Properties

Label 117.3.v.a.95.11
Level $117$
Weight $3$
Character 117.95
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(95,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.95");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.v (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 95.11
Character \(\chi\) \(=\) 117.95
Dual form 117.3.v.a.101.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.647795 q^{2} +(-2.17539 - 2.06583i) q^{3} -3.58036 q^{4} +(-1.12097 + 1.94158i) q^{5} +(1.40921 + 1.33823i) q^{6} +(6.66709 + 3.84925i) q^{7} +4.91052 q^{8} +(0.464681 + 8.98800i) q^{9} +(0.726158 - 1.25774i) q^{10} +5.74159 q^{11} +(7.78870 + 7.39642i) q^{12} +(11.8946 + 5.24585i) q^{13} +(-4.31890 - 2.49352i) q^{14} +(6.44952 - 1.90796i) q^{15} +11.1404 q^{16} +(-19.0666 + 11.0081i) q^{17} +(-0.301018 - 5.82238i) q^{18} +(-4.39605 + 2.53806i) q^{19} +(4.01348 - 6.95155i) q^{20} +(-6.55166 - 22.1467i) q^{21} -3.71937 q^{22} +(-19.9049 + 11.4921i) q^{23} +(-10.6823 - 10.1443i) q^{24} +(9.98685 + 17.2977i) q^{25} +(-7.70525 - 3.39823i) q^{26} +(17.5568 - 20.5124i) q^{27} +(-23.8706 - 13.7817i) q^{28} +25.8169i q^{29} +(-4.17796 + 1.23597i) q^{30} +(32.0171 + 18.4851i) q^{31} -26.8588 q^{32} +(-12.4902 - 11.8611i) q^{33} +(12.3513 - 7.13100i) q^{34} +(-14.9472 + 8.62977i) q^{35} +(-1.66373 - 32.1803i) q^{36} +(20.4567 + 11.8107i) q^{37} +(2.84774 - 1.64414i) q^{38} +(-15.0384 - 35.9840i) q^{39} +(-5.50454 + 9.53414i) q^{40} +(-32.2626 - 55.8805i) q^{41} +(4.24413 + 14.3465i) q^{42} +(15.7842 - 27.3390i) q^{43} -20.5570 q^{44} +(-17.9718 - 9.17305i) q^{45} +(12.8943 - 7.44454i) q^{46} +(30.2047 + 52.3161i) q^{47} +(-24.2349 - 23.0143i) q^{48} +(5.13339 + 8.89129i) q^{49} +(-6.46943 - 11.2054i) q^{50} +(64.2184 + 15.4414i) q^{51} +(-42.5869 - 18.7820i) q^{52} -43.4874i q^{53} +(-11.3732 + 13.2878i) q^{54} +(-6.43614 + 11.1477i) q^{55} +(32.7389 + 18.9018i) q^{56} +(14.8063 + 3.56022i) q^{57} -16.7240i q^{58} +57.8296 q^{59} +(-23.0916 + 6.83119i) q^{60} +(-29.4548 + 51.0172i) q^{61} +(-20.7405 - 11.9745i) q^{62} +(-31.4989 + 61.7124i) q^{63} -27.1628 q^{64} +(-23.5187 + 17.2138i) q^{65} +(8.09109 + 7.68359i) q^{66} +(-59.3116 + 34.2436i) q^{67} +(68.2654 - 39.4131i) q^{68} +(67.0419 + 16.1204i) q^{69} +(9.68272 - 5.59032i) q^{70} +(16.3288 + 28.2823i) q^{71} +(2.28183 + 44.1357i) q^{72} -83.5918i q^{73} +(-13.2518 - 7.65091i) q^{74} +(14.0089 - 58.2606i) q^{75} +(15.7395 - 9.08718i) q^{76} +(38.2797 + 22.1008i) q^{77} +(9.74178 + 23.3102i) q^{78} +(46.0359 + 79.7366i) q^{79} +(-12.4881 + 21.6300i) q^{80} +(-80.5681 + 8.35311i) q^{81} +(20.8996 + 36.1991i) q^{82} +(21.6284 + 37.4615i) q^{83} +(23.4573 + 79.2932i) q^{84} -49.3591i q^{85} +(-10.2249 + 17.7101i) q^{86} +(53.3333 - 56.1618i) q^{87} +28.1942 q^{88} +(-61.5015 + 106.524i) q^{89} +(11.6420 + 5.94226i) q^{90} +(59.1097 + 80.7597i) q^{91} +(71.2669 - 41.1460i) q^{92} +(-31.4628 - 106.354i) q^{93} +(-19.5665 - 33.8901i) q^{94} -11.3804i q^{95} +(58.4285 + 55.4857i) q^{96} +(-116.849 - 67.4631i) q^{97} +(-3.32538 - 5.75973i) q^{98} +(2.66801 + 51.6053i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 6 q^{2} - q^{3} + 94 q^{4} - 12 q^{6} - 3 q^{7} - 78 q^{8} + q^{9} + 2 q^{10} - 6 q^{11} + 13 q^{12} - 6 q^{13} - 6 q^{14} + 27 q^{15} + 150 q^{16} + 12 q^{18} + 15 q^{19} - 3 q^{20} - 69 q^{21}+ \cdots - 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.647795 −0.323897 −0.161949 0.986799i \(-0.551778\pi\)
−0.161949 + 0.986799i \(0.551778\pi\)
\(3\) −2.17539 2.06583i −0.725131 0.688610i
\(4\) −3.58036 −0.895091
\(5\) −1.12097 + 1.94158i −0.224194 + 0.388315i −0.956077 0.293115i \(-0.905308\pi\)
0.731883 + 0.681430i \(0.238642\pi\)
\(6\) 1.40921 + 1.33823i 0.234868 + 0.223039i
\(7\) 6.66709 + 3.84925i 0.952441 + 0.549892i 0.893838 0.448389i \(-0.148002\pi\)
0.0586029 + 0.998281i \(0.481335\pi\)
\(8\) 4.91052 0.613815
\(9\) 0.464681 + 8.98800i 0.0516313 + 0.998666i
\(10\) 0.726158 1.25774i 0.0726158 0.125774i
\(11\) 5.74159 0.521962 0.260981 0.965344i \(-0.415954\pi\)
0.260981 + 0.965344i \(0.415954\pi\)
\(12\) 7.78870 + 7.39642i 0.649058 + 0.616369i
\(13\) 11.8946 + 5.24585i 0.914968 + 0.403527i
\(14\) −4.31890 2.49352i −0.308493 0.178109i
\(15\) 6.44952 1.90796i 0.429968 0.127197i
\(16\) 11.1404 0.696278
\(17\) −19.0666 + 11.0081i −1.12157 + 0.647537i −0.941800 0.336173i \(-0.890867\pi\)
−0.179766 + 0.983709i \(0.557534\pi\)
\(18\) −0.301018 5.82238i −0.0167232 0.323465i
\(19\) −4.39605 + 2.53806i −0.231371 + 0.133582i −0.611204 0.791473i \(-0.709315\pi\)
0.379833 + 0.925055i \(0.375981\pi\)
\(20\) 4.01348 6.95155i 0.200674 0.347577i
\(21\) −6.55166 22.1467i −0.311984 1.05461i
\(22\) −3.71937 −0.169062
\(23\) −19.9049 + 11.4921i −0.865432 + 0.499658i −0.865828 0.500342i \(-0.833208\pi\)
0.000395309 1.00000i \(0.499874\pi\)
\(24\) −10.6823 10.1443i −0.445096 0.422679i
\(25\) 9.98685 + 17.2977i 0.399474 + 0.691910i
\(26\) −7.70525 3.39823i −0.296356 0.130701i
\(27\) 17.5568 20.5124i 0.650253 0.759718i
\(28\) −23.8706 13.7817i −0.852521 0.492203i
\(29\) 25.8169i 0.890236i 0.895472 + 0.445118i \(0.146838\pi\)
−0.895472 + 0.445118i \(0.853162\pi\)
\(30\) −4.17796 + 1.23597i −0.139265 + 0.0411989i
\(31\) 32.0171 + 18.4851i 1.03281 + 0.596294i 0.917789 0.397069i \(-0.129973\pi\)
0.115022 + 0.993363i \(0.463306\pi\)
\(32\) −26.8588 −0.839337
\(33\) −12.4902 11.8611i −0.378491 0.359429i
\(34\) 12.3513 7.13100i 0.363272 0.209735i
\(35\) −14.9472 + 8.62977i −0.427063 + 0.246565i
\(36\) −1.66373 32.1803i −0.0462147 0.893897i
\(37\) 20.4567 + 11.8107i 0.552885 + 0.319208i 0.750285 0.661115i \(-0.229916\pi\)
−0.197400 + 0.980323i \(0.563250\pi\)
\(38\) 2.84774 1.64414i 0.0749405 0.0432669i
\(39\) −15.0384 35.9840i −0.385599 0.922666i
\(40\) −5.50454 + 9.53414i −0.137614 + 0.238354i
\(41\) −32.2626 55.8805i −0.786894 1.36294i −0.927861 0.372926i \(-0.878355\pi\)
0.140967 0.990014i \(-0.454979\pi\)
\(42\) 4.24413 + 14.3465i 0.101051 + 0.341584i
\(43\) 15.7842 27.3390i 0.367074 0.635791i −0.622032 0.782992i \(-0.713693\pi\)
0.989107 + 0.147200i \(0.0470261\pi\)
\(44\) −20.5570 −0.467204
\(45\) −17.9718 9.17305i −0.399373 0.203846i
\(46\) 12.8943 7.44454i 0.280311 0.161838i
\(47\) 30.2047 + 52.3161i 0.642654 + 1.11311i 0.984838 + 0.173476i \(0.0554999\pi\)
−0.342184 + 0.939633i \(0.611167\pi\)
\(48\) −24.2349 23.0143i −0.504893 0.479464i
\(49\) 5.13339 + 8.89129i 0.104763 + 0.181455i
\(50\) −6.46943 11.2054i −0.129389 0.224108i
\(51\) 64.2184 + 15.4414i 1.25918 + 0.302773i
\(52\) −42.5869 18.7820i −0.818979 0.361193i
\(53\) 43.4874i 0.820516i −0.911969 0.410258i \(-0.865439\pi\)
0.911969 0.410258i \(-0.134561\pi\)
\(54\) −11.3732 + 13.2878i −0.210615 + 0.246071i
\(55\) −6.43614 + 11.1477i −0.117021 + 0.202686i
\(56\) 32.7389 + 18.9018i 0.584622 + 0.337532i
\(57\) 14.8063 + 3.56022i 0.259760 + 0.0624599i
\(58\) 16.7240i 0.288345i
\(59\) 57.8296 0.980163 0.490081 0.871677i \(-0.336967\pi\)
0.490081 + 0.871677i \(0.336967\pi\)
\(60\) −23.0916 + 6.83119i −0.384860 + 0.113853i
\(61\) −29.4548 + 51.0172i −0.482866 + 0.836348i −0.999806 0.0196733i \(-0.993737\pi\)
0.516941 + 0.856021i \(0.327071\pi\)
\(62\) −20.7405 11.9745i −0.334525 0.193138i
\(63\) −31.4989 + 61.7124i −0.499983 + 0.979563i
\(64\) −27.1628 −0.424419
\(65\) −23.5187 + 17.2138i −0.361826 + 0.264828i
\(66\) 8.09109 + 7.68359i 0.122592 + 0.116418i
\(67\) −59.3116 + 34.2436i −0.885248 + 0.511098i −0.872385 0.488819i \(-0.837428\pi\)
−0.0128627 + 0.999917i \(0.504094\pi\)
\(68\) 68.2654 39.4131i 1.00390 0.579604i
\(69\) 67.0419 + 16.1204i 0.971622 + 0.233628i
\(70\) 9.68272 5.59032i 0.138325 0.0798617i
\(71\) 16.3288 + 28.2823i 0.229983 + 0.398343i 0.957803 0.287426i \(-0.0927995\pi\)
−0.727819 + 0.685769i \(0.759466\pi\)
\(72\) 2.28183 + 44.1357i 0.0316920 + 0.612996i
\(73\) 83.5918i 1.14509i −0.819872 0.572547i \(-0.805955\pi\)
0.819872 0.572547i \(-0.194045\pi\)
\(74\) −13.2518 7.65091i −0.179078 0.103391i
\(75\) 14.0089 58.2606i 0.186785 0.776808i
\(76\) 15.7395 9.08718i 0.207098 0.119568i
\(77\) 38.2797 + 22.1008i 0.497138 + 0.287023i
\(78\) 9.74178 + 23.3102i 0.124895 + 0.298849i
\(79\) 46.0359 + 79.7366i 0.582733 + 1.00932i 0.995154 + 0.0983302i \(0.0313501\pi\)
−0.412420 + 0.910994i \(0.635317\pi\)
\(80\) −12.4881 + 21.6300i −0.156101 + 0.270375i
\(81\) −80.5681 + 8.35311i −0.994668 + 0.103125i
\(82\) 20.8996 + 36.1991i 0.254873 + 0.441453i
\(83\) 21.6284 + 37.4615i 0.260583 + 0.451344i 0.966397 0.257054i \(-0.0827518\pi\)
−0.705814 + 0.708397i \(0.749418\pi\)
\(84\) 23.4573 + 79.2932i 0.279254 + 0.943967i
\(85\) 49.3591i 0.580695i
\(86\) −10.2249 + 17.7101i −0.118894 + 0.205931i
\(87\) 53.3333 56.1618i 0.613026 0.645538i
\(88\) 28.1942 0.320388
\(89\) −61.5015 + 106.524i −0.691028 + 1.19690i 0.280474 + 0.959862i \(0.409508\pi\)
−0.971501 + 0.237034i \(0.923825\pi\)
\(90\) 11.6420 + 5.94226i 0.129356 + 0.0660251i
\(91\) 59.1097 + 80.7597i 0.649557 + 0.887469i
\(92\) 71.2669 41.1460i 0.774640 0.447239i
\(93\) −31.4628 106.354i −0.338310 1.14360i
\(94\) −19.5665 33.8901i −0.208154 0.360533i
\(95\) 11.3804i 0.119793i
\(96\) 58.4285 + 55.4857i 0.608630 + 0.577976i
\(97\) −116.849 67.4631i −1.20463 0.695496i −0.243052 0.970013i \(-0.578148\pi\)
−0.961582 + 0.274518i \(0.911482\pi\)
\(98\) −3.32538 5.75973i −0.0339325 0.0587727i
\(99\) 2.66801 + 51.6053i 0.0269496 + 0.521266i
\(100\) −35.7566 61.9322i −0.357566 0.619322i
\(101\) 79.0091i 0.782269i −0.920334 0.391134i \(-0.872083\pi\)
0.920334 0.391134i \(-0.127917\pi\)
\(102\) −41.6003 10.0029i −0.407846 0.0980674i
\(103\) 52.8097 91.4690i 0.512715 0.888049i −0.487176 0.873304i \(-0.661973\pi\)
0.999891 0.0147449i \(-0.00469363\pi\)
\(104\) 58.4086 + 25.7598i 0.561621 + 0.247691i
\(105\) 50.3437 + 12.1052i 0.479464 + 0.115288i
\(106\) 28.1709i 0.265763i
\(107\) 53.3219 + 30.7854i 0.498335 + 0.287714i 0.728026 0.685550i \(-0.240438\pi\)
−0.229691 + 0.973264i \(0.573771\pi\)
\(108\) −62.8598 + 73.4418i −0.582035 + 0.680017i
\(109\) 100.959i 0.926232i 0.886298 + 0.463116i \(0.153269\pi\)
−0.886298 + 0.463116i \(0.846731\pi\)
\(110\) 4.16930 7.22144i 0.0379027 0.0656494i
\(111\) −20.1025 67.9531i −0.181104 0.612190i
\(112\) 74.2743 + 42.8823i 0.663164 + 0.382878i
\(113\) 160.154i 1.41730i −0.705562 0.708648i \(-0.749305\pi\)
0.705562 0.708648i \(-0.250695\pi\)
\(114\) −9.59147 2.30629i −0.0841357 0.0202306i
\(115\) 51.5293i 0.448081i
\(116\) 92.4337i 0.796842i
\(117\) −41.6224 + 109.346i −0.355747 + 0.934582i
\(118\) −37.4617 −0.317472
\(119\) −169.492 −1.42430
\(120\) 31.6705 9.36907i 0.263921 0.0780756i
\(121\) −88.0342 −0.727555
\(122\) 19.0807 33.0487i 0.156399 0.270891i
\(123\) −45.2558 + 188.211i −0.367933 + 1.53017i
\(124\) −114.633 66.1834i −0.924459 0.533737i
\(125\) −100.828 −0.806626
\(126\) 20.4048 39.9770i 0.161943 0.317278i
\(127\) 71.9227 124.574i 0.566320 0.980896i −0.430605 0.902540i \(-0.641700\pi\)
0.996925 0.0783553i \(-0.0249669\pi\)
\(128\) 125.031 0.976805
\(129\) −90.8147 + 26.8657i −0.703990 + 0.208261i
\(130\) 15.2353 11.1510i 0.117194 0.0857770i
\(131\) −13.9215 8.03755i −0.106271 0.0613554i 0.445923 0.895071i \(-0.352876\pi\)
−0.552193 + 0.833716i \(0.686209\pi\)
\(132\) 44.7195 + 42.4672i 0.338784 + 0.321721i
\(133\) −39.0785 −0.293823
\(134\) 38.4217 22.1828i 0.286729 0.165543i
\(135\) 20.1457 + 57.0817i 0.149227 + 0.422827i
\(136\) −93.6270 + 54.0556i −0.688434 + 0.397467i
\(137\) 77.7377 134.646i 0.567429 0.982815i −0.429391 0.903119i \(-0.641272\pi\)
0.996819 0.0796963i \(-0.0253950\pi\)
\(138\) −43.4294 10.4427i −0.314706 0.0756716i
\(139\) −107.342 −0.772244 −0.386122 0.922448i \(-0.626186\pi\)
−0.386122 + 0.922448i \(0.626186\pi\)
\(140\) 53.5164 30.8977i 0.382260 0.220698i
\(141\) 42.3691 176.206i 0.300490 1.24969i
\(142\) −10.5777 18.3212i −0.0744910 0.129022i
\(143\) 68.2938 + 30.1195i 0.477579 + 0.210626i
\(144\) 5.17676 + 100.130i 0.0359497 + 0.695349i
\(145\) −50.1254 28.9399i −0.345692 0.199586i
\(146\) 54.1503i 0.370893i
\(147\) 7.20076 29.9468i 0.0489848 0.203720i
\(148\) −73.2425 42.2866i −0.494882 0.285720i
\(149\) 59.6060 0.400040 0.200020 0.979792i \(-0.435899\pi\)
0.200020 + 0.979792i \(0.435899\pi\)
\(150\) −9.07487 + 37.7409i −0.0604991 + 0.251606i
\(151\) 35.0194 20.2185i 0.231917 0.133897i −0.379539 0.925176i \(-0.623917\pi\)
0.611456 + 0.791278i \(0.290584\pi\)
\(152\) −21.5869 + 12.4632i −0.142019 + 0.0819947i
\(153\) −107.801 166.255i −0.704581 1.08664i
\(154\) −24.7974 14.3168i −0.161022 0.0929660i
\(155\) −71.7805 + 41.4425i −0.463100 + 0.267371i
\(156\) 53.8428 + 128.836i 0.345146 + 0.825870i
\(157\) 73.7338 127.711i 0.469642 0.813444i −0.529756 0.848150i \(-0.677716\pi\)
0.999398 + 0.0347066i \(0.0110497\pi\)
\(158\) −29.8218 51.6529i −0.188746 0.326917i
\(159\) −89.8376 + 94.6022i −0.565016 + 0.594982i
\(160\) 30.1079 52.1484i 0.188174 0.325927i
\(161\) −176.944 −1.09903
\(162\) 52.1916 5.41110i 0.322170 0.0334018i
\(163\) 14.1821 8.18805i 0.0870069 0.0502334i −0.455865 0.890049i \(-0.650670\pi\)
0.542872 + 0.839815i \(0.317337\pi\)
\(164\) 115.512 + 200.073i 0.704341 + 1.21995i
\(165\) 37.0305 10.9547i 0.224427 0.0663922i
\(166\) −14.0108 24.2674i −0.0844022 0.146189i
\(167\) −124.666 215.929i −0.746505 1.29299i −0.949488 0.313803i \(-0.898397\pi\)
0.202983 0.979182i \(-0.434936\pi\)
\(168\) −32.1720 108.752i −0.191500 0.647332i
\(169\) 113.962 + 124.794i 0.674333 + 0.738428i
\(170\) 31.9745i 0.188086i
\(171\) −24.8548 38.3323i −0.145350 0.224165i
\(172\) −56.5131 + 97.8836i −0.328565 + 0.569091i
\(173\) 192.419 + 111.093i 1.11225 + 0.642158i 0.939411 0.342793i \(-0.111373\pi\)
0.172839 + 0.984950i \(0.444706\pi\)
\(174\) −34.5490 + 36.3813i −0.198557 + 0.209088i
\(175\) 153.767i 0.878671i
\(176\) 63.9638 0.363431
\(177\) −125.802 119.466i −0.710747 0.674950i
\(178\) 39.8403 69.0055i 0.223822 0.387671i
\(179\) 229.322 + 132.399i 1.28113 + 0.739660i 0.977055 0.212989i \(-0.0683198\pi\)
0.304074 + 0.952649i \(0.401653\pi\)
\(180\) 64.3455 + 32.8429i 0.357475 + 0.182460i
\(181\) 257.354 1.42185 0.710923 0.703270i \(-0.248277\pi\)
0.710923 + 0.703270i \(0.248277\pi\)
\(182\) −38.2909 52.3157i −0.210390 0.287449i
\(183\) 169.469 50.1339i 0.926059 0.273956i
\(184\) −97.7436 + 56.4323i −0.531215 + 0.306697i
\(185\) −45.8627 + 26.4789i −0.247907 + 0.143129i
\(186\) 20.3814 + 68.8958i 0.109578 + 0.370408i
\(187\) −109.473 + 63.2041i −0.585415 + 0.337990i
\(188\) −108.144 187.311i −0.575233 0.996333i
\(189\) 196.010 69.1774i 1.03709 0.366018i
\(190\) 7.37213i 0.0388007i
\(191\) −111.916 64.6149i −0.585949 0.338298i 0.177545 0.984113i \(-0.443185\pi\)
−0.763494 + 0.645815i \(0.776518\pi\)
\(192\) 59.0898 + 56.1137i 0.307759 + 0.292259i
\(193\) 7.42324 4.28581i 0.0384624 0.0222063i −0.480646 0.876915i \(-0.659598\pi\)
0.519108 + 0.854709i \(0.326264\pi\)
\(194\) 75.6944 + 43.7022i 0.390178 + 0.225269i
\(195\) 86.7232 + 11.1388i 0.444734 + 0.0571220i
\(196\) −18.3794 31.8340i −0.0937724 0.162419i
\(197\) −106.452 + 184.381i −0.540367 + 0.935943i 0.458516 + 0.888686i \(0.348381\pi\)
−0.998883 + 0.0472568i \(0.984952\pi\)
\(198\) −1.72832 33.4297i −0.00872889 0.168837i
\(199\) −117.959 204.310i −0.592756 1.02668i −0.993859 0.110651i \(-0.964706\pi\)
0.401103 0.916033i \(-0.368627\pi\)
\(200\) 49.0406 + 84.9409i 0.245203 + 0.424704i
\(201\) 199.768 + 48.0345i 0.993869 + 0.238978i
\(202\) 51.1817i 0.253375i
\(203\) −99.3754 + 172.123i −0.489534 + 0.847898i
\(204\) −229.925 55.2859i −1.12708 0.271009i
\(205\) 144.662 0.705667
\(206\) −34.2098 + 59.2531i −0.166067 + 0.287637i
\(207\) −112.541 173.565i −0.543675 0.838480i
\(208\) 132.511 + 58.4410i 0.637072 + 0.280967i
\(209\) −25.2403 + 14.5725i −0.120767 + 0.0697248i
\(210\) −32.6124 7.84171i −0.155297 0.0373415i
\(211\) 150.448 + 260.583i 0.713022 + 1.23499i 0.963718 + 0.266924i \(0.0860073\pi\)
−0.250696 + 0.968066i \(0.580659\pi\)
\(212\) 155.701i 0.734436i
\(213\) 22.9049 95.2579i 0.107535 0.447220i
\(214\) −34.5416 19.9426i −0.161409 0.0931898i
\(215\) 35.3872 + 61.2924i 0.164592 + 0.285081i
\(216\) 86.2131 100.726i 0.399135 0.466326i
\(217\) 142.307 + 246.484i 0.655795 + 1.13587i
\(218\) 65.4009i 0.300004i
\(219\) −172.687 + 181.845i −0.788523 + 0.830343i
\(220\) 23.0437 39.9129i 0.104744 0.181422i
\(221\) −284.536 + 30.9164i −1.28750 + 0.139893i
\(222\) 13.0223 + 44.0196i 0.0586591 + 0.198287i
\(223\) 26.8891i 0.120579i 0.998181 + 0.0602895i \(0.0192024\pi\)
−0.998181 + 0.0602895i \(0.980798\pi\)
\(224\) −179.070 103.386i −0.799419 0.461545i
\(225\) −150.831 + 97.7998i −0.670361 + 0.434666i
\(226\) 103.747i 0.459058i
\(227\) 169.916 294.303i 0.748529 1.29649i −0.199999 0.979796i \(-0.564094\pi\)
0.948528 0.316693i \(-0.102573\pi\)
\(228\) −53.0121 12.7469i −0.232509 0.0559073i
\(229\) 26.7265 + 15.4306i 0.116710 + 0.0673824i 0.557218 0.830366i \(-0.311869\pi\)
−0.440509 + 0.897748i \(0.645202\pi\)
\(230\) 33.3804i 0.145132i
\(231\) −37.6169 127.157i −0.162844 0.550464i
\(232\) 126.774i 0.546440i
\(233\) 38.5905i 0.165624i 0.996565 + 0.0828122i \(0.0263902\pi\)
−0.996565 + 0.0828122i \(0.973610\pi\)
\(234\) 26.9628 70.8338i 0.115226 0.302709i
\(235\) −135.434 −0.576316
\(236\) −207.051 −0.877334
\(237\) 64.5760 268.561i 0.272473 1.13317i
\(238\) 109.796 0.461327
\(239\) −8.76046 + 15.1736i −0.0366546 + 0.0634877i −0.883771 0.467920i \(-0.845003\pi\)
0.847116 + 0.531408i \(0.178337\pi\)
\(240\) 71.8505 21.2555i 0.299377 0.0885646i
\(241\) 144.406 + 83.3729i 0.599196 + 0.345946i 0.768725 0.639579i \(-0.220891\pi\)
−0.169529 + 0.985525i \(0.554225\pi\)
\(242\) 57.0281 0.235653
\(243\) 192.524 + 148.269i 0.792278 + 0.610160i
\(244\) 105.459 182.660i 0.432208 0.748607i
\(245\) −23.0175 −0.0939489
\(246\) 29.3165 121.922i 0.119173 0.495619i
\(247\) −65.6035 + 7.12817i −0.265601 + 0.0288590i
\(248\) 157.221 + 90.7714i 0.633954 + 0.366014i
\(249\) 30.3388 126.174i 0.121843 0.506724i
\(250\) 65.3160 0.261264
\(251\) 323.798 186.945i 1.29003 0.744800i 0.311372 0.950288i \(-0.399212\pi\)
0.978660 + 0.205488i \(0.0658783\pi\)
\(252\) 112.778 220.953i 0.447530 0.876797i
\(253\) −114.286 + 65.9830i −0.451723 + 0.260802i
\(254\) −46.5911 + 80.6982i −0.183430 + 0.317709i
\(255\) −101.968 + 107.375i −0.399873 + 0.421080i
\(256\) 27.6567 0.108034
\(257\) −404.597 + 233.594i −1.57431 + 0.908926i −0.578674 + 0.815559i \(0.696430\pi\)
−0.995632 + 0.0933669i \(0.970237\pi\)
\(258\) 58.8293 17.4034i 0.228020 0.0674552i
\(259\) 90.9246 + 157.486i 0.351060 + 0.608054i
\(260\) 84.2054 61.6317i 0.323867 0.237045i
\(261\) −232.042 + 11.9966i −0.889049 + 0.0459640i
\(262\) 9.01824 + 5.20668i 0.0344208 + 0.0198728i
\(263\) 421.902i 1.60419i 0.597197 + 0.802094i \(0.296281\pi\)
−0.597197 + 0.802094i \(0.703719\pi\)
\(264\) −61.3334 58.2444i −0.232324 0.220623i
\(265\) 84.4340 + 48.7480i 0.318619 + 0.183955i
\(266\) 25.3148 0.0951685
\(267\) 353.850 104.679i 1.32528 0.392057i
\(268\) 212.357 122.604i 0.792377 0.457479i
\(269\) 49.9835 28.8580i 0.185812 0.107279i −0.404208 0.914667i \(-0.632453\pi\)
0.590021 + 0.807388i \(0.299120\pi\)
\(270\) −13.0503 36.9772i −0.0483344 0.136953i
\(271\) −108.778 62.8029i −0.401394 0.231745i 0.285691 0.958322i \(-0.407777\pi\)
−0.687085 + 0.726577i \(0.741110\pi\)
\(272\) −212.411 + 122.635i −0.780921 + 0.450865i
\(273\) 38.2490 297.795i 0.140106 1.09082i
\(274\) −50.3581 + 87.2227i −0.183789 + 0.318331i
\(275\) 57.3404 + 99.3165i 0.208510 + 0.361151i
\(276\) −240.034 57.7167i −0.869689 0.209119i
\(277\) 133.746 231.654i 0.482836 0.836296i −0.516970 0.856004i \(-0.672940\pi\)
0.999806 + 0.0197072i \(0.00627339\pi\)
\(278\) 69.5355 0.250128
\(279\) −151.266 + 296.360i −0.542173 + 1.06222i
\(280\) −73.3985 + 42.3767i −0.262138 + 0.151345i
\(281\) −156.646 271.319i −0.557460 0.965550i −0.997708 0.0676730i \(-0.978443\pi\)
0.440247 0.897877i \(-0.354891\pi\)
\(282\) −27.4465 + 114.145i −0.0973279 + 0.404771i
\(283\) −112.665 195.141i −0.398109 0.689544i 0.595384 0.803441i \(-0.297000\pi\)
−0.993493 + 0.113897i \(0.963667\pi\)
\(284\) −58.4631 101.261i −0.205856 0.356553i
\(285\) −23.5099 + 24.7568i −0.0824908 + 0.0868658i
\(286\) −44.2403 19.5112i −0.154686 0.0682211i
\(287\) 496.747i 1.73083i
\(288\) −12.4808 241.407i −0.0433360 0.838218i
\(289\) 97.8575 169.494i 0.338607 0.586485i
\(290\) 32.4710 + 18.7471i 0.111969 + 0.0646452i
\(291\) 114.826 + 388.150i 0.394592 + 1.33385i
\(292\) 299.289i 1.02496i
\(293\) −129.915 −0.443397 −0.221698 0.975115i \(-0.571160\pi\)
−0.221698 + 0.975115i \(0.571160\pi\)
\(294\) −4.66461 + 19.3994i −0.0158660 + 0.0659842i
\(295\) −64.8252 + 112.281i −0.219747 + 0.380612i
\(296\) 100.453 + 57.9966i 0.339369 + 0.195935i
\(297\) 100.804 117.774i 0.339407 0.396544i
\(298\) −38.6124 −0.129572
\(299\) −297.047 + 32.2758i −0.993468 + 0.107946i
\(300\) −50.1568 + 208.594i −0.167189 + 0.695313i
\(301\) 210.469 121.515i 0.699234 0.403703i
\(302\) −22.6854 + 13.0974i −0.0751172 + 0.0433690i
\(303\) −163.220 + 171.876i −0.538678 + 0.567248i
\(304\) −48.9739 + 28.2751i −0.161098 + 0.0930103i
\(305\) −66.0359 114.377i −0.216511 0.375008i
\(306\) 69.8328 + 107.699i 0.228212 + 0.351959i
\(307\) 204.231i 0.665247i −0.943060 0.332623i \(-0.892066\pi\)
0.943060 0.332623i \(-0.107934\pi\)
\(308\) −137.055 79.1288i −0.444984 0.256912i
\(309\) −303.841 + 89.8853i −0.983305 + 0.290891i
\(310\) 46.4990 26.8462i 0.149997 0.0866007i
\(311\) 190.711 + 110.107i 0.613218 + 0.354042i 0.774224 0.632912i \(-0.218140\pi\)
−0.161006 + 0.986954i \(0.551474\pi\)
\(312\) −73.8462 176.700i −0.236687 0.566346i
\(313\) −188.296 326.139i −0.601586 1.04198i −0.992581 0.121585i \(-0.961202\pi\)
0.390995 0.920393i \(-0.372131\pi\)
\(314\) −47.7643 + 82.7303i −0.152116 + 0.263472i
\(315\) −84.5101 130.335i −0.268286 0.413763i
\(316\) −164.825 285.486i −0.521599 0.903436i
\(317\) −184.898 320.252i −0.583273 1.01026i −0.995088 0.0989912i \(-0.968438\pi\)
0.411815 0.911267i \(-0.364895\pi\)
\(318\) 58.1963 61.2828i 0.183007 0.192713i
\(319\) 148.230i 0.464670i
\(320\) 30.4487 52.7386i 0.0951521 0.164808i
\(321\) −52.3987 177.124i −0.163236 0.551789i
\(322\) 114.623 0.355973
\(323\) 55.8786 96.7845i 0.172999 0.299642i
\(324\) 288.463 29.9072i 0.890318 0.0923060i
\(325\) 28.0482 + 258.139i 0.0863021 + 0.794274i
\(326\) −9.18710 + 5.30417i −0.0281813 + 0.0162705i
\(327\) 208.565 219.626i 0.637813 0.671640i
\(328\) −158.426 274.402i −0.483007 0.836593i
\(329\) 465.062i 1.41356i
\(330\) −23.9881 + 7.09640i −0.0726913 + 0.0215043i
\(331\) −530.242 306.135i −1.60194 0.924879i −0.991099 0.133124i \(-0.957499\pi\)
−0.610839 0.791755i \(-0.709168\pi\)
\(332\) −77.4376 134.126i −0.233246 0.403993i
\(333\) −96.6487 + 189.353i −0.290236 + 0.568628i
\(334\) 80.7582 + 139.877i 0.241791 + 0.418794i
\(335\) 153.544i 0.458340i
\(336\) −72.9883 246.724i −0.217227 0.734298i
\(337\) −145.011 + 251.166i −0.430300 + 0.745301i −0.996899 0.0786925i \(-0.974925\pi\)
0.566599 + 0.823994i \(0.308259\pi\)
\(338\) −73.8241 80.8411i −0.218414 0.239175i
\(339\) −330.852 + 348.399i −0.975965 + 1.02773i
\(340\) 176.723i 0.519775i
\(341\) 183.829 + 106.134i 0.539088 + 0.311243i
\(342\) 16.1008 + 24.8314i 0.0470785 + 0.0726066i
\(343\) 298.187i 0.869351i
\(344\) 77.5086 134.249i 0.225316 0.390258i
\(345\) −106.451 + 112.097i −0.308553 + 0.324917i
\(346\) −124.648 71.9656i −0.360255 0.207993i
\(347\) 201.861i 0.581731i 0.956764 + 0.290865i \(0.0939432\pi\)
−0.956764 + 0.290865i \(0.906057\pi\)
\(348\) −190.952 + 201.080i −0.548714 + 0.577815i
\(349\) 246.453i 0.706170i 0.935591 + 0.353085i \(0.114867\pi\)
−0.935591 + 0.353085i \(0.885133\pi\)
\(350\) 99.6097i 0.284599i
\(351\) 316.436 151.886i 0.901527 0.432724i
\(352\) −154.212 −0.438102
\(353\) 474.422 1.34397 0.671986 0.740564i \(-0.265442\pi\)
0.671986 + 0.740564i \(0.265442\pi\)
\(354\) 81.4940 + 77.3896i 0.230209 + 0.218615i
\(355\) −73.2164 −0.206244
\(356\) 220.198 381.393i 0.618533 1.07133i
\(357\) 368.712 + 350.142i 1.03281 + 0.980789i
\(358\) −148.554 85.7674i −0.414954 0.239574i
\(359\) 604.660 1.68429 0.842145 0.539251i \(-0.181293\pi\)
0.842145 + 0.539251i \(0.181293\pi\)
\(360\) −88.2507 45.0444i −0.245141 0.125123i
\(361\) −167.616 + 290.320i −0.464312 + 0.804211i
\(362\) −166.713 −0.460532
\(363\) 191.509 + 181.864i 0.527573 + 0.501002i
\(364\) −211.634 289.149i −0.581412 0.794365i
\(365\) 162.300 + 93.7039i 0.444657 + 0.256723i
\(366\) −109.781 + 32.4765i −0.299948 + 0.0887335i
\(367\) 255.113 0.695130 0.347565 0.937656i \(-0.387009\pi\)
0.347565 + 0.937656i \(0.387009\pi\)
\(368\) −221.750 + 128.027i −0.602581 + 0.347900i
\(369\) 487.262 315.943i 1.32049 0.856215i
\(370\) 29.7096 17.1529i 0.0802963 0.0463591i
\(371\) 167.394 289.934i 0.451196 0.781494i
\(372\) 112.648 + 380.787i 0.302818 + 1.02362i
\(373\) 540.794 1.44985 0.724925 0.688828i \(-0.241875\pi\)
0.724925 + 0.688828i \(0.241875\pi\)
\(374\) 70.9158 40.9433i 0.189614 0.109474i
\(375\) 219.341 + 208.294i 0.584910 + 0.555451i
\(376\) 148.321 + 256.899i 0.394470 + 0.683243i
\(377\) −135.431 + 307.081i −0.359234 + 0.814538i
\(378\) −126.974 + 44.8128i −0.335911 + 0.118552i
\(379\) 398.751 + 230.219i 1.05211 + 0.607438i 0.923241 0.384223i \(-0.125530\pi\)
0.128874 + 0.991661i \(0.458864\pi\)
\(380\) 40.7458i 0.107226i
\(381\) −413.809 + 122.417i −1.08611 + 0.321304i
\(382\) 72.4988 + 41.8572i 0.189787 + 0.109574i
\(383\) 305.536 0.797744 0.398872 0.917007i \(-0.369402\pi\)
0.398872 + 0.917007i \(0.369402\pi\)
\(384\) −271.992 258.293i −0.708312 0.672638i
\(385\) −85.8207 + 49.5486i −0.222911 + 0.128698i
\(386\) −4.80873 + 2.77632i −0.0124579 + 0.00719255i
\(387\) 253.058 + 129.164i 0.653896 + 0.333758i
\(388\) 418.363 + 241.542i 1.07826 + 0.622531i
\(389\) −457.448 + 264.108i −1.17596 + 0.678940i −0.955076 0.296360i \(-0.904227\pi\)
−0.220883 + 0.975300i \(0.570894\pi\)
\(390\) −56.1788 7.21565i −0.144048 0.0185017i
\(391\) 253.013 438.232i 0.647093 1.12080i
\(392\) 25.2076 + 43.6608i 0.0643051 + 0.111380i
\(393\) 13.6804 + 46.2442i 0.0348102 + 0.117670i
\(394\) 68.9592 119.441i 0.175023 0.303149i
\(395\) −206.420 −0.522581
\(396\) −9.55244 184.766i −0.0241223 0.466580i
\(397\) −309.236 + 178.537i −0.778932 + 0.449717i −0.836052 0.548651i \(-0.815142\pi\)
0.0571197 + 0.998367i \(0.481808\pi\)
\(398\) 76.4129 + 132.351i 0.191992 + 0.332540i
\(399\) 85.0111 + 80.7295i 0.213060 + 0.202330i
\(400\) 111.258 + 192.704i 0.278145 + 0.481761i
\(401\) 210.006 + 363.741i 0.523706 + 0.907086i 0.999619 + 0.0275933i \(0.00878435\pi\)
−0.475913 + 0.879492i \(0.657882\pi\)
\(402\) −129.408 31.1165i −0.321911 0.0774042i
\(403\) 283.860 + 387.830i 0.704368 + 0.962356i
\(404\) 282.881i 0.700201i
\(405\) 74.0962 165.793i 0.182954 0.409365i
\(406\) 64.3749 111.501i 0.158559 0.274632i
\(407\) 117.454 + 67.8121i 0.288585 + 0.166615i
\(408\) 315.345 + 75.8254i 0.772905 + 0.185847i
\(409\) 467.696i 1.14351i −0.820424 0.571756i \(-0.806262\pi\)
0.820424 0.571756i \(-0.193738\pi\)
\(410\) −93.7111 −0.228564
\(411\) −447.265 + 132.314i −1.08824 + 0.321933i
\(412\) −189.078 + 327.492i −0.458926 + 0.794884i
\(413\) 385.555 + 222.600i 0.933548 + 0.538984i
\(414\) 72.9032 + 112.435i 0.176095 + 0.271581i
\(415\) −96.9792 −0.233685
\(416\) −319.474 140.897i −0.767967 0.338695i
\(417\) 233.511 + 221.750i 0.559978 + 0.531775i
\(418\) 16.3505 9.43998i 0.0391161 0.0225837i
\(419\) 550.949 318.091i 1.31492 0.759167i 0.332009 0.943276i \(-0.392273\pi\)
0.982906 + 0.184110i \(0.0589401\pi\)
\(420\) −180.249 43.3412i −0.429164 0.103193i
\(421\) −327.040 + 188.817i −0.776817 + 0.448495i −0.835301 0.549793i \(-0.814707\pi\)
0.0584843 + 0.998288i \(0.481373\pi\)
\(422\) −97.4591 168.804i −0.230946 0.400010i
\(423\) −456.181 + 295.790i −1.07844 + 0.699268i
\(424\) 213.545i 0.503645i
\(425\) −380.831 219.873i −0.896074 0.517348i
\(426\) −14.8377 + 61.7075i −0.0348303 + 0.144853i
\(427\) −392.756 + 226.758i −0.919802 + 0.531048i
\(428\) −190.912 110.223i −0.446055 0.257530i
\(429\) −86.3441 206.605i −0.201268 0.481597i
\(430\) −22.9236 39.7049i −0.0533108 0.0923370i
\(431\) 80.2210 138.947i 0.186128 0.322382i −0.757828 0.652454i \(-0.773740\pi\)
0.943956 + 0.330072i \(0.107073\pi\)
\(432\) 195.591 228.517i 0.452756 0.528975i
\(433\) −145.742 252.433i −0.336587 0.582986i 0.647201 0.762319i \(-0.275939\pi\)
−0.983788 + 0.179333i \(0.942606\pi\)
\(434\) −92.1860 159.671i −0.212410 0.367905i
\(435\) 49.2575 + 166.506i 0.113236 + 0.382773i
\(436\) 361.471i 0.829062i
\(437\) 58.3354 101.040i 0.133491 0.231213i
\(438\) 111.865 117.798i 0.255401 0.268946i
\(439\) −502.680 −1.14506 −0.572528 0.819885i \(-0.694037\pi\)
−0.572528 + 0.819885i \(0.694037\pi\)
\(440\) −31.6048 + 54.7411i −0.0718291 + 0.124412i
\(441\) −77.5295 + 50.2705i −0.175804 + 0.113992i
\(442\) 184.321 20.0275i 0.417016 0.0453111i
\(443\) 646.203 373.086i 1.45870 0.842180i 0.459750 0.888048i \(-0.347939\pi\)
0.998947 + 0.0458685i \(0.0146055\pi\)
\(444\) 71.9744 + 243.297i 0.162104 + 0.547965i
\(445\) −137.883 238.820i −0.309848 0.536673i
\(446\) 17.4186i 0.0390552i
\(447\) −129.667 123.136i −0.290082 0.275472i
\(448\) −181.097 104.556i −0.404234 0.233385i
\(449\) 155.690 + 269.663i 0.346749 + 0.600586i 0.985670 0.168686i \(-0.0539524\pi\)
−0.638921 + 0.769272i \(0.720619\pi\)
\(450\) 97.7077 63.3541i 0.217128 0.140787i
\(451\) −185.239 320.843i −0.410729 0.711403i
\(452\) 573.411i 1.26861i
\(453\) −117.949 28.3611i −0.260373 0.0626072i
\(454\) −110.071 + 190.648i −0.242446 + 0.419929i
\(455\) −223.061 + 24.2368i −0.490245 + 0.0532677i
\(456\) 72.7068 + 17.4825i 0.159445 + 0.0383388i
\(457\) 320.928i 0.702249i −0.936329 0.351124i \(-0.885799\pi\)
0.936329 0.351124i \(-0.114201\pi\)
\(458\) −17.3133 9.99584i −0.0378020 0.0218250i
\(459\) −108.946 + 584.370i −0.237356 + 1.27314i
\(460\) 184.494i 0.401073i
\(461\) 424.984 736.094i 0.921874 1.59673i 0.125362 0.992111i \(-0.459991\pi\)
0.796512 0.604622i \(-0.206676\pi\)
\(462\) 24.3680 + 82.3718i 0.0527446 + 0.178294i
\(463\) −623.614 360.044i −1.34690 0.777632i −0.359089 0.933303i \(-0.616913\pi\)
−0.987809 + 0.155672i \(0.950246\pi\)
\(464\) 287.611i 0.619852i
\(465\) 241.764 + 58.1326i 0.519923 + 0.125016i
\(466\) 24.9987i 0.0536453i
\(467\) 343.897i 0.736397i −0.929747 0.368199i \(-0.879975\pi\)
0.929747 0.368199i \(-0.120025\pi\)
\(468\) 149.023 391.499i 0.318426 0.836536i
\(469\) −527.248 −1.12420
\(470\) 87.7336 0.186667
\(471\) −424.229 + 125.499i −0.900698 + 0.266453i
\(472\) 283.973 0.601638
\(473\) 90.6263 156.969i 0.191599 0.331859i
\(474\) −41.8320 + 173.972i −0.0882531 + 0.367030i
\(475\) −87.8054 50.6945i −0.184854 0.106725i
\(476\) 606.842 1.27488
\(477\) 390.864 20.2078i 0.819422 0.0423643i
\(478\) 5.67498 9.82935i 0.0118723 0.0205635i
\(479\) −77.8918 −0.162613 −0.0813067 0.996689i \(-0.525909\pi\)
−0.0813067 + 0.996689i \(0.525909\pi\)
\(480\) −173.226 + 51.2455i −0.360888 + 0.106761i
\(481\) 181.367 + 247.796i 0.377063 + 0.515169i
\(482\) −93.5455 54.0085i −0.194078 0.112051i
\(483\) 384.923 + 365.537i 0.796942 + 0.756805i
\(484\) 315.194 0.651228
\(485\) 261.969 151.248i 0.540143 0.311852i
\(486\) −124.716 96.0478i −0.256617 0.197629i
\(487\) −668.979 + 386.235i −1.37367 + 0.793090i −0.991388 0.130954i \(-0.958196\pi\)
−0.382284 + 0.924045i \(0.624863\pi\)
\(488\) −144.638 + 250.521i −0.296390 + 0.513363i
\(489\) −47.7668 11.4856i −0.0976827 0.0234880i
\(490\) 14.9106 0.0304298
\(491\) −173.404 + 100.115i −0.353166 + 0.203900i −0.666079 0.745881i \(-0.732029\pi\)
0.312913 + 0.949782i \(0.398695\pi\)
\(492\) 162.032 673.865i 0.329334 1.36964i
\(493\) −284.195 492.240i −0.576461 0.998459i
\(494\) 42.4976 4.61759i 0.0860275 0.00934735i
\(495\) −103.186 52.6679i −0.208457 0.106400i
\(496\) 356.685 + 205.932i 0.719123 + 0.415186i
\(497\) 251.415i 0.505864i
\(498\) −19.6533 + 81.7350i −0.0394645 + 0.164126i
\(499\) −150.607 86.9531i −0.301818 0.174255i 0.341441 0.939903i \(-0.389085\pi\)
−0.643259 + 0.765648i \(0.722418\pi\)
\(500\) 361.002 0.722004
\(501\) −174.873 + 727.269i −0.349049 + 1.45164i
\(502\) −209.754 + 121.102i −0.417838 + 0.241239i
\(503\) 200.679 115.862i 0.398965 0.230342i −0.287073 0.957909i \(-0.592682\pi\)
0.686037 + 0.727567i \(0.259349\pi\)
\(504\) −154.676 + 303.040i −0.306897 + 0.601270i
\(505\) 153.402 + 88.5668i 0.303767 + 0.175380i
\(506\) 74.0338 42.7434i 0.146312 0.0844732i
\(507\) 9.89123 506.904i 0.0195093 0.999810i
\(508\) −257.509 + 446.019i −0.506908 + 0.877991i
\(509\) −231.172 400.401i −0.454168 0.786643i 0.544472 0.838779i \(-0.316730\pi\)
−0.998640 + 0.0521366i \(0.983397\pi\)
\(510\) 66.0540 69.5572i 0.129518 0.136387i
\(511\) 321.766 557.314i 0.629678 1.09063i
\(512\) −518.040 −1.01180
\(513\) −25.1190 + 134.734i −0.0489648 + 0.262639i
\(514\) 262.095 151.321i 0.509913 0.294399i
\(515\) 118.396 + 205.068i 0.229895 + 0.398190i
\(516\) 325.149 96.1889i 0.630135 0.186413i
\(517\) 173.423 + 300.377i 0.335441 + 0.581001i
\(518\) −58.9004 102.019i −0.113707 0.196947i
\(519\) −189.088 639.177i −0.364331 1.23156i
\(520\) −115.489 + 84.5287i −0.222094 + 0.162555i
\(521\) 287.109i 0.551073i 0.961291 + 0.275537i \(0.0888556\pi\)
−0.961291 + 0.275537i \(0.911144\pi\)
\(522\) 150.315 7.77134i 0.287961 0.0148876i
\(523\) 168.686 292.173i 0.322536 0.558648i −0.658475 0.752603i \(-0.728798\pi\)
0.981011 + 0.193954i \(0.0621314\pi\)
\(524\) 49.8438 + 28.7774i 0.0951218 + 0.0549186i
\(525\) 317.658 334.505i 0.605062 0.637152i
\(526\) 273.306i 0.519592i
\(527\) −813.945 −1.54449
\(528\) −139.146 132.138i −0.263535 0.250262i
\(529\) −0.362121 + 0.627212i −0.000684539 + 0.00118566i
\(530\) −54.6959 31.5787i −0.103200 0.0595824i
\(531\) 26.8723 + 519.772i 0.0506070 + 0.978856i
\(532\) 139.915 0.262998
\(533\) −90.6100 833.921i −0.170000 1.56458i
\(534\) −229.222 + 67.8107i −0.429255 + 0.126986i
\(535\) −119.544 + 69.0190i −0.223447 + 0.129007i
\(536\) −291.251 + 168.154i −0.543378 + 0.313720i
\(537\) −225.351 761.761i −0.419649 1.41855i
\(538\) −32.3790 + 18.6940i −0.0601841 + 0.0347473i
\(539\) 29.4738 + 51.0501i 0.0546823 + 0.0947126i
\(540\) −72.1289 204.373i −0.133572 0.378469i
\(541\) 360.339i 0.666061i −0.942916 0.333030i \(-0.891929\pi\)
0.942916 0.333030i \(-0.108071\pi\)
\(542\) 70.4657 + 40.6834i 0.130011 + 0.0750616i
\(543\) −559.847 531.650i −1.03103 0.979098i
\(544\) 512.106 295.665i 0.941372 0.543501i
\(545\) −196.020 113.172i −0.359670 0.207656i
\(546\) −24.7775 + 192.910i −0.0453800 + 0.353315i
\(547\) −70.4259 121.981i −0.128749 0.223000i 0.794443 0.607339i \(-0.207763\pi\)
−0.923192 + 0.384338i \(0.874430\pi\)
\(548\) −278.329 + 482.080i −0.507900 + 0.879709i
\(549\) −472.230 241.033i −0.860163 0.439040i
\(550\) −37.1448 64.3367i −0.0675360 0.116976i
\(551\) −65.5247 113.492i −0.118920 0.205975i
\(552\) 329.210 + 79.1593i 0.596396 + 0.143405i
\(553\) 708.815i 1.28176i
\(554\) −86.6397 + 150.064i −0.156389 + 0.270874i
\(555\) 154.470 + 37.1427i 0.278325 + 0.0669238i
\(556\) 384.323 0.691228
\(557\) 113.068 195.839i 0.202994 0.351596i −0.746498 0.665388i \(-0.768266\pi\)
0.949492 + 0.313792i \(0.101599\pi\)
\(558\) 97.9895 191.980i 0.175608 0.344050i
\(559\) 331.163 242.385i 0.592420 0.433605i
\(560\) −166.518 + 96.1395i −0.297354 + 0.171678i
\(561\) 368.715 + 88.6583i 0.657246 + 0.158036i
\(562\) 101.475 + 175.759i 0.180560 + 0.312739i
\(563\) 300.947i 0.534541i −0.963622 0.267271i \(-0.913878\pi\)
0.963622 0.267271i \(-0.0861217\pi\)
\(564\) −151.697 + 630.881i −0.268966 + 1.11858i
\(565\) 310.952 + 179.528i 0.550358 + 0.317749i
\(566\) 72.9836 + 126.411i 0.128946 + 0.223341i
\(567\) −569.308 254.436i −1.00407 0.448740i
\(568\) 80.1830 + 138.881i 0.141167 + 0.244509i
\(569\) 742.301i 1.30457i 0.757973 + 0.652286i \(0.226190\pi\)
−0.757973 + 0.652286i \(0.773810\pi\)
\(570\) 15.2296 16.0373i 0.0267186 0.0281356i
\(571\) −89.6525 + 155.283i −0.157010 + 0.271949i −0.933789 0.357824i \(-0.883519\pi\)
0.776779 + 0.629773i \(0.216852\pi\)
\(572\) −244.516 107.839i −0.427476 0.188529i
\(573\) 109.979 + 371.763i 0.191935 + 0.648801i
\(574\) 321.790i 0.560610i
\(575\) −397.576 229.540i −0.691436 0.399201i
\(576\) −12.6220 244.139i −0.0219133 0.423853i
\(577\) 617.248i 1.06975i 0.844930 + 0.534877i \(0.179642\pi\)
−0.844930 + 0.534877i \(0.820358\pi\)
\(578\) −63.3915 + 109.797i −0.109674 + 0.189961i
\(579\) −25.0022 6.01184i −0.0431818 0.0103831i
\(580\) 179.467 + 103.615i 0.309426 + 0.178647i
\(581\) 333.012i 0.573171i
\(582\) −74.3839 251.441i −0.127807 0.432030i
\(583\) 249.686i 0.428279i
\(584\) 410.479i 0.702875i
\(585\) −165.646 203.387i −0.283156 0.347670i
\(586\) 84.1584 0.143615
\(587\) 130.136 0.221696 0.110848 0.993837i \(-0.464643\pi\)
0.110848 + 0.993837i \(0.464643\pi\)
\(588\) −25.7813 + 107.220i −0.0438458 + 0.182347i
\(589\) −187.665 −0.318617
\(590\) 41.9934 72.7348i 0.0711753 0.123279i
\(591\) 612.475 181.188i 1.03634 0.306579i
\(592\) 227.897 + 131.576i 0.384961 + 0.222257i
\(593\) −1124.97 −1.89708 −0.948542 0.316652i \(-0.897441\pi\)
−0.948542 + 0.316652i \(0.897441\pi\)
\(594\) −65.3003 + 76.2931i −0.109933 + 0.128440i
\(595\) 189.995 329.081i 0.319320 0.553078i
\(596\) −213.411 −0.358072
\(597\) −165.464 + 688.137i −0.277159 + 1.15266i
\(598\) 192.425 20.9081i 0.321782 0.0349633i
\(599\) 148.057 + 85.4805i 0.247173 + 0.142705i 0.618469 0.785809i \(-0.287753\pi\)
−0.371296 + 0.928514i \(0.621087\pi\)
\(600\) 68.7908 286.090i 0.114651 0.476816i
\(601\) 446.842 0.743497 0.371749 0.928333i \(-0.378758\pi\)
0.371749 + 0.928333i \(0.378758\pi\)
\(602\) −136.341 + 78.7164i −0.226480 + 0.130758i
\(603\) −335.342 517.180i −0.556123 0.857678i
\(604\) −125.382 + 72.3895i −0.207587 + 0.119850i
\(605\) 98.6836 170.925i 0.163113 0.282521i
\(606\) 105.733 111.340i 0.174476 0.183730i
\(607\) 272.164 0.448375 0.224187 0.974546i \(-0.428027\pi\)
0.224187 + 0.974546i \(0.428027\pi\)
\(608\) 118.073 68.1692i 0.194198 0.112120i
\(609\) 571.758 169.143i 0.938848 0.277739i
\(610\) 42.7777 + 74.0931i 0.0701273 + 0.121464i
\(611\) 84.8303 + 780.728i 0.138838 + 1.27779i
\(612\) 385.966 + 595.255i 0.630664 + 0.972639i
\(613\) 799.594 + 461.646i 1.30440 + 0.753093i 0.981155 0.193224i \(-0.0618943\pi\)
0.323241 + 0.946317i \(0.395228\pi\)
\(614\) 132.300i 0.215472i
\(615\) −314.696 298.847i −0.511701 0.485930i
\(616\) 187.973 + 108.526i 0.305151 + 0.176179i
\(617\) −139.569 −0.226205 −0.113103 0.993583i \(-0.536079\pi\)
−0.113103 + 0.993583i \(0.536079\pi\)
\(618\) 196.827 58.2272i 0.318490 0.0942188i
\(619\) 752.471 434.439i 1.21562 0.701840i 0.251644 0.967820i \(-0.419029\pi\)
0.963979 + 0.265979i \(0.0856953\pi\)
\(620\) 257.000 148.379i 0.414516 0.239321i
\(621\) −113.737 + 610.063i −0.183151 + 0.982388i
\(622\) −123.542 71.3267i −0.198620 0.114673i
\(623\) −820.072 + 473.469i −1.31633 + 0.759982i
\(624\) −167.534 400.878i −0.268484 0.642432i
\(625\) −136.646 + 236.678i −0.218633 + 0.378684i
\(626\) 121.977 + 211.271i 0.194852 + 0.337494i
\(627\) 85.0119 + 20.4413i 0.135585 + 0.0326017i
\(628\) −263.994 + 457.250i −0.420372 + 0.728106i
\(629\) −520.054 −0.826796
\(630\) 54.7452 + 84.4305i 0.0868971 + 0.134017i
\(631\) −583.132 + 336.671i −0.924139 + 0.533552i −0.884953 0.465680i \(-0.845810\pi\)
−0.0391857 + 0.999232i \(0.512476\pi\)
\(632\) 226.060 + 391.548i 0.357690 + 0.619538i
\(633\) 211.037 877.670i 0.333392 1.38652i
\(634\) 119.776 + 207.457i 0.188921 + 0.327220i
\(635\) 161.246 + 279.287i 0.253931 + 0.439822i
\(636\) 321.651 338.710i 0.505741 0.532563i
\(637\) 14.4172 + 132.687i 0.0226329 + 0.208300i
\(638\) 96.0224i 0.150505i
\(639\) −246.614 + 159.906i −0.385937 + 0.250244i
\(640\) −140.156 + 242.757i −0.218994 + 0.379308i
\(641\) 908.387 + 524.458i 1.41714 + 0.818187i 0.996047 0.0888301i \(-0.0283128\pi\)
0.421094 + 0.907017i \(0.361646\pi\)
\(642\) 33.9436 + 114.740i 0.0528716 + 0.178723i
\(643\) 445.890i 0.693452i 0.937966 + 0.346726i \(0.112707\pi\)
−0.937966 + 0.346726i \(0.887293\pi\)
\(644\) 633.524 0.983733
\(645\) 49.6387 206.439i 0.0769593 0.320061i
\(646\) −36.1978 + 62.6965i −0.0560338 + 0.0970534i
\(647\) −794.602 458.764i −1.22813 0.709063i −0.261494 0.965205i \(-0.584215\pi\)
−0.966639 + 0.256143i \(0.917548\pi\)
\(648\) −395.631 + 41.0181i −0.610542 + 0.0632995i
\(649\) 332.034 0.511608
\(650\) −18.1695 167.221i −0.0279530 0.257263i
\(651\) 199.619 830.182i 0.306634 1.27524i
\(652\) −50.7771 + 29.3162i −0.0778790 + 0.0449635i
\(653\) 87.8939 50.7455i 0.134600 0.0777114i −0.431188 0.902262i \(-0.641905\pi\)
0.565788 + 0.824551i \(0.308572\pi\)
\(654\) −135.107 + 142.273i −0.206586 + 0.217542i
\(655\) 31.2110 18.0197i 0.0476504 0.0275110i
\(656\) −359.420 622.534i −0.547897 0.948985i
\(657\) 751.323 38.8436i 1.14357 0.0591226i
\(658\) 301.264i 0.457849i
\(659\) 291.018 + 168.019i 0.441605 + 0.254961i 0.704278 0.709924i \(-0.251271\pi\)
−0.262673 + 0.964885i \(0.584604\pi\)
\(660\) −132.582 + 39.2218i −0.200883 + 0.0594270i
\(661\) −296.691 + 171.295i −0.448852 + 0.259145i −0.707345 0.706868i \(-0.750107\pi\)
0.258493 + 0.966013i \(0.416774\pi\)
\(662\) 343.488 + 198.313i 0.518863 + 0.299566i
\(663\) 682.847 + 520.549i 1.02994 + 0.785142i
\(664\) 106.207 + 183.955i 0.159950 + 0.277041i
\(665\) 43.8058 75.8738i 0.0658733 0.114096i
\(666\) 62.6085 122.662i 0.0940067 0.184177i
\(667\) −296.691 513.883i −0.444813 0.770439i
\(668\) 446.351 + 773.102i 0.668190 + 1.15734i
\(669\) 55.5484 58.4944i 0.0830319 0.0874356i
\(670\) 99.4650i 0.148455i
\(671\) −169.117 + 292.920i −0.252038 + 0.436542i
\(672\) 175.970 + 594.834i 0.261859 + 0.885169i
\(673\) 681.482 1.01260 0.506301 0.862357i \(-0.331012\pi\)
0.506301 + 0.862357i \(0.331012\pi\)
\(674\) 93.9373 162.704i 0.139373 0.241401i
\(675\) 530.155 + 98.8390i 0.785415 + 0.146428i
\(676\) −408.026 446.809i −0.603589 0.660960i
\(677\) 326.456 188.480i 0.482210 0.278404i −0.239127 0.970988i \(-0.576861\pi\)
0.721337 + 0.692584i \(0.243528\pi\)
\(678\) 214.324 225.691i 0.316112 0.332878i
\(679\) −519.364 899.565i −0.764895 1.32484i
\(680\) 242.379i 0.356439i
\(681\) −977.615 + 289.208i −1.43556 + 0.424681i
\(682\) −119.084 68.7529i −0.174609 0.100811i
\(683\) 119.127 + 206.334i 0.174418 + 0.302100i 0.939960 0.341286i \(-0.110862\pi\)
−0.765542 + 0.643386i \(0.777529\pi\)
\(684\) 88.9893 + 137.243i 0.130101 + 0.200648i
\(685\) 174.283 + 301.867i 0.254428 + 0.440682i
\(686\) 193.164i 0.281580i
\(687\) −26.2638 88.7801i −0.0382297 0.129229i
\(688\) 175.843 304.569i 0.255586 0.442687i
\(689\) 228.128 517.264i 0.331100 0.750746i
\(690\) 68.9583 72.6155i 0.0999395 0.105240i
\(691\) 479.627i 0.694106i 0.937846 + 0.347053i \(0.112818\pi\)
−0.937846 + 0.347053i \(0.887182\pi\)
\(692\) −688.930 397.754i −0.995564 0.574789i
\(693\) −180.854 + 354.327i −0.260972 + 0.511295i
\(694\) 130.764i 0.188421i
\(695\) 120.327 208.412i 0.173132 0.299874i
\(696\) 261.894 275.784i 0.376284 0.396241i
\(697\) 1230.28 + 710.302i 1.76511 + 1.01909i
\(698\) 159.651i 0.228726i
\(699\) 79.7215 83.9496i 0.114051 0.120100i
\(700\) 550.543i 0.786490i
\(701\) 776.513i 1.10772i 0.832609 + 0.553861i \(0.186846\pi\)
−0.832609 + 0.553861i \(0.813154\pi\)
\(702\) −204.985 + 98.3909i −0.292002 + 0.140158i
\(703\) −119.905 −0.170562
\(704\) −155.957 −0.221531
\(705\) 294.623 + 279.784i 0.417905 + 0.396857i
\(706\) −307.328 −0.435309
\(707\) 304.126 526.761i 0.430163 0.745065i
\(708\) 450.417 + 427.732i 0.636183 + 0.604142i
\(709\) −296.950 171.444i −0.418829 0.241811i 0.275747 0.961230i \(-0.411075\pi\)
−0.694576 + 0.719419i \(0.744408\pi\)
\(710\) 47.4292 0.0668017
\(711\) −695.280 + 450.823i −0.977890 + 0.634069i
\(712\) −302.004 + 523.086i −0.424163 + 0.734672i
\(713\) −849.732 −1.19177
\(714\) −238.849 226.820i −0.334523 0.317675i
\(715\) −135.034 + 98.8345i −0.188859 + 0.138230i
\(716\) −821.056 474.037i −1.14673 0.662062i
\(717\) 50.4035 14.9108i 0.0702977 0.0207962i
\(718\) −391.696 −0.545537
\(719\) 762.050 439.970i 1.05987 0.611919i 0.134477 0.990917i \(-0.457065\pi\)
0.925397 + 0.378998i \(0.123731\pi\)
\(720\) −200.213 102.192i −0.278074 0.141933i
\(721\) 704.173 406.555i 0.976662 0.563876i
\(722\) 108.581 188.068i 0.150389 0.260482i
\(723\) −141.906 479.688i −0.196274 0.663468i
\(724\) −921.421 −1.27268
\(725\) −446.573 + 257.829i −0.615963 + 0.355626i
\(726\) −124.059 117.810i −0.170880 0.162273i
\(727\) 160.422 + 277.859i 0.220663 + 0.382199i 0.955009 0.296575i \(-0.0958446\pi\)
−0.734347 + 0.678775i \(0.762511\pi\)
\(728\) 290.259 + 396.572i 0.398708 + 0.544742i
\(729\) −112.516 720.265i −0.154343 0.988017i
\(730\) −105.137 60.7009i −0.144023 0.0831519i
\(731\) 695.017i 0.950776i
\(732\) −606.760 + 179.498i −0.828907 + 0.245215i
\(733\) −737.401 425.739i −1.00600 0.580817i −0.0959847 0.995383i \(-0.530600\pi\)
−0.910019 + 0.414566i \(0.863933\pi\)
\(734\) −165.261 −0.225151
\(735\) 50.0721 + 47.5502i 0.0681253 + 0.0646942i
\(736\) 534.623 308.665i 0.726390 0.419381i
\(737\) −340.543 + 196.612i −0.462066 + 0.266774i
\(738\) −315.646 + 204.666i −0.427704 + 0.277326i
\(739\) −213.656 123.354i −0.289115 0.166921i 0.348428 0.937336i \(-0.386716\pi\)
−0.637543 + 0.770415i \(0.720049\pi\)
\(740\) 164.205 94.8039i 0.221899 0.128113i
\(741\) 157.439 + 120.019i 0.212468 + 0.161969i
\(742\) −108.437 + 187.818i −0.146141 + 0.253124i
\(743\) −619.175 1072.44i −0.833344 1.44339i −0.895372 0.445320i \(-0.853090\pi\)
0.0620274 0.998074i \(-0.480243\pi\)
\(744\) −154.499 522.255i −0.207659 0.701956i
\(745\) −66.8165 + 115.730i −0.0896866 + 0.155342i
\(746\) −350.323 −0.469602
\(747\) −326.654 + 211.804i −0.437287 + 0.283539i
\(748\) 391.952 226.293i 0.524000 0.302531i
\(749\) 237.001 + 410.498i 0.316423 + 0.548061i
\(750\) −142.088 134.932i −0.189451 0.179909i
\(751\) −26.4038 45.7327i −0.0351581 0.0608957i 0.847911 0.530139i \(-0.177860\pi\)
−0.883069 + 0.469243i \(0.844527\pi\)
\(752\) 336.494 + 582.825i 0.447465 + 0.775033i
\(753\) −1090.58 262.233i −1.44832 0.348251i
\(754\) 87.7316 198.925i 0.116355 0.263827i
\(755\) 90.6572i 0.120076i
\(756\) −701.787 + 247.680i −0.928290 + 0.327619i
\(757\) −58.9017 + 102.021i −0.0778094 + 0.134770i −0.902305 0.431099i \(-0.858126\pi\)
0.824495 + 0.565869i \(0.191459\pi\)
\(758\) −258.309 149.135i −0.340777 0.196748i
\(759\) 384.927 + 92.5564i 0.507150 + 0.121945i
\(760\) 55.8834i 0.0735308i
\(761\) −138.383 −0.181844 −0.0909221 0.995858i \(-0.528981\pi\)
−0.0909221 + 0.995858i \(0.528981\pi\)
\(762\) 268.063 79.3010i 0.351789 0.104070i
\(763\) −388.617 + 673.105i −0.509328 + 0.882182i
\(764\) 400.701 + 231.345i 0.524478 + 0.302807i
\(765\) 443.639 22.9362i 0.579920 0.0299820i
\(766\) −197.924 −0.258387
\(767\) 687.859 + 303.365i 0.896818 + 0.395522i
\(768\) −60.1643 57.1341i −0.0783389 0.0743934i
\(769\) 748.249 432.002i 0.973015 0.561771i 0.0728610 0.997342i \(-0.476787\pi\)
0.900154 + 0.435572i \(0.143454\pi\)
\(770\) 55.5942 32.0973i 0.0722002 0.0416848i
\(771\) 1362.72 + 327.669i 1.76747 + 0.424993i
\(772\) −26.5779 + 15.3448i −0.0344273 + 0.0198766i
\(773\) 615.563 + 1066.19i 0.796329 + 1.37928i 0.921992 + 0.387210i \(0.126561\pi\)
−0.125662 + 0.992073i \(0.540106\pi\)
\(774\) −163.929 83.6720i −0.211795 0.108103i
\(775\) 738.432i 0.952816i
\(776\) −573.791 331.279i −0.739422 0.426905i
\(777\) 127.543 530.429i 0.164148 0.682663i
\(778\) 296.332 171.088i 0.380890 0.219907i
\(779\) 283.656 + 163.769i 0.364129 + 0.210230i
\(780\) −310.500 39.8809i −0.398078 0.0511294i
\(781\) 93.7533 + 162.386i 0.120043 + 0.207920i
\(782\) −163.901 + 283.884i −0.209592 + 0.363023i
\(783\) 529.565 + 453.262i 0.676329 + 0.578878i
\(784\) 57.1882 + 99.0529i 0.0729441 + 0.126343i
\(785\) 165.307 + 286.320i 0.210582 + 0.364738i
\(786\) −8.86210 29.9568i −0.0112749 0.0381129i
\(787\) 1009.74i 1.28303i −0.767112 0.641514i \(-0.778307\pi\)
0.767112 0.641514i \(-0.221693\pi\)
\(788\) 381.138 660.150i 0.483677 0.837754i
\(789\) 871.577 917.802i 1.10466 1.16325i
\(790\) 133.717 0.169263
\(791\) 616.474 1067.76i 0.779360 1.34989i
\(792\) 13.1013 + 253.409i 0.0165420 + 0.319961i
\(793\) −617.981 + 452.313i −0.779295 + 0.570382i
\(794\) 200.321 115.656i 0.252294 0.145662i
\(795\) −82.9721 280.473i −0.104367 0.352796i
\(796\) 422.334 + 731.504i 0.530571 + 0.918975i
\(797\) 44.1657i 0.0554150i 0.999616 + 0.0277075i \(0.00882070\pi\)
−0.999616 + 0.0277075i \(0.991179\pi\)
\(798\) −55.0697 52.2962i −0.0690097 0.0655340i
\(799\) −1151.80 664.994i −1.44156 0.832283i
\(800\) −268.235 464.596i −0.335294 0.580745i
\(801\) −986.013 503.275i −1.23098 0.628309i
\(802\) −136.041 235.630i −0.169627 0.293803i
\(803\) 479.950i 0.597696i
\(804\) −715.240 171.981i −0.889602 0.213907i
\(805\) 198.349 343.550i 0.246396 0.426771i
\(806\) −183.883 251.234i −0.228143 0.311705i
\(807\) −168.350 40.4800i −0.208612 0.0501611i
\(808\) 387.976i 0.480168i
\(809\) −197.784 114.191i −0.244480 0.141150i 0.372754 0.927930i \(-0.378413\pi\)
−0.617234 + 0.786780i \(0.711747\pi\)
\(810\) −47.9991 + 107.400i −0.0592582 + 0.132592i
\(811\) 773.624i 0.953914i 0.878927 + 0.476957i \(0.158260\pi\)
−0.878927 + 0.476957i \(0.841740\pi\)
\(812\) 355.800 616.264i 0.438177 0.758945i
\(813\) 106.894 + 361.338i 0.131482 + 0.444450i
\(814\) −76.0861 43.9283i −0.0934719 0.0539660i
\(815\) 36.7142i 0.0450481i
\(816\) 715.421 + 172.024i 0.876741 + 0.210814i
\(817\) 160.245i 0.196138i
\(818\) 302.971i 0.370380i
\(819\) −698.401 + 568.805i −0.852748 + 0.694512i
\(820\) −517.942 −0.631636
\(821\) 273.786 0.333478 0.166739 0.986001i \(-0.446676\pi\)
0.166739 + 0.986001i \(0.446676\pi\)
\(822\) 289.736 85.7126i 0.352477 0.104273i
\(823\) −69.6082 −0.0845786 −0.0422893 0.999105i \(-0.513465\pi\)
−0.0422893 + 0.999105i \(0.513465\pi\)
\(824\) 259.323 449.160i 0.314712 0.545097i
\(825\) 80.4331 334.508i 0.0974947 0.405464i
\(826\) −249.761 144.199i −0.302374 0.174575i
\(827\) −871.937 −1.05434 −0.527168 0.849761i \(-0.676746\pi\)
−0.527168 + 0.849761i \(0.676746\pi\)
\(828\) 402.936 + 621.427i 0.486638 + 0.750516i
\(829\) 648.756 1123.68i 0.782577 1.35546i −0.147860 0.989008i \(-0.547238\pi\)
0.930436 0.366454i \(-0.119428\pi\)
\(830\) 62.8226 0.0756899
\(831\) −769.508 + 227.643i −0.926002 + 0.273939i
\(832\) −323.090 142.492i −0.388329 0.171264i
\(833\) −195.753 113.018i −0.234997 0.135676i
\(834\) −151.267 143.649i −0.181375 0.172241i
\(835\) 558.989 0.669448
\(836\) 90.3694 52.1748i 0.108097 0.0624100i
\(837\) 941.293 332.208i 1.12460 0.396904i
\(838\) −356.902 + 206.057i −0.425897 + 0.245892i
\(839\) 224.125 388.196i 0.267134 0.462689i −0.700987 0.713174i \(-0.747257\pi\)
0.968120 + 0.250485i \(0.0805901\pi\)
\(840\) 247.214 + 59.4430i 0.294302 + 0.0707655i
\(841\) 174.490 0.207479
\(842\) 211.855 122.314i 0.251609 0.145266i
\(843\) −219.733 + 913.832i −0.260656 + 1.08402i
\(844\) −538.657 932.981i −0.638219 1.10543i
\(845\) −370.046 + 81.3757i −0.437924 + 0.0963026i
\(846\) 295.512 191.611i 0.349305 0.226491i
\(847\) −586.932 338.865i −0.692954 0.400077i
\(848\) 484.469i 0.571307i
\(849\) −158.038 + 657.255i −0.186146 + 0.774152i
\(850\) 246.700 + 142.433i 0.290236 + 0.167568i
\(851\) −542.920 −0.637979
\(852\) −82.0080 + 341.058i −0.0962535 + 0.400302i
\(853\) −1255.68 + 724.966i −1.47207 + 0.849901i −0.999507 0.0313950i \(-0.990005\pi\)
−0.472565 + 0.881296i \(0.656672\pi\)
\(854\) 254.425 146.892i 0.297921 0.172005i
\(855\) 102.287 5.28824i 0.119633 0.00618507i
\(856\) 261.838 + 151.172i 0.305885 + 0.176603i
\(857\) 322.314 186.088i 0.376096 0.217139i −0.300022 0.953932i \(-0.596994\pi\)
0.676118 + 0.736793i \(0.263661\pi\)
\(858\) 55.9333 + 133.838i 0.0651903 + 0.155988i
\(859\) 248.161 429.828i 0.288896 0.500382i −0.684651 0.728871i \(-0.740045\pi\)
0.973546 + 0.228489i \(0.0733786\pi\)
\(860\) −126.699 219.449i −0.147324 0.255173i
\(861\) −1026.20 + 1080.62i −1.19187 + 1.25508i
\(862\) −51.9667 + 90.0090i −0.0602862 + 0.104419i
\(863\) 486.822 0.564105 0.282052 0.959399i \(-0.408985\pi\)
0.282052 + 0.959399i \(0.408985\pi\)
\(864\) −471.555 + 550.938i −0.545781 + 0.637660i
\(865\) −431.392 + 249.064i −0.498719 + 0.287936i
\(866\) 94.4110 + 163.525i 0.109020 + 0.188828i
\(867\) −563.025 + 166.560i −0.649394 + 0.192110i
\(868\) −509.512 882.501i −0.586995 1.01671i
\(869\) 264.319 + 457.814i 0.304165 + 0.526829i
\(870\) −31.9088 107.862i −0.0366767 0.123979i
\(871\) −885.123 + 96.1735i −1.01622 + 0.110417i
\(872\) 495.763i 0.568535i
\(873\) 552.060 1081.59i 0.632371 1.23894i
\(874\) −37.7894 + 65.4531i −0.0432373 + 0.0748891i
\(875\) −672.231 388.113i −0.768264 0.443558i
\(876\) 618.281 651.072i 0.705800 0.743233i
\(877\) 836.834i 0.954201i 0.878849 + 0.477101i \(0.158312\pi\)
−0.878849 + 0.477101i \(0.841688\pi\)
\(878\) 325.633 0.370880
\(879\) 282.617 + 268.383i 0.321521 + 0.305328i
\(880\) −71.7015 + 124.191i −0.0814789 + 0.141126i
\(881\) 4.35223 + 2.51276i 0.00494010 + 0.00285217i 0.502468 0.864596i \(-0.332425\pi\)
−0.497528 + 0.867448i \(0.665759\pi\)
\(882\) 50.2232 32.5649i 0.0569424 0.0369217i
\(883\) 1499.62 1.69833 0.849164 0.528129i \(-0.177106\pi\)
0.849164 + 0.528129i \(0.177106\pi\)
\(884\) 1018.74 110.692i 1.15242 0.125217i
\(885\) 372.973 110.337i 0.421439 0.124674i
\(886\) −418.607 + 241.683i −0.472468 + 0.272780i
\(887\) 1069.94 617.733i 1.20625 0.696429i 0.244313 0.969696i \(-0.421438\pi\)
0.961938 + 0.273267i \(0.0881043\pi\)
\(888\) −98.7139 333.685i −0.111164 0.375771i
\(889\) 959.030 553.696i 1.07877 0.622830i
\(890\) 89.3196 + 154.706i 0.100359 + 0.173827i
\(891\) −462.589 + 47.9601i −0.519179 + 0.0538273i
\(892\) 96.2728i 0.107929i
\(893\) −265.563 153.323i −0.297383 0.171694i
\(894\) 83.9973 + 79.7668i 0.0939567 + 0.0892246i
\(895\) −514.126 + 296.831i −0.574442 + 0.331654i
\(896\) 833.593 + 481.275i 0.930350 + 0.537138i
\(897\) 712.871 + 543.436i 0.794727 + 0.605838i
\(898\) −100.855 174.686i −0.112311 0.194528i
\(899\) −477.227 + 826.582i −0.530842 + 0.919446i
\(900\) 540.031 350.159i 0.600034 0.389065i
\(901\) 478.714 + 829.157i 0.531314 + 0.920263i
\(902\) 119.997 + 207.840i 0.133034 + 0.230422i
\(903\) −708.882 170.452i −0.785030 0.188762i
\(904\) 786.441i 0.869957i
\(905\) −288.486 + 499.673i −0.318769 + 0.552125i
\(906\) 76.4068 + 18.3722i 0.0843342 + 0.0202783i
\(907\) −731.998 −0.807053 −0.403527 0.914968i \(-0.632216\pi\)
−0.403527 + 0.914968i \(0.632216\pi\)
\(908\) −608.361 + 1053.71i −0.670001 + 1.16048i
\(909\) 710.134 36.7141i 0.781225 0.0403895i
\(910\) 144.498 15.7005i 0.158789 0.0172533i
\(911\) −790.210 + 456.228i −0.867410 + 0.500799i −0.866487 0.499200i \(-0.833627\pi\)
−0.000922988 1.00000i \(0.500294\pi\)
\(912\) 164.949 + 39.6624i 0.180865 + 0.0434894i
\(913\) 124.181 + 215.089i 0.136015 + 0.235584i
\(914\) 207.895i 0.227456i
\(915\) −92.6305 + 385.235i −0.101236 + 0.421022i
\(916\) −95.6907 55.2470i −0.104466 0.0603134i
\(917\) −61.8770 107.174i −0.0674777 0.116875i
\(918\) 70.5749 378.551i 0.0768790 0.412365i
\(919\) −535.461 927.445i −0.582656 1.00919i −0.995163 0.0982351i \(-0.968680\pi\)
0.412508 0.910954i \(-0.364653\pi\)
\(920\) 253.035i 0.275039i
\(921\) −421.906 + 444.283i −0.458096 + 0.482391i
\(922\) −275.302 + 476.838i −0.298593 + 0.517178i
\(923\) 45.8597 + 422.065i 0.0496855 + 0.457275i
\(924\) 134.682 + 455.269i 0.145760 + 0.492715i
\(925\) 471.807i 0.510062i
\(926\) 403.974 + 233.234i 0.436257 + 0.251873i
\(927\) 846.663 + 432.149i 0.913336 + 0.466180i
\(928\) 693.409i 0.747208i
\(929\) −112.026 + 194.034i −0.120587 + 0.208864i −0.919999 0.391920i \(-0.871811\pi\)
0.799412 + 0.600783i \(0.205144\pi\)
\(930\) −156.613 37.6580i −0.168401 0.0404925i
\(931\) −45.1332 26.0577i −0.0484782 0.0279889i
\(932\) 138.168i 0.148249i
\(933\) −187.409 633.503i −0.200867 0.678996i
\(934\) 222.775i 0.238517i
\(935\) 283.399i 0.303101i
\(936\) −204.388 + 536.946i −0.218363 + 0.573660i
\(937\) 1048.51 1.11901 0.559505 0.828827i \(-0.310991\pi\)
0.559505 + 0.828827i \(0.310991\pi\)
\(938\) 341.548 0.364124
\(939\) −264.129 + 1098.47i −0.281288 + 1.16983i
\(940\) 484.904 0.515855
\(941\) 651.843 1129.03i 0.692713 1.19981i −0.278232 0.960514i \(-0.589749\pi\)
0.970946 0.239301i \(-0.0769182\pi\)
\(942\) 274.813 81.2979i 0.291734 0.0863035i
\(943\) 1284.37 + 741.533i 1.36201 + 0.786355i
\(944\) 644.247 0.682465
\(945\) −85.4081 + 458.114i −0.0903790 + 0.484777i
\(946\) −58.7072 + 101.684i −0.0620584 + 0.107488i
\(947\) −107.675 −0.113702 −0.0568508 0.998383i \(-0.518106\pi\)
−0.0568508 + 0.998383i \(0.518106\pi\)
\(948\) −231.206 + 961.546i −0.243888 + 1.01429i
\(949\) 438.510 994.290i 0.462076 1.04772i
\(950\) 56.8799 + 32.8396i 0.0598736 + 0.0345680i
\(951\) −259.361 + 1078.64i −0.272725 + 1.13422i
\(952\) −832.293 −0.874257
\(953\) −113.357 + 65.4469i −0.118948 + 0.0686747i −0.558294 0.829643i \(-0.688544\pi\)
0.439346 + 0.898318i \(0.355210\pi\)
\(954\) −253.200 + 13.0905i −0.265409 + 0.0137217i
\(955\) 250.910 144.863i 0.262733 0.151689i
\(956\) 31.3656 54.3268i 0.0328092 0.0568272i
\(957\) 306.218 322.458i 0.319977 0.336947i
\(958\) 50.4579 0.0526700
\(959\) 1036.57 598.463i 1.08088 0.624049i
\(960\) −175.187 + 51.8255i −0.182486 + 0.0539849i
\(961\) 202.898 + 351.430i 0.211132 + 0.365692i
\(962\) −117.489 160.521i −0.122130 0.166862i
\(963\) −251.921 + 493.562i −0.261601 + 0.512526i
\(964\) −517.026 298.505i −0.536334 0.309653i
\(965\) 19.2170i 0.0199140i
\(966\) −249.351 236.793i −0.258127 0.245127i
\(967\) 298.306 + 172.227i 0.308486 + 0.178105i 0.646249 0.763127i \(-0.276337\pi\)
−0.337763 + 0.941231i \(0.609670\pi\)
\(968\) −432.293 −0.446584
\(969\) −321.498 + 95.1088i −0.331784 + 0.0981515i
\(970\) −169.702 + 97.9777i −0.174951 + 0.101008i
\(971\) −114.391 + 66.0437i −0.117808 + 0.0680162i −0.557746 0.830012i \(-0.688334\pi\)
0.439938 + 0.898028i \(0.355000\pi\)
\(972\) −689.304 530.856i −0.709161 0.546148i
\(973\) −715.658 413.185i −0.735517 0.424651i
\(974\) 433.361 250.201i 0.444929 0.256880i
\(975\) 472.256 619.497i 0.484365 0.635381i
\(976\) −328.140 + 568.354i −0.336209 + 0.582330i
\(977\) −637.455 1104.10i −0.652461 1.13010i −0.982524 0.186137i \(-0.940403\pi\)
0.330062 0.943959i \(-0.392930\pi\)
\(978\) 30.9431 + 7.44033i 0.0316392 + 0.00760770i
\(979\) −353.116 + 611.615i −0.360691 + 0.624734i
\(980\) 82.4109 0.0840928
\(981\) −907.422 + 46.9139i −0.924997 + 0.0478226i
\(982\) 112.330 64.8540i 0.114389 0.0660428i
\(983\) −205.750 356.369i −0.209308 0.362532i 0.742189 0.670191i \(-0.233788\pi\)
−0.951497 + 0.307659i \(0.900454\pi\)
\(984\) −222.229 + 924.215i −0.225843 + 0.939243i
\(985\) −238.660 413.370i −0.242294 0.419665i
\(986\) 184.100 + 318.871i 0.186714 + 0.323398i
\(987\) 960.739 1011.69i 0.973393 1.02502i
\(988\) 234.884 25.5214i 0.237737 0.0258314i
\(989\) 725.576i 0.733646i
\(990\) 66.8436 + 34.1180i 0.0675188 + 0.0344626i
\(991\) 631.685 1094.11i 0.637422 1.10405i −0.348575 0.937281i \(-0.613334\pi\)
0.985997 0.166766i \(-0.0533324\pi\)
\(992\) −859.941 496.487i −0.866876 0.500491i
\(993\) 521.061 + 1761.35i 0.524734 + 1.77377i
\(994\) 162.865i 0.163848i
\(995\) 528.912 0.531569
\(996\) −108.624 + 451.750i −0.109060 + 0.453564i
\(997\) 572.391 991.410i 0.574113 0.994393i −0.422024 0.906585i \(-0.638680\pi\)
0.996137 0.0878088i \(-0.0279864\pi\)
\(998\) 97.5626 + 56.3278i 0.0977581 + 0.0564407i
\(999\) 601.421 212.258i 0.602023 0.212471i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.v.a.95.11 yes 52
3.2 odd 2 351.3.v.a.17.16 52
9.2 odd 6 117.3.m.a.56.11 yes 52
9.7 even 3 351.3.m.a.251.16 52
13.10 even 6 117.3.m.a.23.11 52
39.23 odd 6 351.3.m.a.179.16 52
117.88 even 6 351.3.v.a.62.16 52
117.101 odd 6 inner 117.3.v.a.101.11 yes 52
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.m.a.23.11 52 13.10 even 6
117.3.m.a.56.11 yes 52 9.2 odd 6
117.3.v.a.95.11 yes 52 1.1 even 1 trivial
117.3.v.a.101.11 yes 52 117.101 odd 6 inner
351.3.m.a.179.16 52 39.23 odd 6
351.3.m.a.251.16 52 9.7 even 3
351.3.v.a.17.16 52 3.2 odd 2
351.3.v.a.62.16 52 117.88 even 6