i 0.806277 1.39651i −0.109149 0.994025i \(-0.534812\pi\)
0.915426 0.402487i \(-0.131854\pi\)
\(602\) −21.1880 12.2329i −0.0351960 0.0203204i
\(603\) 565.008 + 425.310i 0.936994 + 0.705324i
\(604\) −142.325 + 246.515i −0.235638 + 0.408137i
\(605\) 126.902i 0.209756i
\(606\) −847.816 + 172.716i −1.39904 + 0.285010i
\(607\) 301.520 + 522.248i 0.496738 + 0.860376i 0.999993 0.00376245i \(-0.00119763\pi\)
−0.503255 + 0.864138i \(0.667864\pi\)
\(608\) 1274.37i 2.09600i
\(609\) −202.429 + 179.186i −0.332395 + 0.294230i
\(610\) 16.2611 + 28.1651i 0.0266576 + 0.0461723i
\(611\) 53.5715 + 75.7477i 0.0876784 + 0.123973i
\(612\) −357.622 + 475.086i −0.584349 + 0.776285i
\(613\) 520.011 + 900.685i 0.848305 + 1.46931i 0.882720 + 0.469900i \(0.155710\pi\)
−0.0344149 + 0.999408i \(0.510957\pi\)
\(614\) −1250.19 721.795i −2.03613 1.17556i
\(615\) 11.0204 + 12.4499i 0.0179194 + 0.0202437i
\(616\) 140.284 242.980i 0.227734 0.394448i
\(617\) 164.067 94.7239i 0.265910 0.153523i −0.361117 0.932520i \(-0.617605\pi\)
0.627028 + 0.778997i \(0.284271\pi\)
\(618\) −245.681 1205.98i −0.397542 1.95142i
\(619\) −378.224 655.103i −0.611024 1.05832i −0.991068 0.133356i \(-0.957425\pi\)
0.380044 0.924968i \(-0.375909\pi\)
\(620\) −44.3751 25.6200i −0.0715728 0.0413226i
\(621\) −314.368 456.656i −0.506229 0.735356i
\(622\) −414.842 718.527i −0.666948 1.15519i
\(623\) −245.357 + 141.657i −0.393831 + 0.227378i
\(624\) 522.772 556.384i 0.837776 0.891641i
\(625\) −279.506 + 484.118i −0.447209 + 0.774589i
\(626\) 898.058i 1.43460i
\(627\) 333.519 + 1637.15i 0.531929 + 2.61109i
\(628\) −11.7228 −0.0186668
\(629\) 54.7857i 0.0870998i
\(630\) 13.4156 109.726i 0.0212946 0.174168i
\(631\) 363.821 630.156i 0.576578 0.998662i −0.419290 0.907852i \(-0.637721\pi\)
0.995868 0.0908100i \(-0.0289456\pi\)
\(632\) −174.139 + 100.539i −0.275537 + 0.159081i
\(633\) 259.446 776.063i 0.409867 1.22601i
\(634\) 221.314 0.349076
\(635\) 111.089i 0.174943i
\(636\) −54.2015 266.060i −0.0852225 0.418333i
\(637\) 28.0894 + 304.568i 0.0440963 + 0.478128i
\(638\) 736.037i 1.15366i
\(639\) −493.571 1161.13i −0.772412 1.81710i
\(640\) −49.5256 85.7808i −0.0773837 0.134033i
\(641\) 877.528i 1.36900i −0.729014 0.684499i \(-0.760021\pi\)
0.729014 0.684499i \(-0.239979\pi\)
\(642\) 487.441 1458.05i 0.759253 2.27110i
\(643\) 207.759 + 359.849i 0.323108 + 0.559640i 0.981128 0.193361i \(-0.0619389\pi\)
−0.658019 + 0.753001i \(0.728606\pi\)
\(644\) 237.964 137.388i 0.369509 0.213336i
\(645\) 3.98421 3.52675i 0.00617707 0.00546783i
\(646\) −2239.25 −3.46634
\(647\) 327.840 189.279i 0.506708 0.292548i −0.224772 0.974411i \(-0.572164\pi\)
0.731479 + 0.681864i \(0.238830\pi\)
\(648\) −270.721 + 77.9283i −0.417779 + 0.120260i
\(649\) 521.427 0.803431
\(650\) 804.919 74.2353i 1.23834 0.114208i
\(651\) 205.529 + 232.188i 0.315713 + 0.356664i
\(652\) 250.409 0.384062
\(653\) 302.192i 0.462775i 0.972862 + 0.231387i \(0.0743265\pi\)
−0.972862 + 0.231387i \(0.925674\pi\)
\(654\) 577.123 510.859i 0.882450 0.781129i
\(655\) 42.3578 + 73.3659i 0.0646684 + 0.112009i
\(656\) 99.5716 + 57.4877i 0.151786 + 0.0876337i
\(657\) 644.042 + 484.803i 0.980277 + 0.737905i
\(658\) 92.8947 0.141177
\(659\) 7.34584i 0.0111469i 0.999984 + 0.00557347i \(0.00177410\pi\)
−0.999984 + 0.00557347i \(0.998226\pi\)
\(660\) −79.5198 89.8344i −0.120485 0.136113i
\(661\) 631.994 0.956118 0.478059 0.878328i \(-0.341341\pi\)
0.478059 + 0.878328i \(0.341341\pi\)
\(662\) −13.4996 7.79399i −0.0203921 0.0117734i
\(663\) −708.253 665.467i −1.06826 1.00372i
\(664\) 76.8248 + 133.065i 0.115700 + 0.200398i
\(665\) 143.707 82.9691i 0.216100 0.124766i
\(666\) −30.6907 + 40.7714i −0.0460821 + 0.0612183i
\(667\) 183.312 317.505i 0.274830 0.476019i
\(668\) 377.346 217.861i 0.564890 0.326139i
\(669\) 74.3284 + 83.9696i 0.111104 + 0.125515i
\(670\) −95.6138 165.608i −0.142707 0.247176i
\(671\) −184.986 106.802i −0.275687 0.159168i
\(672\) −110.544 542.630i −0.164500 0.807485i
\(673\) −505.494 + 875.541i −0.751105 + 1.30095i 0.196182 + 0.980567i \(0.437146\pi\)
−0.947287 + 0.320385i \(0.896188\pi\)
\(674\) −901.927 + 520.728i −1.33817 + 0.772593i
\(675\) −587.761 279.793i −0.870757 0.414509i
\(676\) −291.245 340.539i −0.430836 0.503756i
\(677\) 453.715 261.952i 0.670185 0.386931i −0.125962 0.992035i \(-0.540202\pi\)
0.796147 + 0.605104i \(0.206868\pi\)
\(678\) 55.2031 165.125i 0.0814206 0.243548i
\(679\) −791.160 −1.16518
\(680\) −70.8238 + 40.8902i −0.104153 + 0.0601326i
\(681\) −565.784 189.147i −0.830813 0.277750i
\(682\) 844.244 1.23790
\(683\) −733.152 423.286i −1.07343 0.619745i −0.144313 0.989532i \(-0.546097\pi\)
−0.929116 + 0.369787i \(0.879431\pi\)
\(684\) 664.292 + 500.047i 0.971187 + 0.731062i
\(685\) −4.31107 + 7.46699i −0.00629353 + 0.0109007i
\(686\) 817.574 + 472.027i 1.19180 + 0.688085i
\(687\) −548.974 620.182i −0.799089 0.902739i
\(688\) 18.3972 31.8649i 0.0267401 0.0463152i
\(689\) 441.884 40.7536i 0.641341 0.0591490i
\(690\) 29.9254 + 146.895i 0.0433701 + 0.212892i
\(691\) −340.658 + 590.037i −0.492993 + 0.853888i −0.999967 0.00807270i \(-0.997430\pi\)
0.506975 + 0.861961i \(0.330764\pi\)
\(692\) −232.414 + 134.185i −0.335859 + 0.193908i
\(693\) 284.028 + 668.175i 0.409852 + 0.964178i
\(694\) −759.371 −1.09419
\(695\) 140.320i 0.201900i
\(696\) −123.479 139.496i −0.177412 0.200425i
\(697\) 73.1794 126.750i 0.104992 0.181851i
\(698\) −1139.69 + 658.003i −1.63280 + 0.942697i
\(699\) 301.726 + 100.870i 0.431654 + 0.144306i
\(700\) 161.316 279.408i 0.230452 0.399155i
\(701\) 253.593i 0.361759i −0.983505 0.180880i \(-0.942106\pi\)
0.983505 0.180880i \(-0.0578945\pi\)
\(702\) 154.289 + 891.998i 0.219785 + 1.27065i
\(703\) −76.6045 −0.108968
\(704\) −221.822 128.069i −0.315089 0.181917i
\(705\) −6.40560 + 19.1606i −0.00908596 + 0.0271782i
\(706\) 647.692 + 1121.84i 0.917410 + 1.58900i
\(707\) −488.784 282.199i −0.691349 0.399150i
\(708\) 194.301 171.992i 0.274436 0.242926i
\(709\) 254.782 0.359354 0.179677 0.983726i \(-0.442495\pi\)
0.179677 + 0.983726i \(0.442495\pi\)
\(710\) 341.162i 0.480510i
\(711\) 63.1486 516.491i 0.0888166 0.726430i
\(712\) −97.6172 169.078i −0.137103 0.237469i
\(713\) −364.183 210.261i −0.510775 0.294896i
\(714\) −953.483 + 194.243i −1.33541 + 0.272049i
\(715\) 160.085 113.218i 0.223895 0.158346i
\(716\) −469.198 270.892i −0.655305 0.378340i
\(717\) 860.503 761.701i 1.20014 1.06235i
\(718\) 332.756 576.350i 0.463448 0.802716i
\(719\) 129.197 + 74.5922i 0.179690 + 0.103744i 0.587147 0.809480i \(-0.300251\pi\)
−0.407457 + 0.913224i \(0.633584\pi\)
\(720\) 165.018 + 20.1759i 0.229192 + 0.0280221i
\(721\) 401.415 695.271i 0.556748 0.964315i
\(722\) 2200.01i 3.04711i
\(723\) 44.6924 133.685i 0.0618152 0.184904i
\(724\) −160.742 278.413i −0.222019 0.384549i
\(725\) 430.475i 0.593759i
\(726\) 986.838 + 329.910i 1.35928 + 0.454422i
\(727\) 495.936 + 858.987i 0.682168 + 1.18155i 0.974318 + 0.225178i \(0.0722962\pi\)
−0.292149 + 0.956373i \(0.594370\pi\)
\(728\) 227.228 20.9565i 0.312126 0.0287865i
\(729\) 260.204 680.981i 0.356933 0.934130i
\(730\) −108.989 188.774i −0.149299 0.258594i
\(731\) −40.5626 23.4188i −0.0554892 0.0320367i
\(732\) −104.160 + 21.2194i −0.142295 + 0.0289883i
\(733\) −48.4482 + 83.9147i −0.0660958 + 0.114481i −0.897180 0.441666i \(-0.854388\pi\)
0.831084 + 0.556147i \(0.187721\pi\)
\(734\) −261.963 + 151.244i −0.356898 + 0.206055i
\(735\) −49.8718 + 44.1456i −0.0678528 + 0.0600621i
\(736\) 375.500 + 650.385i 0.510190 + 0.883675i
\(737\) 1087.70 + 627.983i 1.47585 + 0.852080i
\(738\) −125.465 + 53.3326i −0.170007 + 0.0722663i
\(739\) 508.944 + 881.516i 0.688692 + 1.19285i 0.972261 + 0.233898i \(0.0751483\pi\)
−0.283569 + 0.958952i \(0.591518\pi\)
\(740\) 4.76377 2.75036i 0.00643752 0.00371670i
\(741\) −930.492 + 990.319i −1.25573 + 1.33646i
\(742\) 222.160 384.793i 0.299407 0.518589i
\(743\) 1.69538i 0.00228180i −0.999999 0.00114090i \(-0.999637\pi\)
0.999999 0.00114090i \(-0.000363160\pi\)
\(744\) −160.003 + 141.632i −0.215058 + 0.190366i
\(745\) −31.0610 −0.0416926
\(746\) 1813.29i 2.43069i
\(747\) −394.665 48.2536i −0.528334 0.0645965i
\(748\) −528.039 + 914.591i −0.705935 + 1.22271i
\(749\) 868.486 501.421i 1.15953 0.669454i
\(750\) 237.647 + 268.473i 0.316863 + 0.357964i
\(751\) −1393.46 −1.85547 −0.927734 0.373242i \(-0.878246\pi\)
−0.927734 + 0.373242i \(0.878246\pi\)
\(752\) 139.705i 0.185779i
\(753\) 104.823 92.7871i 0.139207 0.123223i
\(754\) −488.752 + 345.663i −0.648212 + 0.458439i
\(755\) 101.303i 0.134177i
\(756\) 326.234 + 155.298i 0.431527 + 0.205421i
\(757\) −89.1160 154.353i −0.117723 0.203901i 0.801142 0.598474i \(-0.204226\pi\)
−0.918865 + 0.394573i \(0.870893\pi\)
\(758\) 858.074i 1.13202i
\(759\) −652.612 737.263i −0.859831 0.971361i
\(760\) 57.1749 + 99.0298i 0.0752301 + 0.130302i
\(761\) −71.7101 + 41.4019i −0.0942315 + 0.0544046i −0.546375 0.837541i \(-0.683993\pi\)
0.452144 + 0.891945i \(0.350659\pi\)
\(762\) −863.866 288.799i −1.13368 0.379002i
\(763\) 502.765 0.658931
\(764\) 416.335 240.371i 0.544941 0.314622i
\(765\) 25.6831 210.061i 0.0335726 0.274590i
\(766\) 859.715 1.12234
\(767\) 244.876 + 346.244i 0.319265 + 0.451426i
\(768\) 984.243 200.509i 1.28157 0.261080i
\(769\) −585.402 −0.761251 −0.380625 0.924729i \(-0.624291\pi\)
−0.380625 + 0.924729i \(0.624291\pi\)
\(770\) 196.323i 0.254965i
\(771\) 341.302 + 114.101i 0.442675 + 0.147991i
\(772\) −3.25363 5.63545i −0.00421454 0.00729980i
\(773\) −1324.82 764.883i −1.71386 0.989499i −0.929200 0.369576i \(-0.879503\pi\)
−0.784663 0.619923i \(-0.787164\pi\)
\(774\) 17.0675 + 40.1512i 0.0220510 + 0.0518750i
\(775\) −493.761 −0.637112
\(776\) 545.196i 0.702573i
\(777\) −32.6185 + 6.64501i −0.0419800 + 0.00855213i
\(778\) −1504.95 −1.93438
\(779\) −177.229 102.323i −0.227509 0.131352i
\(780\) 22.3083 94.9924i 0.0286003 0.121785i
\(781\) −1120.36 1940.52i −1.43452 2.48466i
\(782\) 1142.82 659.810i 1.46141 0.843747i
\(783\) 480.568 38.1932i 0.613753 0.0487780i
\(784\) −230.284 + 398.864i −0.293730 + 0.508756i
\(785\) 3.61304 2.08599i 0.00460260 0.00265731i
\(786\) −680.638 + 138.659i −0.865952 + 0.176411i
\(787\) −20.0530 34.7329i −0.0254804 0.0441333i 0.853004 0.521904i \(-0.174778\pi\)
−0.878484 + 0.477771i \(0.841445\pi\)
\(788\) 797.726 + 460.567i 1.01234 + 0.584476i
\(789\) 761.206 673.806i 0.964773 0.854000i
\(790\) −70.3506 + 121.851i −0.0890514 + 0.154242i
\(791\) 98.3570 56.7864i 0.124345 0.0717907i
\(792\) −460.447 + 195.727i −0.581372 + 0.247129i
\(793\) −15.9547 172.993i −0.0201194 0.218151i
\(794\) 480.750 277.561i 0.605479 0.349573i
\(795\) 64.0489 + 72.3568i 0.0805647 + 0.0910148i
\(796\) 468.306 0.588324
\(797\) −1083.60 + 625.614i −1.35959 + 0.784961i −0.989569 0.144061i \(-0.953984\pi\)
−0.370024 + 0.929022i \(0.620650\pi\)
\(798\) 271.601 + 1333.21i 0.340352 + 1.67069i
\(799\) 177.839 0.222577
\(800\) 763.658 + 440.898i 0.954572 + 0.551123i
\(801\) 501.480 + 61.3132i 0.626068 + 0.0765459i
\(802\) −170.063 + 294.558i −0.212049 + 0.367279i
\(803\) 1239.85 + 715.827i 1.54402 + 0.891441i
\(804\) 612.451 124.768i 0.761755 0.155184i
\(805\) −48.8947 + 84.6881i −0.0607388 + 0.105203i
\(806\) 396.480 + 560.605i 0.491911 + 0.695540i
\(807\) 505.337 447.315i 0.626192 0.554294i
\(808\) 194.467 336.826i 0.240676 0.416864i
\(809\) −121.940 + 70.4022i −0.150730 + 0.0870238i −0.573468 0.819228i \(-0.694402\pi\)
0.422738 + 0.906252i \(0.361069\pi\)
\(810\) −136.789 + 141.940i −0.168875 + 0.175234i
\(811\) 110.823 0.136650 0.0683250 0.997663i \(-0.478235\pi\)
0.0683250 + 0.997663i \(0.478235\pi\)
\(812\) 238.934i 0.294253i
\(813\) −16.2207 + 3.30446i −0.0199516 + 0.00406453i
\(814\) −45.3157 + 78.4892i −0.0556704 + 0.0964240i
\(815\) −77.1777 + 44.5586i −0.0946966 + 0.0546731i
\(816\) −292.124 1433.96i −0.357995 1.75730i
\(817\) −32.7455 + 56.7169i −0.0400802 + 0.0694210i
\(818\) 154.617i 0.189018i
\(819\) −310.303 + 502.397i −0.378880 + 0.613427i
\(820\) 14.6950 0.0179208
\(821\) 568.499 + 328.223i 0.692447 + 0.399785i 0.804528 0.593915i \(-0.202418\pi\)
−0.112081 + 0.993699i \(0.535752\pi\)
\(822\) −46.8585 52.9366i −0.0570055 0.0643997i
\(823\) −517.709 896.698i −0.629051 1.08955i −0.987743 0.156092i \(-0.950110\pi\)
0.358692 0.933456i \(-0.383223\pi\)
\(824\) 479.119 + 276.619i 0.581455 + 0.335703i
\(825\) −1096.45 366.553i −1.32902 0.444307i
\(826\) 424.623 0.514071
\(827\) 1102.24i 1.33281i −0.745588 0.666407i \(-0.767831\pi\)
0.745588 0.666407i \(-0.232169\pi\)
\(828\) −486.370 59.4657i −0.587403 0.0718185i
\(829\) 145.685 + 252.334i 0.175736 + 0.304384i 0.940416 0.340027i \(-0.110436\pi\)
−0.764680 + 0.644411i \(0.777103\pi\)
\(830\) 93.1096 + 53.7568i 0.112180 + 0.0647673i
\(831\) −220.999 + 661.059i −0.265943 + 0.795498i
\(832\) −19.1318 207.442i −0.0229949 0.249329i
\(833\) 507.738 + 293.142i 0.609529 + 0.351912i
\(834\) 1091.18 + 364.794i 1.30837 + 0.437403i
\(835\) −77.5339 + 134.293i −0.0928549 + 0.160829i
\(836\) 1278.83 + 738.334i 1.52970 + 0.883174i
\(837\) −43.8081 551.219i −0.0523395 0.658565i
\(838\) 536.360 929.004i 0.640048 1.10860i
\(839\) 1335.97i 1.59234i −0.605073 0.796170i \(-0.706856\pi\)
0.605073 0.796170i \(-0.293144\pi\)
\(840\) 32.9356 + 37.2077i 0.0392090 + 0.0442949i
\(841\) −261.100 452.239i −0.310464 0.537740i
\(842\) 18.1593i 0.0215669i
\(843\) 74.7627 + 366.989i 0.0886864 + 0.435337i
\(844\) −361.607 626.321i −0.428444 0.742087i
\(845\) 150.360 + 53.1314i 0.177941 + 0.0628773i
\(846\) −132.347 99.6247i −0.156439 0.117760i
\(847\) 339.372 + 587.810i 0.400676 + 0.693991i
\(848\) 578.695 + 334.110i 0.682423 + 0.393997i
\(849\) −407.868 + 1220.03i −0.480410 + 1.43702i
\(850\) 774.725 1341.86i 0.911441 1.57866i
\(851\) 39.0958 22.5720i 0.0459410 0.0265241i
\(852\) −1057.56 353.554i −1.24127 0.414969i
\(853\) 821.791 + 1423.38i 0.963412 + 1.66868i 0.713822 + 0.700327i \(0.246963\pi\)
0.249590 + 0.968352i \(0.419704\pi\)
\(854\) −150.643 86.9737i −0.176397 0.101843i
\(855\) −293.720 35.9115i −0.343532 0.0420017i
\(856\) 345.534 + 598.483i 0.403662 + 0.699162i
\(857\) 425.718 245.788i 0.496754 0.286801i −0.230618 0.973044i \(-0.574075\pi\)
0.727372 + 0.686243i \(0.240741\pi\)
\(858\) 464.247 + 1539.21i 0.541080 + 1.79396i
\(859\) −121.372 + 210.222i −0.141294 + 0.244728i −0.927984 0.372620i \(-0.878460\pi\)
0.786690 + 0.617348i \(0.211793\pi\)
\(860\) 4.70270i 0.00546826i
\(861\) −84.3410 28.1961i −0.0979570 0.0327481i
\(862\) −85.0455 −0.0986607
\(863\) 1159.09i 1.34309i 0.740963 + 0.671546i \(0.234369\pi\)
−0.740963 + 0.671546i \(0.765631\pi\)
\(864\) −424.450 + 891.640i −0.491261 + 1.03199i
\(865\) 47.7545 82.7132i 0.0552075 0.0956222i
\(866\) −757.102 + 437.113i −0.874252 + 0.504750i
\(867\) −975.815 + 198.792i −1.12551 + 0.229287i
\(868\) 274.060 0.315738
\(869\) 924.113i 1.06342i
\(870\) −123.631 41.3313i −0.142105 0.0475072i
\(871\) 93.8120 + 1017.18i 0.107706 + 1.16784i
\(872\) 346.460i 0.397317i
\(873\) 1127.17 + 848.477i 1.29114 + 0.971910i
\(874\) −922.583 1597.96i −1.05559 1.82833i
\(875\) 233.882i 0.267294i
\(876\) 698.122 142.221i 0.796943 0.162353i
\(877\) −694.324 1202.60i −0.791703 1.37127i −0.924912 0.380182i \(-0.875861\pi\)
0.133208 0.991088i \(-0.457472\pi\)
\(878\) 1096.30 632.947i 1.24863 0.720896i
\(879\) −91.3174 448.252i −0.103888 0.509956i
\(880\) 295.253 0.335515
\(881\) −34.1161 + 19.6969i −0.0387243 + 0.0223575i −0.519237 0.854630i \(-0.673784\pi\)
0.480513 + 0.876988i \(0.340451\pi\)
\(882\) −213.640 502.588i −0.242222 0.569827i
\(883\) −665.708 −0.753916 −0.376958 0.926230i \(-0.623030\pi\)
−0.376958 + 0.926230i \(0.623030\pi\)
\(884\) −855.299 + 78.8817i −0.967533 + 0.0892327i
\(885\) −29.2801 + 87.5836i −0.0330849 + 0.0989645i
\(886\) 542.191 0.611954
\(887\) 983.416i 1.10870i −0.832284 0.554350i \(-0.812967\pi\)
0.832284 0.554350i \(-0.187033\pi\)
\(888\) −4.57915 22.4777i −0.00515670 0.0253128i
\(889\) −297.082 514.562i −0.334176 0.578810i
\(890\) −118.309 68.3059i −0.132932 0.0767482i
\(891\) 311.928 1256.56i 0.350087 1.41028i
\(892\) 99.1124 0.111113
\(893\) 248.665i 0.278460i
\(894\) 80.7499 241.542i 0.0903243 0.270181i
\(895\) 192.814 0.215434
\(896\) 458.804 + 264.891i 0.512059 + 0.295637i
\(897\) 183.082 779.594i 0.204105 0.869113i
\(898\) 104.709 + 181.361i 0.116602 + 0.201961i
\(899\) 316.677 182.834i 0.352255 0.203375i
\(900\) −529.479 + 225.071i −0.588310 + 0.250078i
\(901\) 425.307 736.654i 0.472039 0.817596i
\(902\) −209.682 + 121.060i −0.232463 + 0.134213i
\(903\) −9.02330 + 26.9908i −0.00999258 + 0.0298901i
\(904\) 39.1321 + 67.7788i 0.0432877 + 0.0749766i
\(905\) 99.0836 + 57.2060i 0.109485 + 0.0632110i
\(906\) 787.773 + 263.361i 0.869507 + 0.290685i
\(907\) 249.749 432.578i 0.275357 0.476932i −0.694868 0.719137i \(-0.744537\pi\)
0.970225 + 0.242205i \(0.0778706\pi\)
\(908\) −456.616 + 263.627i −0.502881 + 0.290338i
\(909\) 393.728 + 926.245i 0.433144 + 1.01897i
\(910\) 130.365 92.1987i 0.143258 0.101317i
\(911\) −1056.33 + 609.875i −1.15953 + 0.669456i −0.951192 0.308600i \(-0.900140\pi\)
−0.208340 + 0.978056i \(0.566806\pi\)
\(912\) −2005.04 + 408.464i −2.19850 + 0.447877i
\(913\) −706.140 −0.773429
\(914\) 48.7459 28.1434i 0.0533324 0.0307915i
\(915\) 28.3270 25.0746i 0.0309585 0.0274039i
\(916\) −732.023 −0.799152
\(917\) −392.402 226.554i −0.427920 0.247059i
\(918\) 1566.75 + 745.822i 1.70670 + 0.812442i
\(919\) −243.309 + 421.423i −0.264754 + 0.458567i −0.967499 0.252874i \(-0.918624\pi\)
0.702745 + 0.711442i \(0.251957\pi\)
\(920\) −58.3595 33.6939i −0.0634342 0.0366238i
\(921\) −532.415 + 1592.58i −0.578084 + 1.72918i
\(922\) −601.534 + 1041.89i −0.652423 + 1.13003i
\(923\) 762.417 1655.28i 0.826021 1.79337i
\(924\) 608.578 + 203.454i 0.658634 + 0.220188i
\(925\) 26.5032 45.9049i 0.0286521 0.0496269i
\(926\) −593.752 + 342.803i −0.641201 + 0.370197i
\(927\) −1317.54 + 560.059i −1.42129 + 0.604163i
\(928\) −653.036 −0.703703
\(929\) 527.781i 0.568118i −0.958807 0.284059i \(-0.908319\pi\)
0.958807 0.284059i \(-0.0916811\pi\)
\(930\) −47.4076 + 141.807i −0.0509759 + 0.152481i
\(931\) 409.888 709.947i 0.440266 0.762564i
\(932\) 243.508 140.589i 0.261275 0.150847i
\(933\) −722.658 + 639.684i −0.774553 + 0.685621i
\(934\) 689.489 1194.23i 0.738211 1.27862i
\(935\) 375.844i 0.401973i
\(936\) −346.207 213.833i −0.369879 0.228454i
\(937\) 0.208716 0.000222750 0.000111375 1.00000i \(-0.499965\pi\)
0.000111375 1.00000i \(0.499965\pi\)
\(938\) 885.766 + 511.397i 0.944313 + 0.545199i
\(939\) 1023.62 208.530i 1.09011 0.222077i
\(940\) 8.92791 + 15.4636i 0.00949777 + 0.0164506i
\(941\) −1349.91 779.372i −1.43455 0.828238i −0.437088 0.899419i \(-0.643990\pi\)
−0.997463 + 0.0711805i \(0.977323\pi\)
\(942\) 6.82852 + 33.5193i 0.00724896 + 0.0355831i
\(943\) 120.601 0.127891
\(944\) 638.596i 0.676479i
\(945\) −128.182 + 10.1873i −0.135642 + 0.0107802i
\(946\) 38.7416 + 67.1023i 0.0409530 + 0.0709327i
\(947\) −794.732 458.838i −0.839210 0.484518i 0.0177859 0.999842i \(-0.494338\pi\)
−0.856995 + 0.515324i \(0.827672\pi\)
\(948\) −304.817 344.355i −0.321537 0.363244i
\(949\) 106.935 + 1159.47i 0.112681 + 1.22178i
\(950\) −1876.27 1083.26i −1.97502 1.14028i
\(951\) −51.3895 252.257i −0.0540373 0.265254i
\(952\) 218.704 378.806i 0.229731 0.397906i
\(953\) 1137.28 + 656.609i 1.19337 + 0.688991i 0.959069 0.283173i \(-0.0913872\pi\)
0.234299 + 0.972165i \(0.424721\pi\)
\(954\) −729.183 + 309.961i −0.764342 + 0.324906i
\(955\) −85.5449 + 148.168i −0.0895758 + 0.155150i
\(956\) 1015.68i 1.06243i
\(957\) 838.943 170.909i 0.876638 0.178588i
\(958\) −204.309 353.874i −0.213267 0.369388i
\(959\) 46.1161i 0.0480877i
\(960\) 33.9679 30.0677i 0.0353832 0.0313206i
\(961\) 270.787 + 469.017i 0.281776 + 0.488051i
\(962\) −73.4008 + 6.76954i −0.0763002 + 0.00703695i
\(963\) −1775.08 217.030i −1.84328 0.225368i
\(964\) −62.2907 107.891i −0.0646169 0.111920i
\(965\) 2.00558 + 1.15792i 0.00207832 + 0.00119992i
\(966\) −531.453 600.389i −0.550159 0.621521i
\(967\) 675.676 1170.31i 0.698735 1.21024i −0.270171 0.962812i \(-0.587080\pi\)
0.968905 0.247431i \(-0.0795865\pi\)
\(968\) −405.066 + 233.865i −0.418457 + 0.241596i
\(969\) 519.958 + 2552.33i 0.536592 + 2.63398i
\(970\) −190.746 330.382i −0.196645 0.340600i
\(971\) 759.567 + 438.536i 0.782252 + 0.451634i 0.837228 0.546854i \(-0.184175\pi\)
−0.0549755 + 0.998488i \(0.517508\pi\)
\(972\) −298.238 571.123i −0.306830 0.587575i
\(973\) 375.256 + 649.963i 0.385670 + 0.667999i
\(974\) −1254.11 + 724.062i −1.28759 + 0.743390i
\(975\) −271.518 900.218i −0.278480 0.923301i
\(976\) 130.801 226.554i 0.134017 0.232125i
\(977\) 327.759i 0.335475i −0.985832 0.167737i \(-0.946354\pi\)
0.985832 0.167737i \(-0.0536460\pi\)
\(978\) −145.863 716.002i −0.149145 0.732109i
\(979\) 897.254 0.916501
\(980\) 58.8655i 0.0600668i
\(981\) −716.291 539.189i −0.730164 0.549632i
\(982\) 597.004 1034.04i 0.607947 1.05300i
\(983\) −1226.87 + 708.331i −1.24808 + 0.720581i −0.970727 0.240187i \(-0.922791\pi\)
−0.277356 + 0.960767i \(0.589458\pi\)
\(984\) 19.4302 58.1203i 0.0197462 0.0590653i
\(985\) −327.820 −0.332812
\(986\) 1147.48i 1.16378i
\(987\) −21.5703 105.882i −0.0218544 0.107277i
\(988\) 110.297 + 1195.93i 0.111636 + 1.21045i
\(989\) 38.5947i 0.0390239i
\(990\) −210.546 + 279.702i −0.212673 + 0.282528i
\(991\) 565.364 + 979.240i 0.570499 + 0.988133i 0.996515 + 0.0834174i \(0.0265835\pi\)
−0.426016 + 0.904716i \(0.640083\pi\)
\(992\) 749.042i 0.755082i
\(993\) −5.74906 + 17.1968i −0.00578958 + 0.0173180i
\(994\) −912.364 1580.26i −0.917871 1.58980i
\(995\) −144.335 + 83.3320i −0.145061 + 0.0837508i
\(996\) −263.131 + 232.919i −0.264188 + 0.233854i
\(997\) 1061.77 1.06497 0.532485 0.846440i \(-0.321258\pi\)
0.532485 + 0.846440i \(0.321258\pi\)
\(998\) −720.772 + 416.138i −0.722216 + 0.416972i
\(999\) 53.5981 + 25.5144i 0.0536518 + 0.0255400i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.u.a.68.6 yes 52
3.2 odd 2 351.3.u.a.341.21 52
9.2 odd 6 117.3.k.a.29.6 52
9.7 even 3 351.3.k.a.224.21 52
13.9 even 3 117.3.k.a.113.21 yes 52
39.35 odd 6 351.3.k.a.152.6 52
117.61 even 3 351.3.u.a.35.21 52
117.74 odd 6 inner 117.3.u.a.74.6 yes 52
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.k.a.29.6 52 9.2 odd 6
117.3.k.a.113.21 yes 52 13.9 even 3
117.3.u.a.68.6 yes 52 1.1 even 1 trivial
117.3.u.a.74.6 yes 52 117.74 odd 6 inner
351.3.k.a.152.6 52 39.35 odd 6
351.3.k.a.224.21 52 9.7 even 3
351.3.u.a.35.21 52 117.61 even 3
351.3.u.a.341.21 52 3.2 odd 2