Properties

Label 1176.2.c.e.589.6
Level $1176$
Weight $2$
Character 1176.589
Analytic conductor $9.390$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1176,2,Mod(589,1176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1176.589");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1176.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.39040727770\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + x^{14} - 2 x^{13} - 2 x^{12} - 4 x^{11} - 2 x^{10} + 16 x^{9} + 8 x^{8} + 32 x^{7} - 8 x^{6} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 589.6
Root \(-0.865014 - 1.11882i\) of defining polynomial
Character \(\chi\) \(=\) 1176.589
Dual form 1176.2.c.e.589.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.11882 + 0.865014i) q^{2} -1.00000i q^{3} +(0.503501 - 1.93558i) q^{4} -3.57776i q^{5} +(0.865014 + 1.11882i) q^{6} +(1.11098 + 2.60110i) q^{8} -1.00000 q^{9} +O(q^{10})\) \(q+(-1.11882 + 0.865014i) q^{2} -1.00000i q^{3} +(0.503501 - 1.93558i) q^{4} -3.57776i q^{5} +(0.865014 + 1.11882i) q^{6} +(1.11098 + 2.60110i) q^{8} -1.00000 q^{9} +(3.09481 + 4.00286i) q^{10} -0.941967i q^{11} +(-1.93558 - 0.503501i) q^{12} -6.15117i q^{13} -3.57776 q^{15} +(-3.49297 - 1.94914i) q^{16} -3.78375 q^{17} +(1.11882 - 0.865014i) q^{18} -2.41460i q^{19} +(-6.92506 - 1.80141i) q^{20} +(0.814815 + 1.05389i) q^{22} +2.98743 q^{23} +(2.60110 - 1.11098i) q^{24} -7.80037 q^{25} +(5.32085 + 6.88203i) q^{26} +1.00000i q^{27} +2.68125i q^{29} +(4.00286 - 3.09481i) q^{30} +10.7137 q^{31} +(5.59403 - 0.840746i) q^{32} -0.941967 q^{33} +(4.23332 - 3.27300i) q^{34} +(-0.503501 + 1.93558i) q^{36} +1.70724i q^{37} +(2.08866 + 2.70149i) q^{38} -6.15117 q^{39} +(9.30611 - 3.97483i) q^{40} -4.56000 q^{41} -3.50672i q^{43} +(-1.82326 - 0.474281i) q^{44} +3.57776i q^{45} +(-3.34238 + 2.58417i) q^{46} -6.84583 q^{47} +(-1.94914 + 3.49297i) q^{48} +(8.72718 - 6.74743i) q^{50} +3.78375i q^{51} +(-11.9061 - 3.09712i) q^{52} +7.59176i q^{53} +(-0.865014 - 1.11882i) q^{54} -3.37013 q^{55} -2.41460 q^{57} +(-2.31932 - 2.99983i) q^{58} +0.116189i q^{59} +(-1.80141 + 6.92506i) q^{60} +8.15432i q^{61} +(-11.9867 + 9.26752i) q^{62} +(-5.53143 + 5.77955i) q^{64} -22.0074 q^{65} +(1.05389 - 0.814815i) q^{66} -3.97580i q^{67} +(-1.90512 + 7.32377i) q^{68} -2.98743i q^{69} -3.92572 q^{71} +(-1.11098 - 2.60110i) q^{72} +6.22876 q^{73} +(-1.47678 - 1.91008i) q^{74} +7.80037i q^{75} +(-4.67365 - 1.21575i) q^{76} +(6.88203 - 5.32085i) q^{78} -5.47255 q^{79} +(-6.97354 + 12.4970i) q^{80} +1.00000 q^{81} +(5.10180 - 3.94446i) q^{82} +1.19560i q^{83} +13.5373i q^{85} +(3.03337 + 3.92338i) q^{86} +2.68125 q^{87} +(2.45015 - 1.04651i) q^{88} -1.82102 q^{89} +(-3.09481 - 4.00286i) q^{90} +(1.50417 - 5.78242i) q^{92} -10.7137i q^{93} +(7.65923 - 5.92174i) q^{94} -8.63884 q^{95} +(-0.840746 - 5.59403i) q^{96} +12.0241 q^{97} +0.941967i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} + 2 q^{4} - 8 q^{8} - 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 2 q^{2} + 2 q^{4} - 8 q^{8} - 16 q^{9} - 6 q^{10} + 10 q^{16} + 2 q^{18} - 20 q^{20} - 6 q^{22} + 8 q^{23} + 6 q^{24} - 16 q^{25} - 6 q^{26} + 8 q^{30} + 24 q^{31} + 8 q^{32} - 12 q^{34} - 2 q^{36} + 26 q^{38} + 6 q^{40} - 20 q^{44} - 16 q^{46} + 24 q^{47} - 8 q^{48} + 26 q^{50} - 44 q^{52} - 32 q^{55} - 8 q^{57} - 34 q^{58} + 22 q^{60} + 50 q^{62} - 10 q^{64} - 12 q^{66} - 16 q^{68} - 40 q^{71} + 8 q^{72} - 8 q^{73} - 10 q^{74} - 16 q^{76} + 6 q^{78} - 8 q^{79} + 56 q^{80} + 16 q^{81} + 22 q^{86} - 24 q^{87} - 50 q^{88} + 6 q^{90} + 32 q^{92} + 48 q^{94} - 24 q^{95} - 10 q^{96} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1176\mathbb{Z}\right)^\times\).

\(n\) \(295\) \(589\) \(785\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.11882 + 0.865014i −0.791123 + 0.611657i
\(3\) 1.00000i 0.577350i
\(4\) 0.503501 1.93558i 0.251750 0.967792i
\(5\) 3.57776i 1.60002i −0.599985 0.800012i \(-0.704827\pi\)
0.599985 0.800012i \(-0.295173\pi\)
\(6\) 0.865014 + 1.11882i 0.353141 + 0.456755i
\(7\) 0 0
\(8\) 1.11098 + 2.60110i 0.392792 + 0.919627i
\(9\) −1.00000 −0.333333
\(10\) 3.09481 + 4.00286i 0.978666 + 1.26581i
\(11\) 0.941967i 0.284014i −0.989866 0.142007i \(-0.954644\pi\)
0.989866 0.142007i \(-0.0453555\pi\)
\(12\) −1.93558 0.503501i −0.558755 0.145348i
\(13\) 6.15117i 1.70603i −0.521889 0.853013i \(-0.674772\pi\)
0.521889 0.853013i \(-0.325228\pi\)
\(14\) 0 0
\(15\) −3.57776 −0.923774
\(16\) −3.49297 1.94914i −0.873243 0.487284i
\(17\) −3.78375 −0.917694 −0.458847 0.888515i \(-0.651737\pi\)
−0.458847 + 0.888515i \(0.651737\pi\)
\(18\) 1.11882 0.865014i 0.263708 0.203886i
\(19\) 2.41460i 0.553946i −0.960878 0.276973i \(-0.910669\pi\)
0.960878 0.276973i \(-0.0893313\pi\)
\(20\) −6.92506 1.80141i −1.54849 0.402806i
\(21\) 0 0
\(22\) 0.814815 + 1.05389i 0.173719 + 0.224690i
\(23\) 2.98743 0.622922 0.311461 0.950259i \(-0.399182\pi\)
0.311461 + 0.950259i \(0.399182\pi\)
\(24\) 2.60110 1.11098i 0.530947 0.226778i
\(25\) −7.80037 −1.56007
\(26\) 5.32085 + 6.88203i 1.04350 + 1.34968i
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 2.68125i 0.497897i 0.968517 + 0.248948i \(0.0800849\pi\)
−0.968517 + 0.248948i \(0.919915\pi\)
\(30\) 4.00286 3.09481i 0.730818 0.565033i
\(31\) 10.7137 1.92424 0.962120 0.272625i \(-0.0878919\pi\)
0.962120 + 0.272625i \(0.0878919\pi\)
\(32\) 5.59403 0.840746i 0.988894 0.148624i
\(33\) −0.941967 −0.163975
\(34\) 4.23332 3.27300i 0.726009 0.561314i
\(35\) 0 0
\(36\) −0.503501 + 1.93558i −0.0839168 + 0.322597i
\(37\) 1.70724i 0.280668i 0.990104 + 0.140334i \(0.0448176\pi\)
−0.990104 + 0.140334i \(0.955182\pi\)
\(38\) 2.08866 + 2.70149i 0.338825 + 0.438239i
\(39\) −6.15117 −0.984975
\(40\) 9.30611 3.97483i 1.47143 0.628476i
\(41\) −4.56000 −0.712152 −0.356076 0.934457i \(-0.615886\pi\)
−0.356076 + 0.934457i \(0.615886\pi\)
\(42\) 0 0
\(43\) 3.50672i 0.534770i −0.963590 0.267385i \(-0.913840\pi\)
0.963590 0.267385i \(-0.0861596\pi\)
\(44\) −1.82326 0.474281i −0.274866 0.0715006i
\(45\) 3.57776i 0.533341i
\(46\) −3.34238 + 2.58417i −0.492808 + 0.381015i
\(47\) −6.84583 −0.998567 −0.499284 0.866439i \(-0.666403\pi\)
−0.499284 + 0.866439i \(0.666403\pi\)
\(48\) −1.94914 + 3.49297i −0.281334 + 0.504167i
\(49\) 0 0
\(50\) 8.72718 6.74743i 1.23421 0.954231i
\(51\) 3.78375i 0.529831i
\(52\) −11.9061 3.09712i −1.65108 0.429493i
\(53\) 7.59176i 1.04281i 0.853310 + 0.521404i \(0.174592\pi\)
−0.853310 + 0.521404i \(0.825408\pi\)
\(54\) −0.865014 1.11882i −0.117714 0.152252i
\(55\) −3.37013 −0.454429
\(56\) 0 0
\(57\) −2.41460 −0.319821
\(58\) −2.31932 2.99983i −0.304542 0.393897i
\(59\) 0.116189i 0.0151266i 0.999971 + 0.00756328i \(0.00240749\pi\)
−0.999971 + 0.00756328i \(0.997593\pi\)
\(60\) −1.80141 + 6.92506i −0.232560 + 0.894021i
\(61\) 8.15432i 1.04405i 0.852929 + 0.522027i \(0.174824\pi\)
−0.852929 + 0.522027i \(0.825176\pi\)
\(62\) −11.9867 + 9.26752i −1.52231 + 1.17698i
\(63\) 0 0
\(64\) −5.53143 + 5.77955i −0.691429 + 0.722444i
\(65\) −22.0074 −2.72968
\(66\) 1.05389 0.814815i 0.129725 0.100297i
\(67\) 3.97580i 0.485721i −0.970061 0.242861i \(-0.921914\pi\)
0.970061 0.242861i \(-0.0780857\pi\)
\(68\) −1.90512 + 7.32377i −0.231030 + 0.888137i
\(69\) 2.98743i 0.359644i
\(70\) 0 0
\(71\) −3.92572 −0.465897 −0.232949 0.972489i \(-0.574837\pi\)
−0.232949 + 0.972489i \(0.574837\pi\)
\(72\) −1.11098 2.60110i −0.130931 0.306542i
\(73\) 6.22876 0.729022 0.364511 0.931199i \(-0.381236\pi\)
0.364511 + 0.931199i \(0.381236\pi\)
\(74\) −1.47678 1.91008i −0.171673 0.222043i
\(75\) 7.80037i 0.900709i
\(76\) −4.67365 1.21575i −0.536105 0.139456i
\(77\) 0 0
\(78\) 6.88203 5.32085i 0.779236 0.602467i
\(79\) −5.47255 −0.615710 −0.307855 0.951433i \(-0.599611\pi\)
−0.307855 + 0.951433i \(0.599611\pi\)
\(80\) −6.97354 + 12.4970i −0.779666 + 1.39721i
\(81\) 1.00000 0.111111
\(82\) 5.10180 3.94446i 0.563400 0.435593i
\(83\) 1.19560i 0.131234i 0.997845 + 0.0656172i \(0.0209016\pi\)
−0.997845 + 0.0656172i \(0.979098\pi\)
\(84\) 0 0
\(85\) 13.5373i 1.46833i
\(86\) 3.03337 + 3.92338i 0.327096 + 0.423069i
\(87\) 2.68125 0.287461
\(88\) 2.45015 1.04651i 0.261187 0.111558i
\(89\) −1.82102 −0.193028 −0.0965138 0.995332i \(-0.530769\pi\)
−0.0965138 + 0.995332i \(0.530769\pi\)
\(90\) −3.09481 4.00286i −0.326222 0.421938i
\(91\) 0 0
\(92\) 1.50417 5.78242i 0.156821 0.602859i
\(93\) 10.7137i 1.11096i
\(94\) 7.65923 5.92174i 0.789989 0.610781i
\(95\) −8.63884 −0.886327
\(96\) −0.840746 5.59403i −0.0858082 0.570938i
\(97\) 12.0241 1.22086 0.610431 0.792069i \(-0.290996\pi\)
0.610431 + 0.792069i \(0.290996\pi\)
\(98\) 0 0
\(99\) 0.941967i 0.0946713i
\(100\) −3.92749 + 15.0983i −0.392749 + 1.50983i
\(101\) 1.78101i 0.177217i 0.996067 + 0.0886085i \(0.0282420\pi\)
−0.996067 + 0.0886085i \(0.971758\pi\)
\(102\) −3.27300 4.23332i −0.324075 0.419161i
\(103\) −12.4230 −1.22407 −0.612037 0.790829i \(-0.709650\pi\)
−0.612037 + 0.790829i \(0.709650\pi\)
\(104\) 15.9998 6.83384i 1.56891 0.670113i
\(105\) 0 0
\(106\) −6.56698 8.49379i −0.637842 0.824990i
\(107\) 9.71411i 0.939098i −0.882906 0.469549i \(-0.844417\pi\)
0.882906 0.469549i \(-0.155583\pi\)
\(108\) 1.93558 + 0.503501i 0.186252 + 0.0484494i
\(109\) 14.2775i 1.36753i −0.729700 0.683767i \(-0.760340\pi\)
0.729700 0.683767i \(-0.239660\pi\)
\(110\) 3.77056 2.91521i 0.359509 0.277955i
\(111\) 1.70724 0.162044
\(112\) 0 0
\(113\) −13.8775 −1.30549 −0.652743 0.757580i \(-0.726382\pi\)
−0.652743 + 0.757580i \(0.726382\pi\)
\(114\) 2.70149 2.08866i 0.253018 0.195621i
\(115\) 10.6883i 0.996690i
\(116\) 5.18980 + 1.35001i 0.481860 + 0.125346i
\(117\) 6.15117i 0.568676i
\(118\) −0.100505 0.129995i −0.00925228 0.0119670i
\(119\) 0 0
\(120\) −3.97483 9.30611i −0.362851 0.849528i
\(121\) 10.1127 0.919336
\(122\) −7.05360 9.12318i −0.638603 0.825974i
\(123\) 4.56000i 0.411161i
\(124\) 5.39437 20.7373i 0.484428 1.86227i
\(125\) 10.0191i 0.896131i
\(126\) 0 0
\(127\) 7.77389 0.689822 0.344911 0.938635i \(-0.387909\pi\)
0.344911 + 0.938635i \(0.387909\pi\)
\(128\) 1.18926 11.2510i 0.105117 0.994460i
\(129\) −3.50672 −0.308750
\(130\) 24.6222 19.0367i 2.15951 1.66963i
\(131\) 7.04522i 0.615543i 0.951460 + 0.307772i \(0.0995833\pi\)
−0.951460 + 0.307772i \(0.900417\pi\)
\(132\) −0.474281 + 1.82326i −0.0412809 + 0.158694i
\(133\) 0 0
\(134\) 3.43912 + 4.44819i 0.297095 + 0.384265i
\(135\) 3.57776 0.307925
\(136\) −4.20368 9.84191i −0.360463 0.843937i
\(137\) −18.1076 −1.54704 −0.773518 0.633775i \(-0.781505\pi\)
−0.773518 + 0.633775i \(0.781505\pi\)
\(138\) 2.58417 + 3.34238i 0.219979 + 0.284523i
\(139\) 8.32721i 0.706305i −0.935566 0.353152i \(-0.885110\pi\)
0.935566 0.353152i \(-0.114890\pi\)
\(140\) 0 0
\(141\) 6.84583i 0.576523i
\(142\) 4.39216 3.39580i 0.368582 0.284969i
\(143\) −5.79420 −0.484535
\(144\) 3.49297 + 1.94914i 0.291081 + 0.162428i
\(145\) 9.59289 0.796646
\(146\) −6.96884 + 5.38797i −0.576746 + 0.445911i
\(147\) 0 0
\(148\) 3.30450 + 0.859595i 0.271628 + 0.0706582i
\(149\) 20.7056i 1.69627i 0.529782 + 0.848134i \(0.322274\pi\)
−0.529782 + 0.848134i \(0.677726\pi\)
\(150\) −6.74743 8.72718i −0.550925 0.712572i
\(151\) 3.95566 0.321907 0.160954 0.986962i \(-0.448543\pi\)
0.160954 + 0.986962i \(0.448543\pi\)
\(152\) 6.28060 2.68257i 0.509424 0.217585i
\(153\) 3.78375 0.305898
\(154\) 0 0
\(155\) 38.3311i 3.07883i
\(156\) −3.09712 + 11.9061i −0.247968 + 0.953251i
\(157\) 11.8706i 0.947381i 0.880691 + 0.473690i \(0.157078\pi\)
−0.880691 + 0.473690i \(0.842922\pi\)
\(158\) 6.12278 4.73383i 0.487102 0.376604i
\(159\) 7.59176 0.602066
\(160\) −3.00799 20.0141i −0.237802 1.58225i
\(161\) 0 0
\(162\) −1.11882 + 0.865014i −0.0879025 + 0.0679619i
\(163\) 17.0530i 1.33569i −0.744299 0.667846i \(-0.767216\pi\)
0.744299 0.667846i \(-0.232784\pi\)
\(164\) −2.29596 + 8.82626i −0.179285 + 0.689215i
\(165\) 3.37013i 0.262365i
\(166\) −1.03421 1.33766i −0.0802705 0.103823i
\(167\) 10.4339 0.807396 0.403698 0.914892i \(-0.367725\pi\)
0.403698 + 0.914892i \(0.367725\pi\)
\(168\) 0 0
\(169\) −24.8369 −1.91053
\(170\) −11.7100 15.1458i −0.898116 1.16163i
\(171\) 2.41460i 0.184649i
\(172\) −6.78756 1.76564i −0.517547 0.134629i
\(173\) 14.5742i 1.10805i −0.832499 0.554027i \(-0.813091\pi\)
0.832499 0.554027i \(-0.186909\pi\)
\(174\) −2.99983 + 2.31932i −0.227417 + 0.175827i
\(175\) 0 0
\(176\) −1.83602 + 3.29027i −0.138395 + 0.248013i
\(177\) 0.116189 0.00873333
\(178\) 2.03738 1.57521i 0.152708 0.118067i
\(179\) 3.77961i 0.282501i 0.989974 + 0.141251i \(0.0451123\pi\)
−0.989974 + 0.141251i \(0.954888\pi\)
\(180\) 6.92506 + 1.80141i 0.516163 + 0.134269i
\(181\) 1.12363i 0.0835189i 0.999128 + 0.0417595i \(0.0132963\pi\)
−0.999128 + 0.0417595i \(0.986704\pi\)
\(182\) 0 0
\(183\) 8.15432 0.602784
\(184\) 3.31898 + 7.77060i 0.244679 + 0.572856i
\(185\) 6.10808 0.449075
\(186\) 9.26752 + 11.9867i 0.679527 + 0.878906i
\(187\) 3.56417i 0.260638i
\(188\) −3.44688 + 13.2507i −0.251390 + 0.966406i
\(189\) 0 0
\(190\) 9.66528 7.47272i 0.701193 0.542128i
\(191\) 14.0300 1.01518 0.507589 0.861600i \(-0.330537\pi\)
0.507589 + 0.861600i \(0.330537\pi\)
\(192\) 5.77955 + 5.53143i 0.417103 + 0.399197i
\(193\) 0.780195 0.0561597 0.0280798 0.999606i \(-0.491061\pi\)
0.0280798 + 0.999606i \(0.491061\pi\)
\(194\) −13.4528 + 10.4010i −0.965852 + 0.746750i
\(195\) 22.0074i 1.57598i
\(196\) 0 0
\(197\) 2.37637i 0.169309i 0.996410 + 0.0846545i \(0.0269787\pi\)
−0.996410 + 0.0846545i \(0.973021\pi\)
\(198\) −0.814815 1.05389i −0.0579064 0.0748966i
\(199\) −13.5839 −0.962938 −0.481469 0.876463i \(-0.659897\pi\)
−0.481469 + 0.876463i \(0.659897\pi\)
\(200\) −8.66608 20.2895i −0.612784 1.43469i
\(201\) −3.97580 −0.280431
\(202\) −1.54060 1.99262i −0.108396 0.140200i
\(203\) 0 0
\(204\) 7.32377 + 1.90512i 0.512766 + 0.133385i
\(205\) 16.3146i 1.13946i
\(206\) 13.8991 10.7461i 0.968393 0.748714i
\(207\) −2.98743 −0.207641
\(208\) −11.9895 + 21.4859i −0.831320 + 1.48978i
\(209\) −2.27447 −0.157328
\(210\) 0 0
\(211\) 14.1932i 0.977103i 0.872535 + 0.488551i \(0.162474\pi\)
−0.872535 + 0.488551i \(0.837526\pi\)
\(212\) 14.6945 + 3.82246i 1.00922 + 0.262528i
\(213\) 3.92572i 0.268986i
\(214\) 8.40284 + 10.8683i 0.574406 + 0.742942i
\(215\) −12.5462 −0.855645
\(216\) −2.60110 + 1.11098i −0.176982 + 0.0755928i
\(217\) 0 0
\(218\) 12.3502 + 15.9739i 0.836462 + 1.08189i
\(219\) 6.22876i 0.420901i
\(220\) −1.69687 + 6.52318i −0.114403 + 0.439793i
\(221\) 23.2745i 1.56561i
\(222\) −1.91008 + 1.47678i −0.128196 + 0.0991152i
\(223\) −0.198178 −0.0132710 −0.00663548 0.999978i \(-0.502112\pi\)
−0.00663548 + 0.999978i \(0.502112\pi\)
\(224\) 0 0
\(225\) 7.80037 0.520025
\(226\) 15.5264 12.0042i 1.03280 0.798510i
\(227\) 25.7560i 1.70949i −0.519050 0.854744i \(-0.673714\pi\)
0.519050 0.854744i \(-0.326286\pi\)
\(228\) −1.21575 + 4.67365i −0.0805151 + 0.309520i
\(229\) 16.1617i 1.06800i −0.845485 0.533999i \(-0.820689\pi\)
0.845485 0.533999i \(-0.179311\pi\)
\(230\) 9.24554 + 11.9583i 0.609633 + 0.788504i
\(231\) 0 0
\(232\) −6.97421 + 2.97883i −0.457879 + 0.195570i
\(233\) 25.1239 1.64592 0.822959 0.568100i \(-0.192321\pi\)
0.822959 + 0.568100i \(0.192321\pi\)
\(234\) −5.32085 6.88203i −0.347835 0.449892i
\(235\) 24.4927i 1.59773i
\(236\) 0.224894 + 0.0585014i 0.0146394 + 0.00380812i
\(237\) 5.47255i 0.355480i
\(238\) 0 0
\(239\) 16.0389 1.03747 0.518736 0.854935i \(-0.326403\pi\)
0.518736 + 0.854935i \(0.326403\pi\)
\(240\) 12.4970 + 6.97354i 0.806679 + 0.450140i
\(241\) −13.1691 −0.848293 −0.424147 0.905594i \(-0.639426\pi\)
−0.424147 + 0.905594i \(0.639426\pi\)
\(242\) −11.3143 + 8.74763i −0.727308 + 0.562319i
\(243\) 1.00000i 0.0641500i
\(244\) 15.7834 + 4.10570i 1.01043 + 0.262841i
\(245\) 0 0
\(246\) −3.94446 5.10180i −0.251490 0.325279i
\(247\) −14.8526 −0.945047
\(248\) 11.9028 + 27.8674i 0.755826 + 1.76958i
\(249\) 1.19560 0.0757683
\(250\) −8.66662 11.2095i −0.548125 0.708950i
\(251\) 8.64704i 0.545796i −0.962043 0.272898i \(-0.912018\pi\)
0.962043 0.272898i \(-0.0879822\pi\)
\(252\) 0 0
\(253\) 2.81406i 0.176918i
\(254\) −8.69756 + 6.72453i −0.545733 + 0.421934i
\(255\) 13.5373 0.847742
\(256\) 8.40173 + 13.6166i 0.525108 + 0.851035i
\(257\) −14.4651 −0.902307 −0.451154 0.892446i \(-0.648987\pi\)
−0.451154 + 0.892446i \(0.648987\pi\)
\(258\) 3.92338 3.03337i 0.244259 0.188849i
\(259\) 0 0
\(260\) −11.0807 + 42.5972i −0.687199 + 2.64177i
\(261\) 2.68125i 0.165966i
\(262\) −6.09421 7.88230i −0.376502 0.486970i
\(263\) 19.8967 1.22688 0.613440 0.789741i \(-0.289785\pi\)
0.613440 + 0.789741i \(0.289785\pi\)
\(264\) −1.04651 2.45015i −0.0644082 0.150796i
\(265\) 27.1615 1.66852
\(266\) 0 0
\(267\) 1.82102i 0.111444i
\(268\) −7.69549 2.00182i −0.470077 0.122280i
\(269\) 16.9660i 1.03443i −0.855854 0.517217i \(-0.826968\pi\)
0.855854 0.517217i \(-0.173032\pi\)
\(270\) −4.00286 + 3.09481i −0.243606 + 0.188344i
\(271\) 1.07637 0.0653849 0.0326925 0.999465i \(-0.489592\pi\)
0.0326925 + 0.999465i \(0.489592\pi\)
\(272\) 13.2165 + 7.37504i 0.801370 + 0.447178i
\(273\) 0 0
\(274\) 20.2591 15.6633i 1.22390 0.946256i
\(275\) 7.34769i 0.443083i
\(276\) −5.78242 1.50417i −0.348061 0.0905406i
\(277\) 4.89143i 0.293898i −0.989144 0.146949i \(-0.953055\pi\)
0.989144 0.146949i \(-0.0469453\pi\)
\(278\) 7.20315 + 9.31662i 0.432016 + 0.558774i
\(279\) −10.7137 −0.641414
\(280\) 0 0
\(281\) −0.754188 −0.0449911 −0.0224956 0.999747i \(-0.507161\pi\)
−0.0224956 + 0.999747i \(0.507161\pi\)
\(282\) −5.92174 7.65923i −0.352635 0.456101i
\(283\) 19.4302i 1.15501i −0.816389 0.577503i \(-0.804027\pi\)
0.816389 0.577503i \(-0.195973\pi\)
\(284\) −1.97660 + 7.59856i −0.117290 + 0.450892i
\(285\) 8.63884i 0.511721i
\(286\) 6.48265 5.01206i 0.383327 0.296370i
\(287\) 0 0
\(288\) −5.59403 + 0.840746i −0.329631 + 0.0495414i
\(289\) −2.68324 −0.157838
\(290\) −10.7327 + 8.29798i −0.630245 + 0.487274i
\(291\) 12.0241i 0.704865i
\(292\) 3.13619 12.0563i 0.183531 0.705541i
\(293\) 21.9433i 1.28194i −0.767564 0.640972i \(-0.778532\pi\)
0.767564 0.640972i \(-0.221468\pi\)
\(294\) 0 0
\(295\) 0.415698 0.0242029
\(296\) −4.44069 + 1.89671i −0.258110 + 0.110244i
\(297\) 0.941967 0.0546585
\(298\) −17.9106 23.1658i −1.03753 1.34196i
\(299\) 18.3762i 1.06272i
\(300\) 15.0983 + 3.92749i 0.871699 + 0.226754i
\(301\) 0 0
\(302\) −4.42566 + 3.42170i −0.254668 + 0.196897i
\(303\) 1.78101 0.102316
\(304\) −4.70638 + 8.43412i −0.269929 + 0.483730i
\(305\) 29.1742 1.67051
\(306\) −4.23332 + 3.27300i −0.242003 + 0.187105i
\(307\) 2.18555i 0.124736i −0.998053 0.0623679i \(-0.980135\pi\)
0.998053 0.0623679i \(-0.0198652\pi\)
\(308\) 0 0
\(309\) 12.4230i 0.706720i
\(310\) 33.1570 + 42.8855i 1.88319 + 2.43573i
\(311\) 27.2685 1.54626 0.773129 0.634249i \(-0.218691\pi\)
0.773129 + 0.634249i \(0.218691\pi\)
\(312\) −6.83384 15.9998i −0.386890 0.905810i
\(313\) −1.36654 −0.0772412 −0.0386206 0.999254i \(-0.512296\pi\)
−0.0386206 + 0.999254i \(0.512296\pi\)
\(314\) −10.2683 13.2811i −0.579472 0.749494i
\(315\) 0 0
\(316\) −2.75543 + 10.5926i −0.155005 + 0.595879i
\(317\) 8.19107i 0.460056i 0.973184 + 0.230028i \(0.0738819\pi\)
−0.973184 + 0.230028i \(0.926118\pi\)
\(318\) −8.49379 + 6.56698i −0.476308 + 0.368258i
\(319\) 2.52565 0.141410
\(320\) 20.6779 + 19.7901i 1.15593 + 1.10630i
\(321\) −9.71411 −0.542189
\(322\) 0 0
\(323\) 9.13622i 0.508353i
\(324\) 0.503501 1.93558i 0.0279723 0.107532i
\(325\) 47.9814i 2.66153i
\(326\) 14.7511 + 19.0792i 0.816987 + 1.05670i
\(327\) −14.2775 −0.789546
\(328\) −5.06608 11.8610i −0.279727 0.654914i
\(329\) 0 0
\(330\) −2.91521 3.77056i −0.160477 0.207563i
\(331\) 15.4318i 0.848208i 0.905613 + 0.424104i \(0.139411\pi\)
−0.905613 + 0.424104i \(0.860589\pi\)
\(332\) 2.31419 + 0.601987i 0.127008 + 0.0330383i
\(333\) 1.70724i 0.0935559i
\(334\) −11.6736 + 9.02543i −0.638749 + 0.493850i
\(335\) −14.2245 −0.777165
\(336\) 0 0
\(337\) −0.543923 −0.0296294 −0.0148147 0.999890i \(-0.504716\pi\)
−0.0148147 + 0.999890i \(0.504716\pi\)
\(338\) 27.7879 21.4842i 1.51146 1.16859i
\(339\) 13.8775i 0.753722i
\(340\) 26.2027 + 6.81607i 1.42104 + 0.369653i
\(341\) 10.0920i 0.546511i
\(342\) −2.08866 2.70149i −0.112942 0.146080i
\(343\) 0 0
\(344\) 9.12134 3.89591i 0.491790 0.210053i
\(345\) −10.6883 −0.575439
\(346\) 12.6069 + 16.3058i 0.677749 + 0.876606i
\(347\) 11.4632i 0.615375i −0.951487 0.307688i \(-0.900445\pi\)
0.951487 0.307688i \(-0.0995552\pi\)
\(348\) 1.35001 5.18980i 0.0723684 0.278202i
\(349\) 1.23092i 0.0658899i 0.999457 + 0.0329449i \(0.0104886\pi\)
−0.999457 + 0.0329449i \(0.989511\pi\)
\(350\) 0 0
\(351\) 6.15117 0.328325
\(352\) −0.791955 5.26939i −0.0422113 0.280860i
\(353\) −34.2183 −1.82126 −0.910628 0.413228i \(-0.864401\pi\)
−0.910628 + 0.413228i \(0.864401\pi\)
\(354\) −0.129995 + 0.100505i −0.00690913 + 0.00534180i
\(355\) 14.0453i 0.745446i
\(356\) −0.916884 + 3.52473i −0.0485948 + 0.186811i
\(357\) 0 0
\(358\) −3.26941 4.22869i −0.172794 0.223493i
\(359\) 33.9072 1.78955 0.894777 0.446513i \(-0.147334\pi\)
0.894777 + 0.446513i \(0.147334\pi\)
\(360\) −9.30611 + 3.97483i −0.490475 + 0.209492i
\(361\) 13.1697 0.693144
\(362\) −0.971958 1.25714i −0.0510850 0.0660737i
\(363\) 10.1127i 0.530779i
\(364\) 0 0
\(365\) 22.2850i 1.16645i
\(366\) −9.12318 + 7.05360i −0.476876 + 0.368697i
\(367\) −19.2447 −1.00456 −0.502282 0.864704i \(-0.667506\pi\)
−0.502282 + 0.864704i \(0.667506\pi\)
\(368\) −10.4350 5.82291i −0.543963 0.303540i
\(369\) 4.56000 0.237384
\(370\) −6.83382 + 5.28358i −0.355273 + 0.274680i
\(371\) 0 0
\(372\) −20.7373 5.39437i −1.07518 0.279685i
\(373\) 14.8337i 0.768061i 0.923320 + 0.384030i \(0.125464\pi\)
−0.923320 + 0.384030i \(0.874536\pi\)
\(374\) −3.08306 3.98765i −0.159421 0.206196i
\(375\) 10.0191 0.517382
\(376\) −7.60560 17.8067i −0.392229 0.918310i
\(377\) 16.4928 0.849425
\(378\) 0 0
\(379\) 11.7500i 0.603555i 0.953378 + 0.301778i \(0.0975800\pi\)
−0.953378 + 0.301778i \(0.902420\pi\)
\(380\) −4.34966 + 16.7212i −0.223133 + 0.857780i
\(381\) 7.77389i 0.398269i
\(382\) −15.6970 + 12.1362i −0.803130 + 0.620941i
\(383\) 19.0655 0.974200 0.487100 0.873346i \(-0.338055\pi\)
0.487100 + 0.873346i \(0.338055\pi\)
\(384\) −11.2510 1.18926i −0.574152 0.0606894i
\(385\) 0 0
\(386\) −0.872895 + 0.674880i −0.0444292 + 0.0343505i
\(387\) 3.50672i 0.178257i
\(388\) 6.05415 23.2737i 0.307353 1.18154i
\(389\) 2.00331i 0.101572i 0.998710 + 0.0507859i \(0.0161726\pi\)
−0.998710 + 0.0507859i \(0.983827\pi\)
\(390\) −19.0367 24.6222i −0.963962 1.24680i
\(391\) −11.3037 −0.571652
\(392\) 0 0
\(393\) 7.04522 0.355384
\(394\) −2.05559 2.65872i −0.103559 0.133944i
\(395\) 19.5795i 0.985150i
\(396\) 1.82326 + 0.474281i 0.0916221 + 0.0238335i
\(397\) 8.48379i 0.425789i −0.977075 0.212895i \(-0.931711\pi\)
0.977075 0.212895i \(-0.0682891\pi\)
\(398\) 15.1979 11.7503i 0.761802 0.588988i
\(399\) 0 0
\(400\) 27.2465 + 15.2040i 1.36232 + 0.760199i
\(401\) −14.0926 −0.703753 −0.351876 0.936046i \(-0.614456\pi\)
−0.351876 + 0.936046i \(0.614456\pi\)
\(402\) 4.44819 3.43912i 0.221855 0.171528i
\(403\) 65.9019i 3.28281i
\(404\) 3.44729 + 0.896739i 0.171509 + 0.0446144i
\(405\) 3.57776i 0.177780i
\(406\) 0 0
\(407\) 1.60816 0.0797135
\(408\) −9.84191 + 4.20368i −0.487247 + 0.208113i
\(409\) 30.3577 1.50109 0.750547 0.660817i \(-0.229790\pi\)
0.750547 + 0.660817i \(0.229790\pi\)
\(410\) −14.1123 18.2530i −0.696959 0.901452i
\(411\) 18.1076i 0.893181i
\(412\) −6.25499 + 24.0458i −0.308161 + 1.18465i
\(413\) 0 0
\(414\) 3.34238 2.58417i 0.164269 0.127005i
\(415\) 4.27758 0.209978
\(416\) −5.17157 34.4098i −0.253557 1.68708i
\(417\) −8.32721 −0.407785
\(418\) 2.54471 1.96745i 0.124466 0.0962311i
\(419\) 30.8896i 1.50905i 0.656269 + 0.754527i \(0.272134\pi\)
−0.656269 + 0.754527i \(0.727866\pi\)
\(420\) 0 0
\(421\) 20.0940i 0.979321i 0.871913 + 0.489661i \(0.162879\pi\)
−0.871913 + 0.489661i \(0.837121\pi\)
\(422\) −12.2774 15.8796i −0.597652 0.773008i
\(423\) 6.84583 0.332856
\(424\) −19.7469 + 8.43432i −0.958996 + 0.409607i
\(425\) 29.5146 1.43167
\(426\) −3.39580 4.39216i −0.164527 0.212801i
\(427\) 0 0
\(428\) −18.8025 4.89106i −0.908852 0.236418i
\(429\) 5.79420i 0.279747i
\(430\) 14.0369 10.8527i 0.676920 0.523362i
\(431\) 8.01747 0.386188 0.193094 0.981180i \(-0.438148\pi\)
0.193094 + 0.981180i \(0.438148\pi\)
\(432\) 1.94914 3.49297i 0.0937779 0.168056i
\(433\) −26.9812 −1.29663 −0.648316 0.761371i \(-0.724527\pi\)
−0.648316 + 0.761371i \(0.724527\pi\)
\(434\) 0 0
\(435\) 9.59289i 0.459944i
\(436\) −27.6353 7.18872i −1.32349 0.344277i
\(437\) 7.21343i 0.345065i
\(438\) 5.38797 + 6.96884i 0.257447 + 0.332984i
\(439\) 36.5152 1.74278 0.871388 0.490594i \(-0.163220\pi\)
0.871388 + 0.490594i \(0.163220\pi\)
\(440\) −3.74416 8.76605i −0.178496 0.417905i
\(441\) 0 0
\(442\) −20.1328 26.0399i −0.957617 1.23859i
\(443\) 0.219929i 0.0104491i 0.999986 + 0.00522457i \(0.00166304\pi\)
−0.999986 + 0.00522457i \(0.998337\pi\)
\(444\) 0.859595 3.30450i 0.0407946 0.156825i
\(445\) 6.51517i 0.308848i
\(446\) 0.221725 0.171427i 0.0104990 0.00811728i
\(447\) 20.7056 0.979341
\(448\) 0 0
\(449\) 20.6799 0.975946 0.487973 0.872859i \(-0.337736\pi\)
0.487973 + 0.872859i \(0.337736\pi\)
\(450\) −8.72718 + 6.74743i −0.411403 + 0.318077i
\(451\) 4.29537i 0.202261i
\(452\) −6.98733 + 26.8611i −0.328656 + 1.26344i
\(453\) 3.95566i 0.185853i
\(454\) 22.2793 + 28.8163i 1.04562 + 1.35242i
\(455\) 0 0
\(456\) −2.68257 6.28060i −0.125623 0.294116i
\(457\) −8.58418 −0.401551 −0.200776 0.979637i \(-0.564346\pi\)
−0.200776 + 0.979637i \(0.564346\pi\)
\(458\) 13.9801 + 18.0820i 0.653249 + 0.844917i
\(459\) 3.78375i 0.176610i
\(460\) −20.6881 5.38157i −0.964588 0.250917i
\(461\) 13.8203i 0.643676i −0.946795 0.321838i \(-0.895699\pi\)
0.946795 0.321838i \(-0.104301\pi\)
\(462\) 0 0
\(463\) 28.8694 1.34168 0.670838 0.741604i \(-0.265935\pi\)
0.670838 + 0.741604i \(0.265935\pi\)
\(464\) 5.22613 9.36555i 0.242617 0.434785i
\(465\) −38.3311 −1.77756
\(466\) −28.1090 + 21.7325i −1.30212 + 1.00674i
\(467\) 12.4341i 0.575381i −0.957723 0.287691i \(-0.907112\pi\)
0.957723 0.287691i \(-0.0928875\pi\)
\(468\) 11.9061 + 3.09712i 0.550360 + 0.143164i
\(469\) 0 0
\(470\) −21.1866 27.4029i −0.977264 1.26400i
\(471\) 11.8706 0.546970
\(472\) −0.302220 + 0.129084i −0.0139108 + 0.00594159i
\(473\) −3.30322 −0.151882
\(474\) −4.73383 6.12278i −0.217432 0.281229i
\(475\) 18.8347i 0.864197i
\(476\) 0 0
\(477\) 7.59176i 0.347603i
\(478\) −17.9446 + 13.8739i −0.820767 + 0.634577i
\(479\) 38.2820 1.74915 0.874575 0.484891i \(-0.161141\pi\)
0.874575 + 0.484891i \(0.161141\pi\)
\(480\) −20.0141 + 3.00799i −0.913514 + 0.137295i
\(481\) 10.5015 0.478827
\(482\) 14.7338 11.3914i 0.671104 0.518865i
\(483\) 0 0
\(484\) 5.09175 19.5740i 0.231443 0.889726i
\(485\) 43.0194i 1.95341i
\(486\) 0.865014 + 1.11882i 0.0392378 + 0.0507505i
\(487\) −1.80458 −0.0817733 −0.0408867 0.999164i \(-0.513018\pi\)
−0.0408867 + 0.999164i \(0.513018\pi\)
\(488\) −21.2102 + 9.05930i −0.960140 + 0.410095i
\(489\) −17.0530 −0.771163
\(490\) 0 0
\(491\) 4.10278i 0.185156i −0.995705 0.0925780i \(-0.970489\pi\)
0.995705 0.0925780i \(-0.0295108\pi\)
\(492\) 8.82626 + 2.29596i 0.397918 + 0.103510i
\(493\) 10.1452i 0.456917i
\(494\) 16.6173 12.8477i 0.747648 0.578045i
\(495\) 3.37013 0.151476
\(496\) −37.4227 20.8825i −1.68033 0.937652i
\(497\) 0 0
\(498\) −1.33766 + 1.03421i −0.0599420 + 0.0463442i
\(499\) 44.4007i 1.98765i −0.110961 0.993825i \(-0.535393\pi\)
0.110961 0.993825i \(-0.464607\pi\)
\(500\) 19.3927 + 5.04460i 0.867269 + 0.225601i
\(501\) 10.4339i 0.466150i
\(502\) 7.47981 + 9.67445i 0.333840 + 0.431792i
\(503\) 8.88976 0.396375 0.198187 0.980164i \(-0.436495\pi\)
0.198187 + 0.980164i \(0.436495\pi\)
\(504\) 0 0
\(505\) 6.37202 0.283551
\(506\) 2.43420 + 3.14842i 0.108213 + 0.139964i
\(507\) 24.8369i 1.10304i
\(508\) 3.91416 15.0470i 0.173663 0.667604i
\(509\) 11.0463i 0.489621i −0.969571 0.244810i \(-0.921274\pi\)
0.969571 0.244810i \(-0.0787257\pi\)
\(510\) −15.1458 + 11.7100i −0.670668 + 0.518527i
\(511\) 0 0
\(512\) −21.1785 7.96682i −0.935967 0.352087i
\(513\) 2.41460 0.106607
\(514\) 16.1838 12.5125i 0.713836 0.551903i
\(515\) 44.4465i 1.95855i
\(516\) −1.76564 + 6.78756i −0.0777279 + 0.298806i
\(517\) 6.44855i 0.283607i
\(518\) 0 0
\(519\) −14.5742 −0.639735
\(520\) −24.4498 57.2434i −1.07220 2.51029i
\(521\) −33.9951 −1.48935 −0.744675 0.667427i \(-0.767396\pi\)
−0.744675 + 0.667427i \(0.767396\pi\)
\(522\) 2.31932 + 2.99983i 0.101514 + 0.131299i
\(523\) 18.2103i 0.796282i 0.917324 + 0.398141i \(0.130345\pi\)
−0.917324 + 0.398141i \(0.869655\pi\)
\(524\) 13.6366 + 3.54727i 0.595718 + 0.154963i
\(525\) 0 0
\(526\) −22.2607 + 17.2109i −0.970613 + 0.750430i
\(527\) −40.5380 −1.76586
\(528\) 3.29027 + 1.83602i 0.143190 + 0.0799026i
\(529\) −14.0753 −0.611968
\(530\) −30.3887 + 23.4951i −1.32000 + 1.02056i
\(531\) 0.116189i 0.00504219i
\(532\) 0 0
\(533\) 28.0493i 1.21495i
\(534\) −1.57521 2.03738i −0.0681658 0.0881663i
\(535\) −34.7547 −1.50258
\(536\) 10.3414 4.41704i 0.446682 0.190787i
\(537\) 3.77961 0.163102
\(538\) 14.6758 + 18.9818i 0.632720 + 0.818365i
\(539\) 0 0
\(540\) 1.80141 6.92506i 0.0775201 0.298007i
\(541\) 30.1308i 1.29542i −0.761886 0.647712i \(-0.775726\pi\)
0.761886 0.647712i \(-0.224274\pi\)
\(542\) −1.20426 + 0.931077i −0.0517275 + 0.0399932i
\(543\) 1.12363 0.0482197
\(544\) −21.1664 + 3.18117i −0.907502 + 0.136392i
\(545\) −51.0814 −2.18809
\(546\) 0 0
\(547\) 36.0927i 1.54321i −0.636101 0.771606i \(-0.719454\pi\)
0.636101 0.771606i \(-0.280546\pi\)
\(548\) −9.11719 + 35.0488i −0.389467 + 1.49721i
\(549\) 8.15432i 0.348018i
\(550\) −6.35586 8.22072i −0.271015 0.350533i
\(551\) 6.47415 0.275808
\(552\) 7.77060 3.31898i 0.330739 0.141265i
\(553\) 0 0
\(554\) 4.23116 + 5.47262i 0.179765 + 0.232509i
\(555\) 6.10808i 0.259274i
\(556\) −16.1180 4.19276i −0.683556 0.177812i
\(557\) 42.4146i 1.79717i −0.438804 0.898583i \(-0.644598\pi\)
0.438804 0.898583i \(-0.355402\pi\)
\(558\) 11.9867 9.26752i 0.507437 0.392325i
\(559\) −21.5704 −0.912333
\(560\) 0 0
\(561\) 3.56417 0.150479
\(562\) 0.843798 0.652384i 0.0355935 0.0275191i
\(563\) 11.8537i 0.499574i −0.968301 0.249787i \(-0.919639\pi\)
0.968301 0.249787i \(-0.0803606\pi\)
\(564\) 13.2507 + 3.44688i 0.557955 + 0.145140i
\(565\) 49.6504i 2.08881i
\(566\) 16.8074 + 21.7388i 0.706468 + 0.913751i
\(567\) 0 0
\(568\) −4.36141 10.2112i −0.183001 0.428452i
\(569\) 5.42414 0.227392 0.113696 0.993516i \(-0.463731\pi\)
0.113696 + 0.993516i \(0.463731\pi\)
\(570\) −7.47272 9.66528i −0.312998 0.404834i
\(571\) 19.5852i 0.819617i 0.912172 + 0.409809i \(0.134404\pi\)
−0.912172 + 0.409809i \(0.865596\pi\)
\(572\) −2.91738 + 11.2152i −0.121982 + 0.468929i
\(573\) 14.0300i 0.586113i
\(574\) 0 0
\(575\) −23.3031 −0.971804
\(576\) 5.53143 5.77955i 0.230476 0.240815i
\(577\) 6.22349 0.259087 0.129544 0.991574i \(-0.458649\pi\)
0.129544 + 0.991574i \(0.458649\pi\)
\(578\) 3.00205 2.32104i 0.124869 0.0965426i
\(579\) 0.780195i 0.0324238i
\(580\) 4.83003 18.5678i 0.200556 0.770988i
\(581\) 0 0
\(582\) 10.4010 + 13.4528i 0.431136 + 0.557635i
\(583\) 7.15119 0.296172
\(584\) 6.92005 + 16.2016i 0.286354 + 0.670428i
\(585\) 22.0074 0.909894
\(586\) 18.9813 + 24.5506i 0.784110 + 1.01417i
\(587\) 0.894279i 0.0369108i −0.999830 0.0184554i \(-0.994125\pi\)
0.999830 0.0184554i \(-0.00587487\pi\)
\(588\) 0 0
\(589\) 25.8693i 1.06593i
\(590\) −0.465089 + 0.359584i −0.0191474 + 0.0148039i
\(591\) 2.37637 0.0977506
\(592\) 3.32764 5.96333i 0.136765 0.245091i
\(593\) −22.6996 −0.932161 −0.466080 0.884742i \(-0.654334\pi\)
−0.466080 + 0.884742i \(0.654334\pi\)
\(594\) −1.05389 + 0.814815i −0.0432416 + 0.0334323i
\(595\) 0 0
\(596\) 40.0774 + 10.4253i 1.64163 + 0.427036i
\(597\) 13.5839i 0.555953i
\(598\) 15.8957 + 20.5596i 0.650022 + 0.840743i
\(599\) −39.0356 −1.59495 −0.797476 0.603351i \(-0.793832\pi\)
−0.797476 + 0.603351i \(0.793832\pi\)
\(600\) −20.2895 + 8.66608i −0.828317 + 0.353791i
\(601\) −0.397117 −0.0161987 −0.00809936 0.999967i \(-0.502578\pi\)
−0.00809936 + 0.999967i \(0.502578\pi\)
\(602\) 0 0
\(603\) 3.97580i 0.161907i
\(604\) 1.99168 7.65652i 0.0810403 0.311539i
\(605\) 36.1808i 1.47096i
\(606\) −1.99262 + 1.54060i −0.0809447 + 0.0625825i
\(607\) 21.8315 0.886112 0.443056 0.896494i \(-0.353894\pi\)
0.443056 + 0.896494i \(0.353894\pi\)
\(608\) −2.03006 13.5073i −0.0823298 0.547794i
\(609\) 0 0
\(610\) −32.6406 + 25.2361i −1.32158 + 1.02178i
\(611\) 42.1099i 1.70358i
\(612\) 1.90512 7.32377i 0.0770099 0.296046i
\(613\) 24.9947i 1.00953i 0.863258 + 0.504763i \(0.168420\pi\)
−0.863258 + 0.504763i \(0.831580\pi\)
\(614\) 1.89053 + 2.44523i 0.0762955 + 0.0986813i
\(615\) 16.3146 0.657867
\(616\) 0 0
\(617\) −17.0538 −0.686560 −0.343280 0.939233i \(-0.611538\pi\)
−0.343280 + 0.939233i \(0.611538\pi\)
\(618\) −10.7461 13.8991i −0.432270 0.559102i
\(619\) 4.98901i 0.200525i 0.994961 + 0.100263i \(0.0319683\pi\)
−0.994961 + 0.100263i \(0.968032\pi\)
\(620\) −74.1931 19.2998i −2.97967 0.775097i
\(621\) 2.98743i 0.119881i
\(622\) −30.5085 + 23.5877i −1.22328 + 0.945780i
\(623\) 0 0
\(624\) 21.4859 + 11.9895i 0.860123 + 0.479963i
\(625\) −3.15608 −0.126243
\(626\) 1.52890 1.18207i 0.0611073 0.0472452i
\(627\) 2.27447i 0.0908336i
\(628\) 22.9766 + 5.97688i 0.916868 + 0.238503i
\(629\) 6.45975i 0.257567i
\(630\) 0 0
\(631\) 15.7236 0.625947 0.312973 0.949762i \(-0.398675\pi\)
0.312973 + 0.949762i \(0.398675\pi\)
\(632\) −6.07991 14.2346i −0.241846 0.566224i
\(633\) 14.1932 0.564130
\(634\) −7.08539 9.16431i −0.281397 0.363961i
\(635\) 27.8131i 1.10373i
\(636\) 3.82246 14.6945i 0.151570 0.582675i
\(637\) 0 0
\(638\) −2.82574 + 2.18473i −0.111872 + 0.0864942i
\(639\) 3.92572 0.155299
\(640\) −40.2535 4.25490i −1.59116 0.168190i
\(641\) 24.6707 0.974433 0.487216 0.873281i \(-0.338012\pi\)
0.487216 + 0.873281i \(0.338012\pi\)
\(642\) 10.8683 8.40284i 0.428938 0.331634i
\(643\) 47.6908i 1.88074i −0.340150 0.940371i \(-0.610478\pi\)
0.340150 0.940371i \(-0.389522\pi\)
\(644\) 0 0
\(645\) 12.5462i 0.494007i
\(646\) −7.90296 10.2218i −0.310938 0.402170i
\(647\) −19.2945 −0.758547 −0.379273 0.925285i \(-0.623826\pi\)
−0.379273 + 0.925285i \(0.623826\pi\)
\(648\) 1.11098 + 2.60110i 0.0436435 + 0.102181i
\(649\) 0.109447 0.00429615
\(650\) −41.5046 53.6824i −1.62794 2.10560i
\(651\) 0 0
\(652\) −33.0075 8.58619i −1.29267 0.336261i
\(653\) 41.5457i 1.62581i −0.582396 0.812905i \(-0.697885\pi\)
0.582396 0.812905i \(-0.302115\pi\)
\(654\) 15.9739 12.3502i 0.624628 0.482932i
\(655\) 25.2061 0.984884
\(656\) 15.9280 + 8.88806i 0.621882 + 0.347020i
\(657\) −6.22876 −0.243007
\(658\) 0 0
\(659\) 21.7026i 0.845414i −0.906266 0.422707i \(-0.861080\pi\)
0.906266 0.422707i \(-0.138920\pi\)
\(660\) 6.52318 + 1.69687i 0.253914 + 0.0660504i
\(661\) 14.7670i 0.574368i −0.957875 0.287184i \(-0.907281\pi\)
0.957875 0.287184i \(-0.0927191\pi\)
\(662\) −13.3487 17.2653i −0.518813 0.671037i
\(663\) 23.2745 0.903906
\(664\) −3.10988 + 1.32829i −0.120687 + 0.0515478i
\(665\) 0 0
\(666\) 1.47678 + 1.91008i 0.0572242 + 0.0740142i
\(667\) 8.01006i 0.310151i
\(668\) 5.25345 20.1956i 0.203262 0.781391i
\(669\) 0.198178i 0.00766200i
\(670\) 15.9146 12.3044i 0.614833 0.475359i
\(671\) 7.68110 0.296526
\(672\) 0 0
\(673\) 3.09088 0.119145 0.0595724 0.998224i \(-0.481026\pi\)
0.0595724 + 0.998224i \(0.481026\pi\)
\(674\) 0.608550 0.470501i 0.0234405 0.0181230i
\(675\) 7.80037i 0.300236i
\(676\) −12.5054 + 48.0738i −0.480976 + 1.84899i
\(677\) 38.8018i 1.49128i −0.666351 0.745638i \(-0.732145\pi\)
0.666351 0.745638i \(-0.267855\pi\)
\(678\) −12.0042 15.5264i −0.461020 0.596287i
\(679\) 0 0
\(680\) −35.2120 + 15.0398i −1.35032 + 0.576749i
\(681\) −25.7560 −0.986973
\(682\) 8.72970 + 11.2911i 0.334277 + 0.432357i
\(683\) 26.0073i 0.995140i −0.867424 0.497570i \(-0.834226\pi\)
0.867424 0.497570i \(-0.165774\pi\)
\(684\) 4.67365 + 1.21575i 0.178702 + 0.0464854i
\(685\) 64.7846i 2.47529i
\(686\) 0 0
\(687\) −16.1617 −0.616609
\(688\) −6.83509 + 12.2489i −0.260585 + 0.466985i
\(689\) 46.6982 1.77906
\(690\) 11.9583 9.24554i 0.455243 0.351972i
\(691\) 9.94014i 0.378141i −0.981964 0.189070i \(-0.939453\pi\)
0.981964 0.189070i \(-0.0605475\pi\)
\(692\) −28.2095 7.33810i −1.07237 0.278953i
\(693\) 0 0
\(694\) 9.91581 + 12.8252i 0.376399 + 0.486837i
\(695\) −29.7928 −1.13010
\(696\) 2.97883 + 6.97421i 0.112912 + 0.264357i
\(697\) 17.2539 0.653538
\(698\) −1.06477 1.37718i −0.0403020 0.0521270i
\(699\) 25.1239i 0.950272i
\(700\) 0 0
\(701\) 32.3250i 1.22090i −0.792056 0.610449i \(-0.790989\pi\)
0.792056 0.610449i \(-0.209011\pi\)
\(702\) −6.88203 + 5.32085i −0.259745 + 0.200822i
\(703\) 4.12228 0.155475
\(704\) 5.44415 + 5.21043i 0.205184 + 0.196375i
\(705\) 24.4927 0.922450
\(706\) 38.2840 29.5993i 1.44084 1.11398i
\(707\) 0 0
\(708\) 0.0585014 0.224894i 0.00219862 0.00845205i
\(709\) 44.1160i 1.65681i 0.560128 + 0.828406i \(0.310752\pi\)
−0.560128 + 0.828406i \(0.689248\pi\)
\(710\) −12.1494 15.7141i −0.455958 0.589739i
\(711\) 5.47255 0.205237
\(712\) −2.02312 4.73665i −0.0758196 0.177513i
\(713\) 32.0065 1.19865
\(714\) 0 0
\(715\) 20.7303i 0.775268i
\(716\) 7.31575 + 1.90303i 0.273402 + 0.0711198i
\(717\) 16.0389i 0.598984i
\(718\) −37.9360 + 29.3302i −1.41576 + 1.09459i
\(719\) −6.45859 −0.240865 −0.120432 0.992722i \(-0.538428\pi\)
−0.120432 + 0.992722i \(0.538428\pi\)
\(720\) 6.97354 12.4970i 0.259889 0.465737i
\(721\) 0 0
\(722\) −14.7345 + 11.3920i −0.548362 + 0.423966i
\(723\) 13.1691i 0.489762i
\(724\) 2.17488 + 0.565750i 0.0808290 + 0.0210259i
\(725\) 20.9148i 0.776755i
\(726\) 8.74763 + 11.3143i 0.324655 + 0.419911i
\(727\) −25.6040 −0.949600 −0.474800 0.880094i \(-0.657480\pi\)
−0.474800 + 0.880094i \(0.657480\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 19.2769 + 24.9329i 0.713469 + 0.922806i
\(731\) 13.2686i 0.490756i
\(732\) 4.10570 15.7834i 0.151751 0.583370i
\(733\) 10.3299i 0.381544i 0.981634 + 0.190772i \(0.0610991\pi\)
−0.981634 + 0.190772i \(0.938901\pi\)
\(734\) 21.5313 16.6469i 0.794734 0.614449i
\(735\) 0 0
\(736\) 16.7118 2.51167i 0.616004 0.0925813i
\(737\) −3.74507 −0.137951
\(738\) −5.10180 + 3.94446i −0.187800 + 0.145198i
\(739\) 46.3422i 1.70472i 0.522952 + 0.852362i \(0.324831\pi\)
−0.522952 + 0.852362i \(0.675169\pi\)
\(740\) 3.07542 11.8227i 0.113055 0.434611i
\(741\) 14.8526i 0.545623i
\(742\) 0 0
\(743\) −38.1002 −1.39776 −0.698880 0.715239i \(-0.746318\pi\)
−0.698880 + 0.715239i \(0.746318\pi\)
\(744\) 27.8674 11.9028i 1.02167 0.436376i
\(745\) 74.0796 2.71407
\(746\) −12.8314 16.5962i −0.469790 0.607631i
\(747\) 1.19560i 0.0437448i
\(748\) 6.89875 + 1.79456i 0.252243 + 0.0656157i
\(749\) 0 0
\(750\) −11.2095 + 8.66662i −0.409312 + 0.316460i
\(751\) −7.51999 −0.274408 −0.137204 0.990543i \(-0.543812\pi\)
−0.137204 + 0.990543i \(0.543812\pi\)
\(752\) 23.9123 + 13.3435i 0.871992 + 0.486586i
\(753\) −8.64704 −0.315116
\(754\) −18.4525 + 14.2665i −0.671999 + 0.519557i
\(755\) 14.1524i 0.515059i
\(756\) 0 0
\(757\) 41.2006i 1.49746i −0.662873 0.748731i \(-0.730663\pi\)
0.662873 0.748731i \(-0.269337\pi\)
\(758\) −10.1639 13.1461i −0.369169 0.477486i
\(759\) −2.81406 −0.102144
\(760\) −9.59761 22.4705i −0.348142 0.815090i
\(761\) 28.6212 1.03752 0.518759 0.854920i \(-0.326394\pi\)
0.518759 + 0.854920i \(0.326394\pi\)
\(762\) 6.72453 + 8.69756i 0.243604 + 0.315079i
\(763\) 0 0
\(764\) 7.06413 27.1563i 0.255571 0.982481i
\(765\) 13.5373i 0.489444i
\(766\) −21.3308 + 16.4919i −0.770712 + 0.595877i
\(767\) 0.714700 0.0258063
\(768\) 13.6166 8.40173i 0.491346 0.303171i
\(769\) −14.6303 −0.527581 −0.263791 0.964580i \(-0.584973\pi\)
−0.263791 + 0.964580i \(0.584973\pi\)
\(770\) 0 0
\(771\) 14.4651i 0.520947i
\(772\) 0.392829 1.51013i 0.0141382 0.0543509i
\(773\) 42.4716i 1.52760i 0.645455 + 0.763798i \(0.276668\pi\)
−0.645455 + 0.763798i \(0.723332\pi\)
\(774\) −3.03337 3.92338i −0.109032 0.141023i
\(775\) −83.5710 −3.00196
\(776\) 13.3586 + 31.2759i 0.479545 + 1.12274i
\(777\) 0 0
\(778\) −1.73289 2.24134i −0.0621271 0.0803558i
\(779\) 11.0105i 0.394494i
\(780\) 42.5972 + 11.0807i 1.52522 + 0.396754i
\(781\) 3.69790i 0.132321i
\(782\) 12.6467 9.77785i 0.452247 0.349655i
\(783\) −2.68125 −0.0958202
\(784\) 0 0
\(785\) 42.4703 1.51583
\(786\) −7.88230 + 6.09421i −0.281153 + 0.217373i
\(787\) 7.56670i 0.269724i 0.990864 + 0.134862i \(0.0430591\pi\)
−0.990864 + 0.134862i \(0.956941\pi\)
\(788\) 4.59966 + 1.19650i 0.163856 + 0.0426236i
\(789\) 19.8967i 0.708340i
\(790\) −16.9365 21.9058i −0.602575 0.779375i
\(791\) 0 0
\(792\) −2.45015 + 1.04651i −0.0870623 + 0.0371861i
\(793\) 50.1586 1.78118
\(794\) 7.33860 + 9.49181i 0.260437 + 0.336852i
\(795\) 27.1615i 0.963320i
\(796\) −6.83951 + 26.2928i −0.242420 + 0.931924i
\(797\) 11.4622i 0.406013i −0.979177 0.203007i \(-0.934929\pi\)
0.979177 0.203007i \(-0.0650713\pi\)
\(798\) 0 0
\(799\) 25.9029 0.916379
\(800\) −43.6355 + 6.55813i −1.54275 + 0.231865i
\(801\) 1.82102 0.0643425
\(802\) 15.7671 12.1903i 0.556755 0.430456i
\(803\) 5.86729i 0.207052i
\(804\) −2.00182 + 7.69549i −0.0705987 + 0.271399i
\(805\) 0 0
\(806\) 57.0061 + 73.7321i 2.00795 + 2.59710i
\(807\) −16.9660 −0.597231
\(808\) −4.63258 + 1.97867i −0.162974 + 0.0696093i
\(809\) 17.0821 0.600573 0.300287 0.953849i \(-0.402918\pi\)
0.300287 + 0.953849i \(0.402918\pi\)
\(810\) 3.09481 + 4.00286i 0.108741 + 0.140646i
\(811\) 16.6693i 0.585338i 0.956214 + 0.292669i \(0.0945434\pi\)
−0.956214 + 0.292669i \(0.905457\pi\)
\(812\) 0 0
\(813\) 1.07637i 0.0377500i
\(814\) −1.79924 + 1.39108i −0.0630632 + 0.0487574i
\(815\) −61.0115 −2.13714
\(816\) 7.37504 13.2165i 0.258178 0.462671i
\(817\) −8.46732 −0.296234
\(818\) −33.9647 + 26.2599i −1.18755 + 0.918155i
\(819\) 0 0
\(820\) 31.5782 + 8.21440i 1.10276 + 0.286859i
\(821\) 43.0233i 1.50152i 0.660572 + 0.750762i \(0.270314\pi\)
−0.660572 + 0.750762i \(0.729686\pi\)
\(822\) −15.6633 20.2591i −0.546321 0.706616i
\(823\) 34.6509 1.20786 0.603928 0.797039i \(-0.293602\pi\)
0.603928 + 0.797039i \(0.293602\pi\)
\(824\) −13.8017 32.3135i −0.480806 1.12569i
\(825\) 7.34769 0.255814
\(826\) 0 0
\(827\) 36.5937i 1.27249i 0.771489 + 0.636243i \(0.219513\pi\)
−0.771489 + 0.636243i \(0.780487\pi\)
\(828\) −1.50417 + 5.78242i −0.0522736 + 0.200953i
\(829\) 7.55875i 0.262526i 0.991348 + 0.131263i \(0.0419033\pi\)
−0.991348 + 0.131263i \(0.958097\pi\)
\(830\) −4.78583 + 3.70017i −0.166119 + 0.128435i
\(831\) −4.89143 −0.169682
\(832\) 35.5510 + 34.0248i 1.23251 + 1.17960i
\(833\) 0 0
\(834\) 9.31662 7.20315i 0.322608 0.249425i
\(835\) 37.3298i 1.29185i
\(836\) −1.14520 + 4.40243i −0.0396075 + 0.152261i
\(837\) 10.7137i 0.370320i
\(838\) −26.7199 34.5598i −0.923024 1.19385i
\(839\) −33.3899 −1.15275 −0.576374 0.817186i \(-0.695533\pi\)
−0.576374 + 0.817186i \(0.695533\pi\)
\(840\) 0 0
\(841\) 21.8109 0.752099
\(842\) −17.3816 22.4815i −0.599009 0.774763i
\(843\) 0.754188i 0.0259756i
\(844\) 27.4722 + 7.14631i 0.945632 + 0.245986i
\(845\) 88.8603i 3.05689i
\(846\) −7.65923 + 5.92174i −0.263330 + 0.203594i
\(847\) 0 0
\(848\) 14.7974 26.5178i 0.508144 0.910626i
\(849\) −19.4302 −0.666843
\(850\) −33.0215 + 25.5306i −1.13263 + 0.875692i
\(851\) 5.10025i 0.174834i
\(852\) 7.59856 + 1.97660i 0.260322 + 0.0677173i
\(853\) 18.6855i 0.639779i 0.947455 + 0.319889i \(0.103646\pi\)
−0.947455 + 0.319889i \(0.896354\pi\)
\(854\) 0 0
\(855\) 8.63884 0.295442
\(856\) 25.2674 10.7922i 0.863620 0.368870i
\(857\) −30.8881 −1.05512 −0.527559 0.849518i \(-0.676893\pi\)
−0.527559 + 0.849518i \(0.676893\pi\)
\(858\) −5.01206 6.48265i −0.171109 0.221314i
\(859\) 40.8604i 1.39414i −0.717004 0.697069i \(-0.754487\pi\)
0.717004 0.697069i \(-0.245513\pi\)
\(860\) −6.31703 + 24.2843i −0.215409 + 0.828087i
\(861\) 0 0
\(862\) −8.97007 + 6.93522i −0.305522 + 0.236215i
\(863\) 3.75352 0.127771 0.0638857 0.997957i \(-0.479651\pi\)
0.0638857 + 0.997957i \(0.479651\pi\)
\(864\) 0.840746 + 5.59403i 0.0286027 + 0.190313i
\(865\) −52.1429 −1.77291
\(866\) 30.1870 23.3391i 1.02580 0.793095i
\(867\) 2.68324i 0.0911277i
\(868\) 0 0
\(869\) 5.15496i 0.174870i
\(870\) 8.29798 + 10.7327i 0.281328 + 0.363872i
\(871\) −24.4558 −0.828653
\(872\) 37.1371 15.8620i 1.25762 0.537156i
\(873\) −12.0241 −0.406954
\(874\) 6.23972 + 8.07051i 0.211062 + 0.272989i
\(875\) 0 0
\(876\) −12.0563 3.13619i −0.407345 0.105962i
\(877\) 30.0472i 1.01462i −0.861763 0.507311i \(-0.830639\pi\)
0.861763 0.507311i \(-0.169361\pi\)
\(878\) −40.8538 + 31.5862i −1.37875 + 1.06598i
\(879\) −21.9433 −0.740130
\(880\) 11.7718 + 6.56885i 0.396827 + 0.221436i
\(881\) 42.4160 1.42903 0.714516 0.699619i \(-0.246647\pi\)
0.714516 + 0.699619i \(0.246647\pi\)
\(882\) 0 0
\(883\) 20.3124i 0.683568i 0.939779 + 0.341784i \(0.111031\pi\)
−0.939779 + 0.341784i \(0.888969\pi\)
\(884\) 45.0497 + 11.7187i 1.51519 + 0.394143i
\(885\) 0.415698i 0.0139735i
\(886\) −0.190242 0.246060i −0.00639129 0.00826655i
\(887\) 17.3844 0.583711 0.291855 0.956462i \(-0.405727\pi\)
0.291855 + 0.956462i \(0.405727\pi\)
\(888\) 1.89671 + 4.44069i 0.0636494 + 0.149020i
\(889\) 0 0
\(890\) −5.63571 7.28928i −0.188909 0.244337i
\(891\) 0.941967i 0.0315571i
\(892\) −0.0997827 + 0.383590i −0.00334097 + 0.0128435i
\(893\) 16.5299i 0.553152i
\(894\) −23.1658 + 17.9106i −0.774779 + 0.599021i
\(895\) 13.5225 0.452008
\(896\) 0 0
\(897\) −18.3762 −0.613563
\(898\) −23.1370 + 17.8884i −0.772093 + 0.596945i
\(899\) 28.7262i 0.958073i
\(900\) 3.92749 15.0983i 0.130916 0.503276i
\(901\) 28.7253i 0.956980i
\(902\) −3.71555 4.80573i −0.123714 0.160013i
\(903\) 0 0
\(904\) −15.4177 36.0967i −0.512784 1.20056i
\(905\) 4.02009 0.133632
\(906\) 3.42170 + 4.42566i 0.113679 + 0.147033i
\(907\) 21.8203i 0.724533i 0.932075 + 0.362266i \(0.117997\pi\)
−0.932075 + 0.362266i \(0.882003\pi\)
\(908\) −49.8530 12.9682i −1.65443 0.430364i
\(909\) 1.78101i 0.0590723i
\(910\) 0 0
\(911\) 11.9139 0.394727 0.197363 0.980330i \(-0.436762\pi\)
0.197363 + 0.980330i \(0.436762\pi\)
\(912\) 8.43412 + 4.70638i 0.279282 + 0.155844i
\(913\) 1.12622 0.0372724
\(914\) 9.60412 7.42544i 0.317676 0.245612i
\(915\) 29.1742i 0.964469i
\(916\) −31.2824 8.13745i −1.03360 0.268869i
\(917\) 0 0
\(918\) 3.27300 + 4.23332i 0.108025 + 0.139720i
\(919\) −37.7665 −1.24580 −0.622900 0.782301i \(-0.714046\pi\)
−0.622900 + 0.782301i \(0.714046\pi\)
\(920\) 27.8013 11.8745i 0.916583 0.391491i
\(921\) −2.18555 −0.0720162
\(922\) 11.9548 + 15.4624i 0.393709 + 0.509226i
\(923\) 24.1477i 0.794833i
\(924\) 0 0
\(925\) 13.3171i 0.437863i
\(926\) −32.2996 + 24.9724i −1.06143 + 0.820645i
\(927\) 12.4230 0.408025
\(928\) 2.25425 + 14.9990i 0.0739995 + 0.492367i
\(929\) −34.5094 −1.13222 −0.566108 0.824331i \(-0.691552\pi\)
−0.566108 + 0.824331i \(0.691552\pi\)
\(930\) 42.8855 33.1570i 1.40627 1.08726i
\(931\) 0 0
\(932\) 12.6499 48.6294i 0.414361 1.59291i
\(933\) 27.2685i 0.892732i
\(934\) 10.7557 + 13.9115i 0.351936 + 0.455197i
\(935\) 12.7517 0.417026
\(936\) −15.9998 + 6.83384i −0.522970 + 0.223371i
\(937\) 2.63475 0.0860735 0.0430367 0.999073i \(-0.486297\pi\)
0.0430367 + 0.999073i \(0.486297\pi\)
\(938\) 0 0
\(939\) 1.36654i 0.0445952i
\(940\) 47.4078 + 12.3321i 1.54627 + 0.402229i
\(941\) 20.5159i 0.668799i 0.942431 + 0.334399i \(0.108533\pi\)
−0.942431 + 0.334399i \(0.891467\pi\)
\(942\) −13.2811 + 10.2683i −0.432721 + 0.334559i
\(943\) −13.6227 −0.443615
\(944\) 0.226469 0.405846i 0.00737094 0.0132092i
\(945\) 0 0
\(946\) 3.69570 2.85733i 0.120157 0.0928999i
\(947\) 31.4487i 1.02194i 0.859597 + 0.510972i \(0.170714\pi\)
−0.859597 + 0.510972i \(0.829286\pi\)
\(948\) 10.5926 + 2.75543i 0.344031 + 0.0894923i
\(949\) 38.3142i 1.24373i
\(950\) −16.2923 21.0726i −0.528592 0.683686i
\(951\) 8.19107 0.265614
\(952\) 0 0
\(953\) 7.69660 0.249317 0.124659 0.992200i \(-0.460216\pi\)
0.124659 + 0.992200i \(0.460216\pi\)
\(954\) 6.56698 + 8.49379i 0.212614 + 0.274997i
\(955\) 50.1961i 1.62431i
\(956\) 8.07561 31.0447i 0.261184 1.00406i
\(957\) 2.52565i 0.0816428i
\(958\) −42.8305 + 33.1145i −1.38379 + 1.06988i
\(959\) 0 0
\(960\) 19.7901 20.6779i 0.638724 0.667375i
\(961\) 83.7838 2.70270
\(962\) −11.7492 + 9.08394i −0.378811 + 0.292878i
\(963\) 9.71411i 0.313033i
\(964\) −6.63063 + 25.4898i −0.213558 + 0.820972i
\(965\) 2.79135i 0.0898568i
\(966\) 0 0
\(967\) −58.4850 −1.88075 −0.940375 0.340140i \(-0.889526\pi\)
−0.940375 + 0.340140i \(0.889526\pi\)
\(968\) 11.2350 + 26.3041i 0.361108 + 0.845447i
\(969\) 9.13622 0.293498
\(970\) 37.2124 + 48.1308i 1.19482 + 1.54539i
\(971\) 46.6300i 1.49643i 0.663457 + 0.748215i \(0.269089\pi\)
−0.663457 + 0.748215i \(0.730911\pi\)
\(972\) −1.93558 0.503501i −0.0620839 0.0161498i
\(973\) 0 0
\(974\) 2.01899 1.56099i 0.0646927 0.0500173i
\(975\) 47.9814 1.53663
\(976\) 15.8939 28.4828i 0.508751 0.911713i
\(977\) −1.50961 −0.0482967 −0.0241484 0.999708i \(-0.507687\pi\)
−0.0241484 + 0.999708i \(0.507687\pi\)
\(978\) 19.0792 14.7511i 0.610084 0.471687i
\(979\) 1.71534i 0.0548225i
\(980\) 0 0
\(981\) 14.2775i 0.455845i
\(982\) 3.54897 + 4.59026i 0.113252 + 0.146481i
\(983\) 22.1661 0.706988 0.353494 0.935437i \(-0.384993\pi\)
0.353494 + 0.935437i \(0.384993\pi\)
\(984\) −11.8610 + 5.06608i −0.378115 + 0.161501i
\(985\) 8.50207 0.270898
\(986\) 8.77574 + 11.3506i 0.279476 + 0.361477i
\(987\) 0 0
\(988\) −7.47829 + 28.7484i −0.237916 + 0.914609i
\(989\) 10.4761i 0.333120i
\(990\) −3.77056 + 2.91521i −0.119836 + 0.0926516i
\(991\) −57.8841 −1.83875 −0.919374 0.393384i \(-0.871304\pi\)
−0.919374 + 0.393384i \(0.871304\pi\)
\(992\) 59.9328 9.00751i 1.90287 0.285989i
\(993\) 15.4318 0.489713
\(994\) 0 0
\(995\) 48.6000i 1.54072i
\(996\) 0.601987 2.31419i 0.0190747 0.0733279i
\(997\) 50.9825i 1.61463i 0.590118 + 0.807317i \(0.299081\pi\)
−0.590118 + 0.807317i \(0.700919\pi\)
\(998\) 38.4073 + 49.6763i 1.21576 + 1.57247i
\(999\) −1.70724 −0.0540145
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1176.2.c.e.589.6 16
4.3 odd 2 4704.2.c.e.2353.9 16
7.2 even 3 168.2.bc.a.109.15 yes 32
7.4 even 3 168.2.bc.a.37.7 32
7.6 odd 2 1176.2.c.f.589.6 16
8.3 odd 2 4704.2.c.e.2353.8 16
8.5 even 2 inner 1176.2.c.e.589.5 16
21.2 odd 6 504.2.cj.e.109.2 32
21.11 odd 6 504.2.cj.e.37.10 32
28.11 odd 6 672.2.bk.a.625.16 32
28.23 odd 6 672.2.bk.a.529.1 32
28.27 even 2 4704.2.c.f.2353.8 16
56.11 odd 6 672.2.bk.a.625.1 32
56.13 odd 2 1176.2.c.f.589.5 16
56.27 even 2 4704.2.c.f.2353.9 16
56.37 even 6 168.2.bc.a.109.7 yes 32
56.51 odd 6 672.2.bk.a.529.16 32
56.53 even 6 168.2.bc.a.37.15 yes 32
84.11 even 6 2016.2.cr.e.1297.1 32
84.23 even 6 2016.2.cr.e.1873.16 32
168.11 even 6 2016.2.cr.e.1297.16 32
168.53 odd 6 504.2.cj.e.37.2 32
168.107 even 6 2016.2.cr.e.1873.1 32
168.149 odd 6 504.2.cj.e.109.10 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.bc.a.37.7 32 7.4 even 3
168.2.bc.a.37.15 yes 32 56.53 even 6
168.2.bc.a.109.7 yes 32 56.37 even 6
168.2.bc.a.109.15 yes 32 7.2 even 3
504.2.cj.e.37.2 32 168.53 odd 6
504.2.cj.e.37.10 32 21.11 odd 6
504.2.cj.e.109.2 32 21.2 odd 6
504.2.cj.e.109.10 32 168.149 odd 6
672.2.bk.a.529.1 32 28.23 odd 6
672.2.bk.a.529.16 32 56.51 odd 6
672.2.bk.a.625.1 32 56.11 odd 6
672.2.bk.a.625.16 32 28.11 odd 6
1176.2.c.e.589.5 16 8.5 even 2 inner
1176.2.c.e.589.6 16 1.1 even 1 trivial
1176.2.c.f.589.5 16 56.13 odd 2
1176.2.c.f.589.6 16 7.6 odd 2
2016.2.cr.e.1297.1 32 84.11 even 6
2016.2.cr.e.1297.16 32 168.11 even 6
2016.2.cr.e.1873.1 32 168.107 even 6
2016.2.cr.e.1873.16 32 84.23 even 6
4704.2.c.e.2353.8 16 8.3 odd 2
4704.2.c.e.2353.9 16 4.3 odd 2
4704.2.c.f.2353.8 16 28.27 even 2
4704.2.c.f.2353.9 16 56.27 even 2