Properties

Label 1170.2.i.i
Level 11701170
Weight 22
Character orbit 1170.i
Analytic conductor 9.3429.342
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1170,2,Mod(451,1170)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1170, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1170.451");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1170=232513 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1170.i (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.342497036499.34249703649
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ6+1)q2ζ6q4q5+3ζ6q7q8+(ζ61)q10+(3ζ63)q11+(ζ64)q13+3q14+(ζ61)q164ζ6q17++2ζ6q98+O(q100) q + ( - \zeta_{6} + 1) q^{2} - \zeta_{6} q^{4} - q^{5} + 3 \zeta_{6} q^{7} - q^{8} + (\zeta_{6} - 1) q^{10} + (3 \zeta_{6} - 3) q^{11} + (\zeta_{6} - 4) q^{13} + 3 q^{14} + (\zeta_{6} - 1) q^{16} - 4 \zeta_{6} q^{17} + \cdots + 2 \zeta_{6} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2q42q5+3q72q8q103q117q13+6q14q164q177q19+q20+3q224q23+2q252q26+3q288q29++2q98+O(q100) 2 q + q^{2} - q^{4} - 2 q^{5} + 3 q^{7} - 2 q^{8} - q^{10} - 3 q^{11} - 7 q^{13} + 6 q^{14} - q^{16} - 4 q^{17} - 7 q^{19} + q^{20} + 3 q^{22} - 4 q^{23} + 2 q^{25} - 2 q^{26} + 3 q^{28} - 8 q^{29}+ \cdots + 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1170Z)×\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times.

nn 911911 937937 10811081
χ(n)\chi(n) 11 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
451.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 0.866025i 0 −0.500000 0.866025i −1.00000 0 1.50000 + 2.59808i −1.00000 0 −0.500000 + 0.866025i
991.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i −1.00000 0 1.50000 2.59808i −1.00000 0 −0.500000 0.866025i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1170.2.i.i 2
3.b odd 2 1 130.2.e.a 2
12.b even 2 1 1040.2.q.h 2
13.c even 3 1 inner 1170.2.i.i 2
15.d odd 2 1 650.2.e.b 2
15.e even 4 2 650.2.o.d 4
39.d odd 2 1 1690.2.e.h 2
39.f even 4 2 1690.2.l.e 4
39.h odd 6 1 1690.2.a.c 1
39.h odd 6 1 1690.2.e.h 2
39.i odd 6 1 130.2.e.a 2
39.i odd 6 1 1690.2.a.h 1
39.k even 12 2 1690.2.d.c 2
39.k even 12 2 1690.2.l.e 4
156.p even 6 1 1040.2.q.h 2
195.x odd 6 1 650.2.e.b 2
195.x odd 6 1 8450.2.a.g 1
195.y odd 6 1 8450.2.a.q 1
195.bl even 12 2 650.2.o.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.e.a 2 3.b odd 2 1
130.2.e.a 2 39.i odd 6 1
650.2.e.b 2 15.d odd 2 1
650.2.e.b 2 195.x odd 6 1
650.2.o.d 4 15.e even 4 2
650.2.o.d 4 195.bl even 12 2
1040.2.q.h 2 12.b even 2 1
1040.2.q.h 2 156.p even 6 1
1170.2.i.i 2 1.a even 1 1 trivial
1170.2.i.i 2 13.c even 3 1 inner
1690.2.a.c 1 39.h odd 6 1
1690.2.a.h 1 39.i odd 6 1
1690.2.d.c 2 39.k even 12 2
1690.2.e.h 2 39.d odd 2 1
1690.2.e.h 2 39.h odd 6 1
1690.2.l.e 4 39.f even 4 2
1690.2.l.e 4 39.k even 12 2
8450.2.a.g 1 195.x odd 6 1
8450.2.a.q 1 195.y odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1170,[χ])S_{2}^{\mathrm{new}}(1170, [\chi]):

T723T7+9 T_{7}^{2} - 3T_{7} + 9 Copy content Toggle raw display
T112+3T11+9 T_{11}^{2} + 3T_{11} + 9 Copy content Toggle raw display
T292+8T29+64 T_{29}^{2} + 8T_{29} + 64 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
77 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
1111 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
1313 T2+7T+13 T^{2} + 7T + 13 Copy content Toggle raw display
1717 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
1919 T2+7T+49 T^{2} + 7T + 49 Copy content Toggle raw display
2323 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
2929 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
3131 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
3737 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
4141 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
4343 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
4747 (T1)2 (T - 1)^{2} Copy content Toggle raw display
5353 (T9)2 (T - 9)^{2} Copy content Toggle raw display
5959 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
6161 T214T+196 T^{2} - 14T + 196 Copy content Toggle raw display
6767 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
7171 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
7373 (T4)2 (T - 4)^{2} Copy content Toggle raw display
7979 (T10)2 (T - 10)^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
9797 T2+16T+256 T^{2} + 16T + 256 Copy content Toggle raw display
show more
show less