Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [117,4,Mod(43,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.43");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.r (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.90322347067\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(40\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
43.1 | −4.66466 | + | 2.69314i | −5.17990 | + | 0.410710i | 10.5060 | − | 18.1970i | −8.96369 | + | 5.17519i | 23.0563 | − | 15.8660i | − | 22.5801i | 70.0867i | 26.6626 | − | 4.25487i | 27.8750 | − | 48.2810i | |||
43.2 | −4.65052 | + | 2.68498i | 1.15725 | + | 5.06565i | 10.4182 | − | 18.0449i | 10.1662 | − | 5.86946i | −18.9830 | − | 20.4507i | − | 8.42000i | 68.9311i | −24.3215 | + | 11.7244i | −31.5187 | + | 54.5920i | |||
43.3 | −4.60227 | + | 2.65712i | 4.46766 | − | 2.65330i | 10.1206 | − | 17.5294i | −6.42468 | + | 3.70929i | −13.5113 | + | 24.0823i | 9.45757i | 65.0530i | 12.9200 | − | 23.7081i | 19.7121 | − | 34.1423i | ||||
43.4 | −4.03088 | + | 2.32723i | 0.353584 | − | 5.18411i | 6.83199 | − | 11.8334i | 16.7449 | − | 9.66766i | 10.6394 | + | 21.7194i | − | 10.0132i | 26.3627i | −26.7500 | − | 3.66603i | −44.9977 | + | 77.9384i | |||
43.5 | −3.77028 | + | 2.17677i | −4.76526 | − | 2.07178i | 5.47669 | − | 9.48590i | 7.24527 | − | 4.18306i | 22.4762 | − | 2.56172i | 21.7451i | 12.8576i | 18.4155 | + | 19.7451i | −18.2111 | + | 31.5426i | ||||
43.6 | −3.59142 | + | 2.07351i | −1.69070 | + | 4.91340i | 4.59887 | − | 7.96548i | −15.6155 | + | 9.01561i | −4.11595 | − | 21.1518i | 28.4248i | 4.96706i | −21.2830 | − | 16.6142i | 37.3879 | − | 64.7577i | ||||
43.7 | −3.59109 | + | 2.07331i | 4.58787 | + | 2.43956i | 4.59727 | − | 7.96270i | 4.17848 | − | 2.41245i | −21.5334 | + | 0.751409i | 15.5822i | 4.95329i | 15.0971 | + | 22.3848i | −10.0035 | + | 17.3266i | ||||
43.8 | −3.44134 | + | 1.98686i | −0.951787 | − | 5.10824i | 3.89522 | − | 6.74672i | −9.30367 | + | 5.37147i | 13.4248 | + | 15.6881i | − | 16.8418i | − | 0.832741i | −25.1882 | + | 9.72391i | 21.3447 | − | 36.9702i | ||
43.9 | −3.39094 | + | 1.95776i | −3.85298 | + | 3.48634i | 3.66566 | − | 6.34911i | 5.36534 | − | 3.09768i | 6.23981 | − | 19.3652i | 7.97770i | − | 2.61824i | 2.69089 | − | 26.8656i | −12.1290 | + | 21.0081i | |||
43.10 | −3.17897 | + | 1.83538i | 4.08181 | + | 3.21540i | 2.73723 | − | 4.74102i | −15.6805 | + | 9.05312i | −18.8774 | − | 2.72998i | − | 31.1968i | − | 9.27065i | 6.32242 | + | 26.2493i | 33.2318 | − | 57.5592i | ||
43.11 | −2.45287 | + | 1.41616i | 3.66210 | − | 3.68633i | 0.0110460 | − | 0.0191322i | −5.22947 | + | 3.01924i | −3.76221 | + | 14.2282i | 11.1486i | − | 22.5961i | −0.178006 | − | 26.9994i | 8.55148 | − | 14.8116i | |||
43.12 | −2.40967 | + | 1.39123i | −1.40720 | + | 5.00198i | −0.128983 | + | 0.223404i | 7.52439 | − | 4.34421i | −3.56799 | − | 14.0109i | − | 26.2259i | − | 22.9774i | −23.0396 | − | 14.0776i | −12.0876 | + | 20.9363i | ||
43.13 | −1.99949 | + | 1.15440i | −5.03465 | − | 1.28542i | −1.33470 | + | 2.31177i | 4.82576 | − | 2.78615i | 11.5506 | − | 3.24185i | − | 19.2427i | − | 24.6336i | 23.6954 | + | 12.9432i | −6.43269 | + | 11.1418i | ||
43.14 | −1.96456 | + | 1.13424i | 5.09919 | − | 0.999155i | −1.42699 | + | 2.47162i | 13.8137 | − | 7.97537i | −8.88439 | + | 7.74661i | − | 9.23062i | − | 24.6221i | 25.0034 | − | 10.1898i | −18.0920 | + | 31.3362i | ||
43.15 | −1.89505 | + | 1.09411i | −3.65737 | − | 3.69102i | −1.60586 | + | 2.78143i | −12.2426 | + | 7.06827i | 10.9693 | + | 2.99312i | 17.6600i | − | 24.5336i | −0.247313 | + | 26.9989i | 15.4669 | − | 26.7895i | |||
43.16 | −1.05904 | + | 0.611437i | 3.21920 | + | 4.07882i | −3.25229 | + | 5.63313i | −0.324345 | + | 0.187261i | −5.90320 | − | 2.35129i | 12.1253i | − | 17.7373i | −6.27348 | + | 26.2611i | 0.228996 | − | 0.396633i | |||
43.17 | −0.744609 | + | 0.429900i | 0.340197 | − | 5.18500i | −3.63037 | + | 6.28799i | 9.13119 | − | 5.27190i | 1.97572 | + | 4.00705i | 33.8282i | − | 13.1212i | −26.7685 | − | 3.52784i | −4.53278 | + | 7.85101i | |||
43.18 | −0.507395 | + | 0.292945i | −4.95248 | + | 1.57256i | −3.82837 | + | 6.63093i | −12.8183 | + | 7.40065i | 2.05219 | − | 2.24871i | − | 2.87637i | − | 9.17312i | 22.0541 | − | 15.5762i | 4.33596 | − | 7.51011i | ||
43.19 | −0.434777 | + | 0.251018i | −0.0491927 | + | 5.19592i | −3.87398 | + | 6.70993i | −5.67184 | + | 3.27464i | −1.28288 | − | 2.27141i | 5.82604i | − | 7.90605i | −26.9952 | − | 0.511203i | 1.64399 | − | 2.84747i | |||
43.20 | −0.379429 | + | 0.219063i | −4.38499 | + | 2.78780i | −3.90402 | + | 6.76197i | 14.8736 | − | 8.58728i | 1.05309 | − | 2.01836i | 27.3751i | − | 6.92592i | 11.4563 | − | 24.4490i | −3.76232 | + | 6.51652i | |||
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.r | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.4.r.a | yes | 80 |
3.b | odd | 2 | 1 | 351.4.r.a | 80 | ||
9.c | even | 3 | 1 | 117.4.l.a | ✓ | 80 | |
9.d | odd | 6 | 1 | 351.4.l.a | 80 | ||
13.e | even | 6 | 1 | 117.4.l.a | ✓ | 80 | |
39.h | odd | 6 | 1 | 351.4.l.a | 80 | ||
117.m | odd | 6 | 1 | 351.4.r.a | 80 | ||
117.r | even | 6 | 1 | inner | 117.4.r.a | yes | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.4.l.a | ✓ | 80 | 9.c | even | 3 | 1 | |
117.4.l.a | ✓ | 80 | 13.e | even | 6 | 1 | |
117.4.r.a | yes | 80 | 1.a | even | 1 | 1 | trivial |
117.4.r.a | yes | 80 | 117.r | even | 6 | 1 | inner |
351.4.l.a | 80 | 9.d | odd | 6 | 1 | ||
351.4.l.a | 80 | 39.h | odd | 6 | 1 | ||
351.4.r.a | 80 | 3.b | odd | 2 | 1 | ||
351.4.r.a | 80 | 117.m | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(117, [\chi])\).