Properties

Label 1176.2.p.a.979.28
Level $1176$
Weight $2$
Character 1176.979
Analytic conductor $9.390$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1176,2,Mod(979,1176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1176.979");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1176.p (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.39040727770\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 979.28
Character \(\chi\) \(=\) 1176.979
Dual form 1176.2.p.a.979.26

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.35356 + 0.409738i) q^{2} -1.00000i q^{3} +(1.66423 + 1.10921i) q^{4} -2.50301 q^{5} +(0.409738 - 1.35356i) q^{6} +(1.79815 + 2.18327i) q^{8} -1.00000 q^{9} +(-3.38796 - 1.02558i) q^{10} -5.67619 q^{11} +(1.10921 - 1.66423i) q^{12} -5.31228 q^{13} +2.50301i q^{15} +(1.53933 + 3.69195i) q^{16} +0.454858i q^{17} +(-1.35356 - 0.409738i) q^{18} -3.69433i q^{19} +(-4.16558 - 2.77635i) q^{20} +(-7.68304 - 2.32575i) q^{22} +5.12043i q^{23} +(2.18327 - 1.79815i) q^{24} +1.26504 q^{25} +(-7.19047 - 2.17664i) q^{26} +1.00000i q^{27} -2.57962i q^{29} +(-1.02558 + 3.38796i) q^{30} -6.00666 q^{31} +(0.570834 + 5.62798i) q^{32} +5.67619i q^{33} +(-0.186372 + 0.615676i) q^{34} +(-1.66423 - 1.10921i) q^{36} -9.01565i q^{37} +(1.51370 - 5.00048i) q^{38} +5.31228i q^{39} +(-4.50077 - 5.46474i) q^{40} +4.65692i q^{41} +3.66703 q^{43} +(-9.44648 - 6.29606i) q^{44} +2.50301 q^{45} +(-2.09803 + 6.93080i) q^{46} +0.957682 q^{47} +(3.69195 - 1.53933i) q^{48} +(1.71230 + 0.518335i) q^{50} +0.454858 q^{51} +(-8.84086 - 5.89241i) q^{52} +6.24836i q^{53} +(-0.409738 + 1.35356i) q^{54} +14.2075 q^{55} -3.69433 q^{57} +(1.05697 - 3.49166i) q^{58} +10.1222i q^{59} +(-2.77635 + 4.16558i) q^{60} +5.00367 q^{61} +(-8.13036 - 2.46115i) q^{62} +(-1.53334 + 7.85168i) q^{64} +13.2967 q^{65} +(-2.32575 + 7.68304i) q^{66} -9.30266 q^{67} +(-0.504531 + 0.756989i) q^{68} +5.12043 q^{69} -7.35240i q^{71} +(-1.79815 - 2.18327i) q^{72} -6.85362i q^{73} +(3.69405 - 12.2032i) q^{74} -1.26504i q^{75} +(4.09777 - 6.14821i) q^{76} +(-2.17664 + 7.19047i) q^{78} -8.91293i q^{79} +(-3.85294 - 9.24097i) q^{80} +1.00000 q^{81} +(-1.90812 + 6.30341i) q^{82} +1.96259i q^{83} -1.13851i q^{85} +(4.96353 + 1.50252i) q^{86} -2.57962 q^{87} +(-10.2066 - 12.3927i) q^{88} +6.82845i q^{89} +(3.38796 + 1.02558i) q^{90} +(-5.67961 + 8.52158i) q^{92} +6.00666i q^{93} +(1.29628 + 0.392398i) q^{94} +9.24692i q^{95} +(5.62798 - 0.570834i) q^{96} +3.71270i q^{97} +5.67619 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{2} + 4 q^{4} + 16 q^{8} - 32 q^{9} - 16 q^{11} - 12 q^{16} - 4 q^{18} - 20 q^{22} + 32 q^{25} + 16 q^{30} + 24 q^{32} - 4 q^{36} - 16 q^{43} - 48 q^{44} - 16 q^{46} + 76 q^{50} + 16 q^{57} + 12 q^{58}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1176\mathbb{Z}\right)^\times\).

\(n\) \(295\) \(589\) \(785\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35356 + 0.409738i 0.957109 + 0.289728i
\(3\) 1.00000i 0.577350i
\(4\) 1.66423 + 1.10921i 0.832115 + 0.554603i
\(5\) −2.50301 −1.11938 −0.559689 0.828703i \(-0.689080\pi\)
−0.559689 + 0.828703i \(0.689080\pi\)
\(6\) 0.409738 1.35356i 0.167275 0.552587i
\(7\) 0 0
\(8\) 1.79815 + 2.18327i 0.635741 + 0.771903i
\(9\) −1.00000 −0.333333
\(10\) −3.38796 1.02558i −1.07137 0.324315i
\(11\) −5.67619 −1.71143 −0.855717 0.517443i \(-0.826884\pi\)
−0.855717 + 0.517443i \(0.826884\pi\)
\(12\) 1.10921 1.66423i 0.320200 0.480422i
\(13\) −5.31228 −1.47336 −0.736681 0.676241i \(-0.763608\pi\)
−0.736681 + 0.676241i \(0.763608\pi\)
\(14\) 0 0
\(15\) 2.50301i 0.646273i
\(16\) 1.53933 + 3.69195i 0.384831 + 0.922987i
\(17\) 0.454858i 0.110319i 0.998478 + 0.0551596i \(0.0175668\pi\)
−0.998478 + 0.0551596i \(0.982433\pi\)
\(18\) −1.35356 0.409738i −0.319036 0.0965761i
\(19\) 3.69433i 0.847537i −0.905771 0.423768i \(-0.860707\pi\)
0.905771 0.423768i \(-0.139293\pi\)
\(20\) −4.16558 2.77635i −0.931452 0.620811i
\(21\) 0 0
\(22\) −7.68304 2.32575i −1.63803 0.495851i
\(23\) 5.12043i 1.06768i 0.845584 + 0.533842i \(0.179252\pi\)
−0.845584 + 0.533842i \(0.820748\pi\)
\(24\) 2.18327 1.79815i 0.445658 0.367045i
\(25\) 1.26504 0.253008
\(26\) −7.19047 2.17664i −1.41017 0.426874i
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 2.57962i 0.479024i −0.970893 0.239512i \(-0.923013\pi\)
0.970893 0.239512i \(-0.0769874\pi\)
\(30\) −1.02558 + 3.38796i −0.187244 + 0.618554i
\(31\) −6.00666 −1.07883 −0.539414 0.842041i \(-0.681354\pi\)
−0.539414 + 0.842041i \(0.681354\pi\)
\(32\) 0.570834 + 5.62798i 0.100910 + 0.994896i
\(33\) 5.67619i 0.988097i
\(34\) −0.186372 + 0.615676i −0.0319626 + 0.105588i
\(35\) 0 0
\(36\) −1.66423 1.10921i −0.277372 0.184868i
\(37\) 9.01565i 1.48216i −0.671415 0.741082i \(-0.734313\pi\)
0.671415 0.741082i \(-0.265687\pi\)
\(38\) 1.51370 5.00048i 0.245555 0.811185i
\(39\) 5.31228i 0.850646i
\(40\) −4.50077 5.46474i −0.711635 0.864051i
\(41\) 4.65692i 0.727289i 0.931538 + 0.363644i \(0.118468\pi\)
−0.931538 + 0.363644i \(0.881532\pi\)
\(42\) 0 0
\(43\) 3.66703 0.559217 0.279608 0.960114i \(-0.409795\pi\)
0.279608 + 0.960114i \(0.409795\pi\)
\(44\) −9.44648 6.29606i −1.42411 0.949167i
\(45\) 2.50301 0.373126
\(46\) −2.09803 + 6.93080i −0.309338 + 1.02189i
\(47\) 0.957682 0.139692 0.0698461 0.997558i \(-0.477749\pi\)
0.0698461 + 0.997558i \(0.477749\pi\)
\(48\) 3.69195 1.53933i 0.532887 0.222182i
\(49\) 0 0
\(50\) 1.71230 + 0.518335i 0.242156 + 0.0733036i
\(51\) 0.454858 0.0636929
\(52\) −8.84086 5.89241i −1.22601 0.817131i
\(53\) 6.24836i 0.858278i 0.903239 + 0.429139i \(0.141183\pi\)
−0.903239 + 0.429139i \(0.858817\pi\)
\(54\) −0.409738 + 1.35356i −0.0557582 + 0.184196i
\(55\) 14.2075 1.91574
\(56\) 0 0
\(57\) −3.69433 −0.489326
\(58\) 1.05697 3.49166i 0.138787 0.458478i
\(59\) 10.1222i 1.31779i 0.752234 + 0.658896i \(0.228976\pi\)
−0.752234 + 0.658896i \(0.771024\pi\)
\(60\) −2.77635 + 4.16558i −0.358425 + 0.537774i
\(61\) 5.00367 0.640654 0.320327 0.947307i \(-0.396207\pi\)
0.320327 + 0.947307i \(0.396207\pi\)
\(62\) −8.13036 2.46115i −1.03256 0.312567i
\(63\) 0 0
\(64\) −1.53334 + 7.85168i −0.191667 + 0.981460i
\(65\) 13.2967 1.64925
\(66\) −2.32575 + 7.68304i −0.286280 + 0.945717i
\(67\) −9.30266 −1.13650 −0.568251 0.822856i \(-0.692380\pi\)
−0.568251 + 0.822856i \(0.692380\pi\)
\(68\) −0.504531 + 0.756989i −0.0611834 + 0.0917984i
\(69\) 5.12043 0.616428
\(70\) 0 0
\(71\) 7.35240i 0.872569i −0.899809 0.436285i \(-0.856294\pi\)
0.899809 0.436285i \(-0.143706\pi\)
\(72\) −1.79815 2.18327i −0.211914 0.257301i
\(73\) 6.85362i 0.802155i −0.916044 0.401078i \(-0.868636\pi\)
0.916044 0.401078i \(-0.131364\pi\)
\(74\) 3.69405 12.2032i 0.429424 1.41859i
\(75\) 1.26504i 0.146074i
\(76\) 4.09777 6.14821i 0.470046 0.705248i
\(77\) 0 0
\(78\) −2.17664 + 7.19047i −0.246456 + 0.814161i
\(79\) 8.91293i 1.00278i −0.865221 0.501391i \(-0.832822\pi\)
0.865221 0.501391i \(-0.167178\pi\)
\(80\) −3.85294 9.24097i −0.430772 1.03317i
\(81\) 1.00000 0.111111
\(82\) −1.90812 + 6.30341i −0.210716 + 0.696095i
\(83\) 1.96259i 0.215423i 0.994182 + 0.107711i \(0.0343522\pi\)
−0.994182 + 0.107711i \(0.965648\pi\)
\(84\) 0 0
\(85\) 1.13851i 0.123489i
\(86\) 4.96353 + 1.50252i 0.535231 + 0.162021i
\(87\) −2.57962 −0.276565
\(88\) −10.2066 12.3927i −1.08803 1.32106i
\(89\) 6.82845i 0.723814i 0.932214 + 0.361907i \(0.117874\pi\)
−0.932214 + 0.361907i \(0.882126\pi\)
\(90\) 3.38796 + 1.02558i 0.357122 + 0.108105i
\(91\) 0 0
\(92\) −5.67961 + 8.52158i −0.592141 + 0.888436i
\(93\) 6.00666i 0.622862i
\(94\) 1.29628 + 0.392398i 0.133701 + 0.0404728i
\(95\) 9.24692i 0.948714i
\(96\) 5.62798 0.570834i 0.574403 0.0582605i
\(97\) 3.71270i 0.376967i 0.982076 + 0.188484i \(0.0603573\pi\)
−0.982076 + 0.188484i \(0.939643\pi\)
\(98\) 0 0
\(99\) 5.67619 0.570478
\(100\) 2.10532 + 1.40319i 0.210532 + 0.140319i
\(101\) −5.68155 −0.565335 −0.282667 0.959218i \(-0.591219\pi\)
−0.282667 + 0.959218i \(0.591219\pi\)
\(102\) 0.615676 + 0.186372i 0.0609610 + 0.0184536i
\(103\) −5.90691 −0.582025 −0.291013 0.956719i \(-0.593992\pi\)
−0.291013 + 0.956719i \(0.593992\pi\)
\(104\) −9.55226 11.5981i −0.936676 1.13729i
\(105\) 0 0
\(106\) −2.56019 + 8.45750i −0.248667 + 0.821465i
\(107\) −10.6609 −1.03063 −0.515314 0.857002i \(-0.672325\pi\)
−0.515314 + 0.857002i \(0.672325\pi\)
\(108\) −1.10921 + 1.66423i −0.106733 + 0.160141i
\(109\) 3.17911i 0.304504i −0.988342 0.152252i \(-0.951348\pi\)
0.988342 0.152252i \(-0.0486525\pi\)
\(110\) 19.2307 + 5.82136i 1.83358 + 0.555045i
\(111\) −9.01565 −0.855727
\(112\) 0 0
\(113\) −0.302446 −0.0284518 −0.0142259 0.999899i \(-0.504528\pi\)
−0.0142259 + 0.999899i \(0.504528\pi\)
\(114\) −5.00048 1.51370i −0.468338 0.141771i
\(115\) 12.8165i 1.19514i
\(116\) 2.86133 4.29309i 0.265668 0.398603i
\(117\) 5.31228 0.491121
\(118\) −4.14742 + 13.7009i −0.381801 + 1.26127i
\(119\) 0 0
\(120\) −5.46474 + 4.50077i −0.498860 + 0.410862i
\(121\) 21.2191 1.92901
\(122\) 6.77275 + 2.05019i 0.613176 + 0.185616i
\(123\) 4.65692 0.419900
\(124\) −9.99647 6.66262i −0.897709 0.598321i
\(125\) 9.34863 0.836167
\(126\) 0 0
\(127\) 6.39751i 0.567687i 0.958871 + 0.283843i \(0.0916096\pi\)
−0.958871 + 0.283843i \(0.908390\pi\)
\(128\) −5.29259 + 9.99943i −0.467803 + 0.883833i
\(129\) 3.66703i 0.322864i
\(130\) 17.9978 + 5.44815i 1.57851 + 0.477834i
\(131\) 14.5026i 1.26710i −0.773703 0.633549i \(-0.781598\pi\)
0.773703 0.633549i \(-0.218402\pi\)
\(132\) −6.29606 + 9.44648i −0.548002 + 0.822211i
\(133\) 0 0
\(134\) −12.5917 3.81165i −1.08776 0.329276i
\(135\) 2.50301i 0.215424i
\(136\) −0.993078 + 0.817902i −0.0851557 + 0.0701345i
\(137\) 1.23112 0.105182 0.0525908 0.998616i \(-0.483252\pi\)
0.0525908 + 0.998616i \(0.483252\pi\)
\(138\) 6.93080 + 2.09803i 0.589988 + 0.178596i
\(139\) 15.7788i 1.33834i 0.743108 + 0.669172i \(0.233351\pi\)
−0.743108 + 0.669172i \(0.766649\pi\)
\(140\) 0 0
\(141\) 0.957682i 0.0806514i
\(142\) 3.01255 9.95188i 0.252808 0.835144i
\(143\) 30.1535 2.52156
\(144\) −1.53933 3.69195i −0.128277 0.307662i
\(145\) 6.45681i 0.536209i
\(146\) 2.80819 9.27676i 0.232407 0.767750i
\(147\) 0 0
\(148\) 10.0002 15.0041i 0.822012 1.23333i
\(149\) 5.95556i 0.487898i −0.969788 0.243949i \(-0.921557\pi\)
0.969788 0.243949i \(-0.0784430\pi\)
\(150\) 0.518335 1.71230i 0.0423219 0.139809i
\(151\) 3.59257i 0.292359i −0.989258 0.146180i \(-0.953302\pi\)
0.989258 0.146180i \(-0.0466977\pi\)
\(152\) 8.06571 6.64294i 0.654216 0.538814i
\(153\) 0.454858i 0.0367731i
\(154\) 0 0
\(155\) 15.0347 1.20762
\(156\) −5.89241 + 8.84086i −0.471771 + 0.707835i
\(157\) 0.983524 0.0784937 0.0392469 0.999230i \(-0.487504\pi\)
0.0392469 + 0.999230i \(0.487504\pi\)
\(158\) 3.65196 12.0642i 0.290534 0.959772i
\(159\) 6.24836 0.495527
\(160\) −1.42880 14.0869i −0.112957 1.11366i
\(161\) 0 0
\(162\) 1.35356 + 0.409738i 0.106345 + 0.0321920i
\(163\) 2.52167 0.197512 0.0987562 0.995112i \(-0.468514\pi\)
0.0987562 + 0.995112i \(0.468514\pi\)
\(164\) −5.16548 + 7.75019i −0.403357 + 0.605188i
\(165\) 14.2075i 1.10606i
\(166\) −0.804149 + 2.65648i −0.0624140 + 0.206183i
\(167\) −5.26232 −0.407211 −0.203605 0.979053i \(-0.565266\pi\)
−0.203605 + 0.979053i \(0.565266\pi\)
\(168\) 0 0
\(169\) 15.2203 1.17079
\(170\) 0.466491 1.54104i 0.0357783 0.118192i
\(171\) 3.69433i 0.282512i
\(172\) 6.10278 + 4.06749i 0.465333 + 0.310143i
\(173\) 0.143623 0.0109195 0.00545974 0.999985i \(-0.498262\pi\)
0.00545974 + 0.999985i \(0.498262\pi\)
\(174\) −3.49166 1.05697i −0.264702 0.0801285i
\(175\) 0 0
\(176\) −8.73750 20.9562i −0.658614 1.57963i
\(177\) 10.1222 0.760827
\(178\) −2.79787 + 9.24270i −0.209709 + 0.692769i
\(179\) −18.9248 −1.41450 −0.707252 0.706961i \(-0.750065\pi\)
−0.707252 + 0.706961i \(0.750065\pi\)
\(180\) 4.16558 + 2.77635i 0.310484 + 0.206937i
\(181\) 22.2260 1.65204 0.826022 0.563637i \(-0.190598\pi\)
0.826022 + 0.563637i \(0.190598\pi\)
\(182\) 0 0
\(183\) 5.00367i 0.369882i
\(184\) −11.1793 + 9.20729i −0.824148 + 0.678770i
\(185\) 22.5662i 1.65910i
\(186\) −2.46115 + 8.13036i −0.180461 + 0.596147i
\(187\) 2.58186i 0.188804i
\(188\) 1.59380 + 1.06227i 0.116240 + 0.0774737i
\(189\) 0 0
\(190\) −3.78881 + 12.5162i −0.274869 + 0.908023i
\(191\) 11.7909i 0.853162i −0.904449 0.426581i \(-0.859718\pi\)
0.904449 0.426581i \(-0.140282\pi\)
\(192\) 7.85168 + 1.53334i 0.566646 + 0.110659i
\(193\) 26.8224 1.93072 0.965361 0.260918i \(-0.0840252\pi\)
0.965361 + 0.260918i \(0.0840252\pi\)
\(194\) −1.52123 + 5.02535i −0.109218 + 0.360799i
\(195\) 13.2967i 0.952195i
\(196\) 0 0
\(197\) 16.5842i 1.18157i 0.806828 + 0.590786i \(0.201182\pi\)
−0.806828 + 0.590786i \(0.798818\pi\)
\(198\) 7.68304 + 2.32575i 0.546010 + 0.165284i
\(199\) −11.4084 −0.808720 −0.404360 0.914600i \(-0.632506\pi\)
−0.404360 + 0.914600i \(0.632506\pi\)
\(200\) 2.27473 + 2.76193i 0.160848 + 0.195298i
\(201\) 9.30266i 0.656159i
\(202\) −7.69029 2.32794i −0.541087 0.163793i
\(203\) 0 0
\(204\) 0.756989 + 0.504531i 0.0529998 + 0.0353242i
\(205\) 11.6563i 0.814112i
\(206\) −7.99534 2.42028i −0.557061 0.168629i
\(207\) 5.12043i 0.355895i
\(208\) −8.17733 19.6127i −0.566996 1.35989i
\(209\) 20.9697i 1.45050i
\(210\) 0 0
\(211\) −4.13300 −0.284527 −0.142264 0.989829i \(-0.545438\pi\)
−0.142264 + 0.989829i \(0.545438\pi\)
\(212\) −6.93071 + 10.3987i −0.476003 + 0.714186i
\(213\) −7.35240 −0.503778
\(214\) −14.4301 4.36817i −0.986423 0.298602i
\(215\) −9.17860 −0.625975
\(216\) −2.18327 + 1.79815i −0.148553 + 0.122348i
\(217\) 0 0
\(218\) 1.30260 4.30311i 0.0882233 0.291443i
\(219\) −6.85362 −0.463125
\(220\) 23.6446 + 15.7591i 1.59412 + 1.06248i
\(221\) 2.41633i 0.162540i
\(222\) −12.2032 3.69405i −0.819024 0.247928i
\(223\) −18.1063 −1.21249 −0.606245 0.795278i \(-0.707325\pi\)
−0.606245 + 0.795278i \(0.707325\pi\)
\(224\) 0 0
\(225\) −1.26504 −0.0843361
\(226\) −0.409378 0.123924i −0.0272314 0.00824328i
\(227\) 7.92521i 0.526015i −0.964794 0.263007i \(-0.915286\pi\)
0.964794 0.263007i \(-0.0847143\pi\)
\(228\) −6.14821 4.09777i −0.407175 0.271381i
\(229\) −2.15573 −0.142455 −0.0712274 0.997460i \(-0.522692\pi\)
−0.0712274 + 0.997460i \(0.522692\pi\)
\(230\) 5.25139 17.3478i 0.346266 1.14388i
\(231\) 0 0
\(232\) 5.63201 4.63854i 0.369760 0.304535i
\(233\) −20.0144 −1.31119 −0.655594 0.755114i \(-0.727582\pi\)
−0.655594 + 0.755114i \(0.727582\pi\)
\(234\) 7.19047 + 2.17664i 0.470056 + 0.142291i
\(235\) −2.39708 −0.156369
\(236\) −11.2275 + 16.8456i −0.730851 + 1.09655i
\(237\) −8.91293 −0.578957
\(238\) 0 0
\(239\) 18.8923i 1.22204i −0.791614 0.611021i \(-0.790759\pi\)
0.791614 0.611021i \(-0.209241\pi\)
\(240\) −9.24097 + 3.85294i −0.596502 + 0.248706i
\(241\) 18.3083i 1.17934i 0.807643 + 0.589672i \(0.200743\pi\)
−0.807643 + 0.589672i \(0.799257\pi\)
\(242\) 28.7213 + 8.69426i 1.84627 + 0.558888i
\(243\) 1.00000i 0.0641500i
\(244\) 8.32726 + 5.55010i 0.533098 + 0.355309i
\(245\) 0 0
\(246\) 6.30341 + 1.90812i 0.401890 + 0.121657i
\(247\) 19.6253i 1.24873i
\(248\) −10.8009 13.1142i −0.685855 0.832750i
\(249\) 1.96259 0.124374
\(250\) 12.6539 + 3.83048i 0.800302 + 0.242261i
\(251\) 3.43251i 0.216658i 0.994115 + 0.108329i \(0.0345500\pi\)
−0.994115 + 0.108329i \(0.965450\pi\)
\(252\) 0 0
\(253\) 29.0645i 1.82727i
\(254\) −2.62130 + 8.65939i −0.164475 + 0.543338i
\(255\) −1.13851 −0.0712964
\(256\) −11.2610 + 11.3662i −0.703810 + 0.710389i
\(257\) 25.0690i 1.56376i 0.623426 + 0.781882i \(0.285740\pi\)
−0.623426 + 0.781882i \(0.714260\pi\)
\(258\) 1.50252 4.96353i 0.0935428 0.309016i
\(259\) 0 0
\(260\) 22.1287 + 14.7487i 1.37237 + 0.914678i
\(261\) 2.57962i 0.159675i
\(262\) 5.94226 19.6301i 0.367114 1.21275i
\(263\) 15.5092i 0.956339i −0.878268 0.478169i \(-0.841301\pi\)
0.878268 0.478169i \(-0.158699\pi\)
\(264\) −12.3927 + 10.2066i −0.762715 + 0.628174i
\(265\) 15.6397i 0.960738i
\(266\) 0 0
\(267\) 6.82845 0.417894
\(268\) −15.4818 10.3186i −0.945700 0.630307i
\(269\) 23.7333 1.44705 0.723523 0.690300i \(-0.242521\pi\)
0.723523 + 0.690300i \(0.242521\pi\)
\(270\) 1.02558 3.38796i 0.0624145 0.206185i
\(271\) −14.7137 −0.893793 −0.446896 0.894586i \(-0.647471\pi\)
−0.446896 + 0.894586i \(0.647471\pi\)
\(272\) −1.67931 + 0.700175i −0.101823 + 0.0424543i
\(273\) 0 0
\(274\) 1.66639 + 0.504436i 0.100670 + 0.0304741i
\(275\) −7.18061 −0.433007
\(276\) 8.52158 + 5.67961i 0.512939 + 0.341873i
\(277\) 7.12245i 0.427947i −0.976840 0.213973i \(-0.931359\pi\)
0.976840 0.213973i \(-0.0686406\pi\)
\(278\) −6.46518 + 21.3575i −0.387756 + 1.28094i
\(279\) 6.00666 0.359609
\(280\) 0 0
\(281\) −13.0561 −0.778861 −0.389430 0.921056i \(-0.627328\pi\)
−0.389430 + 0.921056i \(0.627328\pi\)
\(282\) 0.392398 1.29628i 0.0233670 0.0771922i
\(283\) 2.11369i 0.125646i 0.998025 + 0.0628230i \(0.0200104\pi\)
−0.998025 + 0.0628230i \(0.979990\pi\)
\(284\) 8.15532 12.2361i 0.483929 0.726078i
\(285\) 9.24692 0.547740
\(286\) 40.8145 + 12.3550i 2.41341 + 0.730568i
\(287\) 0 0
\(288\) −0.570834 5.62798i −0.0336367 0.331632i
\(289\) 16.7931 0.987830
\(290\) −2.64560 + 8.73966i −0.155355 + 0.513210i
\(291\) 3.71270 0.217642
\(292\) 7.60207 11.4060i 0.444878 0.667486i
\(293\) 0.334002 0.0195126 0.00975630 0.999952i \(-0.496894\pi\)
0.00975630 + 0.999952i \(0.496894\pi\)
\(294\) 0 0
\(295\) 25.3358i 1.47511i
\(296\) 19.6836 16.2115i 1.14409 0.942272i
\(297\) 5.67619i 0.329366i
\(298\) 2.44022 8.06119i 0.141358 0.466972i
\(299\) 27.2012i 1.57308i
\(300\) 1.40319 2.10532i 0.0810133 0.121551i
\(301\) 0 0
\(302\) 1.47201 4.86275i 0.0847047 0.279820i
\(303\) 5.68155i 0.326396i
\(304\) 13.6393 5.68677i 0.782265 0.326159i
\(305\) −12.5242 −0.717135
\(306\) 0.186372 0.615676i 0.0106542 0.0351959i
\(307\) 9.39141i 0.535996i −0.963419 0.267998i \(-0.913638\pi\)
0.963419 0.267998i \(-0.0863621\pi\)
\(308\) 0 0
\(309\) 5.90691i 0.336032i
\(310\) 20.3503 + 6.16029i 1.15582 + 0.349881i
\(311\) −15.8750 −0.900189 −0.450095 0.892981i \(-0.648610\pi\)
−0.450095 + 0.892981i \(0.648610\pi\)
\(312\) −11.5981 + 9.55226i −0.656616 + 0.540790i
\(313\) 32.1656i 1.81811i −0.416679 0.909054i \(-0.636806\pi\)
0.416679 0.909054i \(-0.363194\pi\)
\(314\) 1.33125 + 0.402987i 0.0751271 + 0.0227418i
\(315\) 0 0
\(316\) 9.88627 14.8332i 0.556146 0.834431i
\(317\) 15.2712i 0.857714i 0.903373 + 0.428857i \(0.141083\pi\)
−0.903373 + 0.428857i \(0.858917\pi\)
\(318\) 8.45750 + 2.56019i 0.474273 + 0.143568i
\(319\) 14.6424i 0.819818i
\(320\) 3.83795 19.6528i 0.214548 1.09863i
\(321\) 10.6609i 0.595033i
\(322\) 0 0
\(323\) 1.68039 0.0934996
\(324\) 1.66423 + 1.10921i 0.0924572 + 0.0616225i
\(325\) −6.72025 −0.372773
\(326\) 3.41322 + 1.03322i 0.189041 + 0.0572249i
\(327\) −3.17911 −0.175805
\(328\) −10.1673 + 8.37383i −0.561396 + 0.462367i
\(329\) 0 0
\(330\) 5.82136 19.2307i 0.320455 1.05862i
\(331\) −21.0379 −1.15635 −0.578174 0.815914i \(-0.696234\pi\)
−0.578174 + 0.815914i \(0.696234\pi\)
\(332\) −2.17692 + 3.26621i −0.119474 + 0.179257i
\(333\) 9.01565i 0.494054i
\(334\) −7.12285 2.15617i −0.389745 0.117980i
\(335\) 23.2846 1.27217
\(336\) 0 0
\(337\) 1.18351 0.0644697 0.0322348 0.999480i \(-0.489738\pi\)
0.0322348 + 0.999480i \(0.489738\pi\)
\(338\) 20.6016 + 6.23634i 1.12058 + 0.339212i
\(339\) 0.302446i 0.0164266i
\(340\) 1.26284 1.89475i 0.0684874 0.102757i
\(341\) 34.0949 1.84634
\(342\) −1.51370 + 5.00048i −0.0818517 + 0.270395i
\(343\) 0 0
\(344\) 6.59386 + 8.00612i 0.355517 + 0.431661i
\(345\) −12.8165 −0.690016
\(346\) 0.194402 + 0.0588479i 0.0104511 + 0.00316368i
\(347\) −4.81341 −0.258397 −0.129199 0.991619i \(-0.541241\pi\)
−0.129199 + 0.991619i \(0.541241\pi\)
\(348\) −4.29309 2.86133i −0.230134 0.153383i
\(349\) −35.4792 −1.89916 −0.949578 0.313530i \(-0.898488\pi\)
−0.949578 + 0.313530i \(0.898488\pi\)
\(350\) 0 0
\(351\) 5.31228i 0.283549i
\(352\) −3.24016 31.9455i −0.172701 1.70270i
\(353\) 4.77713i 0.254261i 0.991886 + 0.127131i \(0.0405767\pi\)
−0.991886 + 0.127131i \(0.959423\pi\)
\(354\) 13.7009 + 4.14742i 0.728195 + 0.220433i
\(355\) 18.4031i 0.976735i
\(356\) −7.57416 + 11.3641i −0.401430 + 0.602297i
\(357\) 0 0
\(358\) −25.6158 7.75419i −1.35383 0.409822i
\(359\) 36.9146i 1.94828i 0.225947 + 0.974140i \(0.427453\pi\)
−0.225947 + 0.974140i \(0.572547\pi\)
\(360\) 4.50077 + 5.46474i 0.237212 + 0.288017i
\(361\) 5.35195 0.281682
\(362\) 30.0841 + 9.10682i 1.58119 + 0.478644i
\(363\) 21.2191i 1.11371i
\(364\) 0 0
\(365\) 17.1547i 0.897916i
\(366\) 2.05019 6.77275i 0.107165 0.354017i
\(367\) −0.568832 −0.0296928 −0.0148464 0.999890i \(-0.504726\pi\)
−0.0148464 + 0.999890i \(0.504726\pi\)
\(368\) −18.9044 + 7.88201i −0.985458 + 0.410878i
\(369\) 4.65692i 0.242430i
\(370\) −9.24623 + 30.5447i −0.480689 + 1.58794i
\(371\) 0 0
\(372\) −6.66262 + 9.99647i −0.345441 + 0.518293i
\(373\) 23.4322i 1.21328i 0.794979 + 0.606638i \(0.207482\pi\)
−0.794979 + 0.606638i \(0.792518\pi\)
\(374\) 1.05788 3.49469i 0.0547019 0.180706i
\(375\) 9.34863i 0.482761i
\(376\) 1.72205 + 2.09088i 0.0888081 + 0.107829i
\(377\) 13.7037i 0.705775i
\(378\) 0 0
\(379\) −14.7240 −0.756320 −0.378160 0.925740i \(-0.623443\pi\)
−0.378160 + 0.925740i \(0.623443\pi\)
\(380\) −10.2567 + 15.3890i −0.526160 + 0.789440i
\(381\) 6.39751 0.327754
\(382\) 4.83119 15.9597i 0.247185 0.816569i
\(383\) 4.99508 0.255237 0.127618 0.991823i \(-0.459267\pi\)
0.127618 + 0.991823i \(0.459267\pi\)
\(384\) 9.99943 + 5.29259i 0.510281 + 0.270086i
\(385\) 0 0
\(386\) 36.3057 + 10.9902i 1.84791 + 0.559385i
\(387\) −3.66703 −0.186406
\(388\) −4.11815 + 6.17879i −0.209067 + 0.313680i
\(389\) 31.8810i 1.61643i 0.588887 + 0.808216i \(0.299566\pi\)
−0.588887 + 0.808216i \(0.700434\pi\)
\(390\) 5.44815 17.9978i 0.275878 0.911354i
\(391\) −2.32907 −0.117786
\(392\) 0 0
\(393\) −14.5026 −0.731559
\(394\) −6.79515 + 22.4476i −0.342335 + 1.13089i
\(395\) 22.3091i 1.12249i
\(396\) 9.44648 + 6.29606i 0.474704 + 0.316389i
\(397\) −32.9060 −1.65151 −0.825753 0.564032i \(-0.809249\pi\)
−0.825753 + 0.564032i \(0.809249\pi\)
\(398\) −15.4419 4.67445i −0.774033 0.234309i
\(399\) 0 0
\(400\) 1.94731 + 4.67047i 0.0973655 + 0.233523i
\(401\) 0.212472 0.0106103 0.00530517 0.999986i \(-0.498311\pi\)
0.00530517 + 0.999986i \(0.498311\pi\)
\(402\) −3.81165 + 12.5917i −0.190108 + 0.628016i
\(403\) 31.9091 1.58950
\(404\) −9.45540 6.30200i −0.470424 0.313536i
\(405\) −2.50301 −0.124375
\(406\) 0 0
\(407\) 51.1745i 2.53663i
\(408\) 0.817902 + 0.993078i 0.0404922 + 0.0491647i
\(409\) 20.4715i 1.01225i −0.862461 0.506124i \(-0.831078\pi\)
0.862461 0.506124i \(-0.168922\pi\)
\(410\) 4.77603 15.7775i 0.235871 0.779194i
\(411\) 1.23112i 0.0607266i
\(412\) −9.83046 6.55198i −0.484312 0.322793i
\(413\) 0 0
\(414\) 2.09803 6.93080i 0.103113 0.340630i
\(415\) 4.91239i 0.241140i
\(416\) −3.03243 29.8974i −0.148677 1.46584i
\(417\) 15.7788 0.772693
\(418\) −8.59207 + 28.3837i −0.420252 + 1.38829i
\(419\) 11.8439i 0.578614i −0.957236 0.289307i \(-0.906575\pi\)
0.957236 0.289307i \(-0.0934248\pi\)
\(420\) 0 0
\(421\) 21.7928i 1.06211i 0.847336 + 0.531057i \(0.178205\pi\)
−0.847336 + 0.531057i \(0.821795\pi\)
\(422\) −5.59425 1.69344i −0.272324 0.0824356i
\(423\) −0.957682 −0.0465641
\(424\) −13.6419 + 11.2355i −0.662507 + 0.545642i
\(425\) 0.575414i 0.0279117i
\(426\) −9.95188 3.01255i −0.482170 0.145959i
\(427\) 0 0
\(428\) −17.7422 11.8251i −0.857601 0.571589i
\(429\) 30.1535i 1.45582i
\(430\) −12.4238 3.76082i −0.599127 0.181363i
\(431\) 16.5393i 0.796669i 0.917240 + 0.398335i \(0.130412\pi\)
−0.917240 + 0.398335i \(0.869588\pi\)
\(432\) −3.69195 + 1.53933i −0.177629 + 0.0740608i
\(433\) 39.2724i 1.88731i −0.330929 0.943656i \(-0.607362\pi\)
0.330929 0.943656i \(-0.392638\pi\)
\(434\) 0 0
\(435\) 6.45681 0.309580
\(436\) 3.52629 5.29078i 0.168879 0.253382i
\(437\) 18.9166 0.904901
\(438\) −9.27676 2.80819i −0.443261 0.134180i
\(439\) 31.0331 1.48113 0.740564 0.671986i \(-0.234558\pi\)
0.740564 + 0.671986i \(0.234558\pi\)
\(440\) 25.5472 + 31.0189i 1.21792 + 1.47877i
\(441\) 0 0
\(442\) 0.990063 3.27064i 0.0470925 0.155569i
\(443\) −0.844928 −0.0401438 −0.0200719 0.999799i \(-0.506390\pi\)
−0.0200719 + 0.999799i \(0.506390\pi\)
\(444\) −15.0041 10.0002i −0.712064 0.474589i
\(445\) 17.0917i 0.810222i
\(446\) −24.5079 7.41884i −1.16048 0.351292i
\(447\) −5.95556 −0.281688
\(448\) 0 0
\(449\) −41.7433 −1.96999 −0.984995 0.172585i \(-0.944788\pi\)
−0.984995 + 0.172585i \(0.944788\pi\)
\(450\) −1.71230 0.518335i −0.0807188 0.0244345i
\(451\) 26.4336i 1.24471i
\(452\) −0.503341 0.335475i −0.0236752 0.0157794i
\(453\) −3.59257 −0.168794
\(454\) 3.24726 10.7272i 0.152401 0.503453i
\(455\) 0 0
\(456\) −6.64294 8.06571i −0.311084 0.377712i
\(457\) −7.48572 −0.350167 −0.175083 0.984554i \(-0.556020\pi\)
−0.175083 + 0.984554i \(0.556020\pi\)
\(458\) −2.91791 0.883285i −0.136345 0.0412732i
\(459\) −0.454858 −0.0212310
\(460\) 14.2161 21.3296i 0.662830 0.994496i
\(461\) 4.33499 0.201901 0.100950 0.994891i \(-0.467812\pi\)
0.100950 + 0.994891i \(0.467812\pi\)
\(462\) 0 0
\(463\) 35.3200i 1.64146i 0.571316 + 0.820730i \(0.306433\pi\)
−0.571316 + 0.820730i \(0.693567\pi\)
\(464\) 9.52383 3.97088i 0.442133 0.184343i
\(465\) 15.0347i 0.697218i
\(466\) −27.0906 8.20065i −1.25495 0.379888i
\(467\) 10.4987i 0.485821i 0.970049 + 0.242911i \(0.0781022\pi\)
−0.970049 + 0.242911i \(0.921898\pi\)
\(468\) 8.84086 + 5.89241i 0.408669 + 0.272377i
\(469\) 0 0
\(470\) −3.24459 0.982175i −0.149662 0.0453044i
\(471\) 0.983524i 0.0453184i
\(472\) −22.0994 + 18.2011i −1.01721 + 0.837774i
\(473\) −20.8147 −0.957063
\(474\) −12.0642 3.65196i −0.554125 0.167740i
\(475\) 4.67348i 0.214434i
\(476\) 0 0
\(477\) 6.24836i 0.286093i
\(478\) 7.74089 25.5718i 0.354060 1.16963i
\(479\) −16.9275 −0.773437 −0.386719 0.922198i \(-0.626392\pi\)
−0.386719 + 0.922198i \(0.626392\pi\)
\(480\) −14.0869 + 1.42880i −0.642975 + 0.0652156i
\(481\) 47.8937i 2.18376i
\(482\) −7.50161 + 24.7814i −0.341689 + 1.12876i
\(483\) 0 0
\(484\) 35.3135 + 23.5364i 1.60516 + 1.06983i
\(485\) 9.29291i 0.421969i
\(486\) 0.409738 1.35356i 0.0185861 0.0613986i
\(487\) 23.7270i 1.07517i −0.843209 0.537586i \(-0.819336\pi\)
0.843209 0.537586i \(-0.180664\pi\)
\(488\) 8.99733 + 10.9244i 0.407290 + 0.494523i
\(489\) 2.52167i 0.114034i
\(490\) 0 0
\(491\) −3.41198 −0.153980 −0.0769901 0.997032i \(-0.524531\pi\)
−0.0769901 + 0.997032i \(0.524531\pi\)
\(492\) 7.75019 + 5.16548i 0.349406 + 0.232878i
\(493\) 1.17336 0.0528456
\(494\) −8.04122 + 26.5640i −0.361792 + 1.19517i
\(495\) −14.2075 −0.638581
\(496\) −9.24621 22.1763i −0.415167 0.995744i
\(497\) 0 0
\(498\) 2.65648 + 0.804149i 0.119040 + 0.0360348i
\(499\) −17.4600 −0.781615 −0.390808 0.920472i \(-0.627804\pi\)
−0.390808 + 0.920472i \(0.627804\pi\)
\(500\) 15.5583 + 10.3695i 0.695787 + 0.463740i
\(501\) 5.26232i 0.235103i
\(502\) −1.40643 + 4.64610i −0.0627720 + 0.207366i
\(503\) 7.08646 0.315970 0.157985 0.987442i \(-0.449500\pi\)
0.157985 + 0.987442i \(0.449500\pi\)
\(504\) 0 0
\(505\) 14.2209 0.632824
\(506\) 11.9088 39.3405i 0.529412 1.74890i
\(507\) 15.2203i 0.675959i
\(508\) −7.09615 + 10.6469i −0.314841 + 0.472381i
\(509\) −37.9306 −1.68124 −0.840622 0.541623i \(-0.817810\pi\)
−0.840622 + 0.541623i \(0.817810\pi\)
\(510\) −1.54104 0.466491i −0.0682385 0.0206566i
\(511\) 0 0
\(512\) −19.8995 + 10.7708i −0.879442 + 0.476006i
\(513\) 3.69433 0.163109
\(514\) −10.2717 + 33.9324i −0.453067 + 1.49669i
\(515\) 14.7850 0.651506
\(516\) 4.06749 6.10278i 0.179061 0.268660i
\(517\) −5.43598 −0.239074
\(518\) 0 0
\(519\) 0.143623i 0.00630436i
\(520\) 23.9094 + 29.0302i 1.04850 + 1.27306i
\(521\) 7.98089i 0.349649i −0.984600 0.174825i \(-0.944064\pi\)
0.984600 0.174825i \(-0.0559358\pi\)
\(522\) −1.05697 + 3.49166i −0.0462622 + 0.152826i
\(523\) 14.2336i 0.622393i 0.950346 + 0.311196i \(0.100730\pi\)
−0.950346 + 0.311196i \(0.899270\pi\)
\(524\) 16.0864 24.1357i 0.702736 1.05437i
\(525\) 0 0
\(526\) 6.35470 20.9926i 0.277078 0.915320i
\(527\) 2.73218i 0.119016i
\(528\) −20.9562 + 8.73750i −0.912001 + 0.380251i
\(529\) −3.21883 −0.139949
\(530\) 6.40816 21.1692i 0.278353 0.919531i
\(531\) 10.1222i 0.439264i
\(532\) 0 0
\(533\) 24.7389i 1.07156i
\(534\) 9.24270 + 2.79787i 0.399971 + 0.121076i
\(535\) 26.6843 1.15366
\(536\) −16.7275 20.3102i −0.722520 0.877268i
\(537\) 18.9248i 0.816664i
\(538\) 32.1244 + 9.72444i 1.38498 + 0.419250i
\(539\) 0 0
\(540\) 2.77635 4.16558i 0.119475 0.179258i
\(541\) 7.42798i 0.319354i −0.987169 0.159677i \(-0.948955\pi\)
0.987169 0.159677i \(-0.0510452\pi\)
\(542\) −19.9158 6.02875i −0.855457 0.258957i
\(543\) 22.2260i 0.953809i
\(544\) −2.55993 + 0.259649i −0.109756 + 0.0111323i
\(545\) 7.95734i 0.340855i
\(546\) 0 0
\(547\) −28.2287 −1.20697 −0.603485 0.797374i \(-0.706222\pi\)
−0.603485 + 0.797374i \(0.706222\pi\)
\(548\) 2.04887 + 1.36556i 0.0875232 + 0.0583340i
\(549\) −5.00367 −0.213551
\(550\) −9.71936 2.94217i −0.414435 0.125454i
\(551\) −9.52997 −0.405990
\(552\) 9.20729 + 11.1793i 0.391888 + 0.475822i
\(553\) 0 0
\(554\) 2.91834 9.64064i 0.123988 0.409592i
\(555\) 22.5662 0.957883
\(556\) −17.5020 + 26.2596i −0.742249 + 1.11366i
\(557\) 34.5692i 1.46474i −0.680906 0.732371i \(-0.738414\pi\)
0.680906 0.732371i \(-0.261586\pi\)
\(558\) 8.13036 + 2.46115i 0.344185 + 0.104189i
\(559\) −19.4803 −0.823929
\(560\) 0 0
\(561\) −2.58186 −0.109006
\(562\) −17.6722 5.34957i −0.745455 0.225658i
\(563\) 11.7207i 0.493967i 0.969020 + 0.246983i \(0.0794393\pi\)
−0.969020 + 0.246983i \(0.920561\pi\)
\(564\) 1.06227 1.59380i 0.0447295 0.0671112i
\(565\) 0.757026 0.0318483
\(566\) −0.866059 + 2.86100i −0.0364032 + 0.120257i
\(567\) 0 0
\(568\) 16.0523 13.2207i 0.673538 0.554728i
\(569\) −11.1065 −0.465608 −0.232804 0.972524i \(-0.574790\pi\)
−0.232804 + 0.972524i \(0.574790\pi\)
\(570\) 12.5162 + 3.78881i 0.524247 + 0.158696i
\(571\) −35.5114 −1.48610 −0.743052 0.669234i \(-0.766622\pi\)
−0.743052 + 0.669234i \(0.766622\pi\)
\(572\) 50.1824 + 33.4464i 2.09823 + 1.39847i
\(573\) −11.7909 −0.492573
\(574\) 0 0
\(575\) 6.47756i 0.270133i
\(576\) 1.53334 7.85168i 0.0638891 0.327153i
\(577\) 27.0551i 1.12632i 0.826348 + 0.563159i \(0.190414\pi\)
−0.826348 + 0.563159i \(0.809586\pi\)
\(578\) 22.7304 + 6.88076i 0.945461 + 0.286202i
\(579\) 26.8224i 1.11470i
\(580\) −7.16193 + 10.7456i −0.297383 + 0.446188i
\(581\) 0 0
\(582\) 5.02535 + 1.52123i 0.208307 + 0.0630571i
\(583\) 35.4668i 1.46889i
\(584\) 14.9633 12.3238i 0.619186 0.509963i
\(585\) −13.2967 −0.549750
\(586\) 0.452090 + 0.136853i 0.0186757 + 0.00565335i
\(587\) 35.3797i 1.46027i −0.683300 0.730137i \(-0.739456\pi\)
0.683300 0.730137i \(-0.260544\pi\)
\(588\) 0 0
\(589\) 22.1906i 0.914347i
\(590\) 10.3810 34.2934i 0.427380 1.41184i
\(591\) 16.5842 0.682181
\(592\) 33.2853 13.8780i 1.36802 0.570383i
\(593\) 39.2204i 1.61059i −0.592875 0.805294i \(-0.702007\pi\)
0.592875 0.805294i \(-0.297993\pi\)
\(594\) 2.32575 7.68304i 0.0954266 0.315239i
\(595\) 0 0
\(596\) 6.60594 9.91142i 0.270590 0.405988i
\(597\) 11.4084i 0.466915i
\(598\) 11.1453 36.8183i 0.455767 1.50561i
\(599\) 47.6722i 1.94783i 0.226908 + 0.973916i \(0.427138\pi\)
−0.226908 + 0.973916i \(0.572862\pi\)
\(600\) 2.76193 2.27473i 0.112755 0.0928654i
\(601\) 13.4207i 0.547442i −0.961809 0.273721i \(-0.911746\pi\)
0.961809 0.273721i \(-0.0882544\pi\)
\(602\) 0 0
\(603\) 9.30266 0.378834
\(604\) 3.98490 5.97886i 0.162143 0.243277i
\(605\) −53.1116 −2.15929
\(606\) −2.32794 + 7.69029i −0.0945662 + 0.312397i
\(607\) 38.2781 1.55366 0.776831 0.629709i \(-0.216826\pi\)
0.776831 + 0.629709i \(0.216826\pi\)
\(608\) 20.7916 2.10885i 0.843210 0.0855251i
\(609\) 0 0
\(610\) −16.9522 5.13164i −0.686376 0.207774i
\(611\) −5.08748 −0.205817
\(612\) 0.504531 0.756989i 0.0203945 0.0305995i
\(613\) 19.5404i 0.789230i −0.918847 0.394615i \(-0.870878\pi\)
0.918847 0.394615i \(-0.129122\pi\)
\(614\) 3.84801 12.7118i 0.155293 0.513007i
\(615\) −11.6563 −0.470028
\(616\) 0 0
\(617\) −1.16195 −0.0467785 −0.0233892 0.999726i \(-0.507446\pi\)
−0.0233892 + 0.999726i \(0.507446\pi\)
\(618\) −2.42028 + 7.99534i −0.0973580 + 0.321620i
\(619\) 35.8930i 1.44266i −0.692592 0.721330i \(-0.743531\pi\)
0.692592 0.721330i \(-0.256469\pi\)
\(620\) 25.0212 + 16.6766i 1.00488 + 0.669748i
\(621\) −5.12043 −0.205476
\(622\) −21.4877 6.50459i −0.861579 0.260810i
\(623\) 0 0
\(624\) −19.6127 + 8.17733i −0.785135 + 0.327355i
\(625\) −29.7249 −1.18900
\(626\) 13.1795 43.5380i 0.526757 1.74013i
\(627\) 20.9697 0.837449
\(628\) 1.63681 + 1.09093i 0.0653158 + 0.0435329i
\(629\) 4.10084 0.163511
\(630\) 0 0
\(631\) 8.26460i 0.329008i 0.986376 + 0.164504i \(0.0526024\pi\)
−0.986376 + 0.164504i \(0.947398\pi\)
\(632\) 19.4593 16.0268i 0.774051 0.637510i
\(633\) 4.13300i 0.164272i
\(634\) −6.25716 + 20.6704i −0.248504 + 0.820925i
\(635\) 16.0130i 0.635457i
\(636\) 10.3987 + 6.93071i 0.412335 + 0.274821i
\(637\) 0 0
\(638\) −5.99955 + 19.8193i −0.237524 + 0.784655i
\(639\) 7.35240i 0.290856i
\(640\) 13.2474 25.0286i 0.523649 0.989343i
\(641\) 28.9910 1.14508 0.572539 0.819878i \(-0.305959\pi\)
0.572539 + 0.819878i \(0.305959\pi\)
\(642\) −4.36817 + 14.4301i −0.172398 + 0.569512i
\(643\) 39.1239i 1.54289i 0.636293 + 0.771447i \(0.280467\pi\)
−0.636293 + 0.771447i \(0.719533\pi\)
\(644\) 0 0
\(645\) 9.17860i 0.361407i
\(646\) 2.27451 + 0.688521i 0.0894893 + 0.0270895i
\(647\) −12.1898 −0.479231 −0.239616 0.970868i \(-0.577021\pi\)
−0.239616 + 0.970868i \(0.577021\pi\)
\(648\) 1.79815 + 2.18327i 0.0706379 + 0.0857670i
\(649\) 57.4552i 2.25531i
\(650\) −9.09624 2.75354i −0.356784 0.108003i
\(651\) 0 0
\(652\) 4.19664 + 2.79705i 0.164353 + 0.109541i
\(653\) 10.1636i 0.397732i 0.980027 + 0.198866i \(0.0637259\pi\)
−0.980027 + 0.198866i \(0.936274\pi\)
\(654\) −4.30311 1.30260i −0.168265 0.0509358i
\(655\) 36.3001i 1.41836i
\(656\) −17.1931 + 7.16852i −0.671278 + 0.279884i
\(657\) 6.85362i 0.267385i
\(658\) 0 0
\(659\) −8.28558 −0.322760 −0.161380 0.986892i \(-0.551595\pi\)
−0.161380 + 0.986892i \(0.551595\pi\)
\(660\) 15.7591 23.6446i 0.613421 0.920365i
\(661\) −16.6178 −0.646358 −0.323179 0.946338i \(-0.604752\pi\)
−0.323179 + 0.946338i \(0.604752\pi\)
\(662\) −28.4760 8.62001i −1.10675 0.335026i
\(663\) −2.41633 −0.0938426
\(664\) −4.28487 + 3.52903i −0.166285 + 0.136953i
\(665\) 0 0
\(666\) −3.69405 + 12.2032i −0.143141 + 0.472864i
\(667\) 13.2088 0.511446
\(668\) −8.75771 5.83700i −0.338846 0.225840i
\(669\) 18.1063i 0.700031i
\(670\) 31.5171 + 9.54058i 1.21761 + 0.368585i
\(671\) −28.4018 −1.09644
\(672\) 0 0
\(673\) 13.1599 0.507278 0.253639 0.967299i \(-0.418372\pi\)
0.253639 + 0.967299i \(0.418372\pi\)
\(674\) 1.60194 + 0.484927i 0.0617045 + 0.0186787i
\(675\) 1.26504i 0.0486915i
\(676\) 25.3301 + 16.8825i 0.974236 + 0.649326i
\(677\) 20.4402 0.785580 0.392790 0.919628i \(-0.371510\pi\)
0.392790 + 0.919628i \(0.371510\pi\)
\(678\) −0.123924 + 0.409378i −0.00475926 + 0.0157221i
\(679\) 0 0
\(680\) 2.48568 2.04721i 0.0953215 0.0785070i
\(681\) −7.92521 −0.303695
\(682\) 46.1494 + 13.9700i 1.76715 + 0.534938i
\(683\) −15.7455 −0.602484 −0.301242 0.953548i \(-0.597401\pi\)
−0.301242 + 0.953548i \(0.597401\pi\)
\(684\) −4.09777 + 6.14821i −0.156682 + 0.235083i
\(685\) −3.08150 −0.117738
\(686\) 0 0
\(687\) 2.15573i 0.0822464i
\(688\) 5.64475 + 13.5385i 0.215204 + 0.516150i
\(689\) 33.1930i 1.26455i
\(690\) −17.3478 5.25139i −0.660420 0.199917i
\(691\) 3.19097i 0.121390i 0.998156 + 0.0606952i \(0.0193318\pi\)
−0.998156 + 0.0606952i \(0.980668\pi\)
\(692\) 0.239022 + 0.159308i 0.00908626 + 0.00605597i
\(693\) 0 0
\(694\) −6.51522 1.97223i −0.247314 0.0748650i
\(695\) 39.4945i 1.49811i
\(696\) −4.63854 5.63201i −0.175823 0.213481i
\(697\) −2.11824 −0.0802340
\(698\) −48.0231 14.5371i −1.81770 0.550239i
\(699\) 20.0144i 0.757015i
\(700\) 0 0
\(701\) 39.2121i 1.48102i −0.672045 0.740511i \(-0.734584\pi\)
0.672045 0.740511i \(-0.265416\pi\)
\(702\) 2.17664 7.19047i 0.0821520 0.271387i
\(703\) −33.3067 −1.25619
\(704\) 8.70351 44.5676i 0.328026 1.67970i
\(705\) 2.39708i 0.0902794i
\(706\) −1.95737 + 6.46612i −0.0736666 + 0.243356i
\(707\) 0 0
\(708\) 16.8456 + 11.2275i 0.633096 + 0.421957i
\(709\) 38.5269i 1.44691i 0.690372 + 0.723454i \(0.257447\pi\)
−0.690372 + 0.723454i \(0.742553\pi\)
\(710\) −7.54044 + 24.9096i −0.282988 + 0.934842i
\(711\) 8.91293i 0.334261i
\(712\) −14.9084 + 12.2786i −0.558714 + 0.460158i
\(713\) 30.7567i 1.15185i
\(714\) 0 0
\(715\) −75.4744 −2.82258
\(716\) −31.4952 20.9915i −1.17703 0.784488i
\(717\) −18.8923 −0.705547
\(718\) −15.1253 + 49.9660i −0.564471 + 1.86472i
\(719\) −23.0018 −0.857824 −0.428912 0.903346i \(-0.641103\pi\)
−0.428912 + 0.903346i \(0.641103\pi\)
\(720\) 3.85294 + 9.24097i 0.143591 + 0.344391i
\(721\) 0 0
\(722\) 7.24417 + 2.19289i 0.269600 + 0.0816111i
\(723\) 18.3083 0.680894
\(724\) 36.9892 + 24.6532i 1.37469 + 0.916229i
\(725\) 3.26333i 0.121197i
\(726\) 8.69426 28.7213i 0.322674 1.06595i
\(727\) 21.8433 0.810125 0.405062 0.914289i \(-0.367250\pi\)
0.405062 + 0.914289i \(0.367250\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) −7.02891 + 23.2198i −0.260151 + 0.859403i
\(731\) 1.66798i 0.0616924i
\(732\) 5.55010 8.32726i 0.205138 0.307784i
\(733\) 48.1361 1.77795 0.888974 0.457957i \(-0.151419\pi\)
0.888974 + 0.457957i \(0.151419\pi\)
\(734\) −0.769946 0.233072i −0.0284192 0.00860283i
\(735\) 0 0
\(736\) −28.8177 + 2.92292i −1.06223 + 0.107740i
\(737\) 52.8037 1.94505
\(738\) 1.90812 6.30341i 0.0702387 0.232032i
\(739\) −6.46911 −0.237970 −0.118985 0.992896i \(-0.537964\pi\)
−0.118985 + 0.992896i \(0.537964\pi\)
\(740\) −25.0306 + 37.5554i −0.920143 + 1.38056i
\(741\) 19.6253 0.720953
\(742\) 0 0
\(743\) 16.6709i 0.611597i −0.952096 0.305798i \(-0.901077\pi\)
0.952096 0.305798i \(-0.0989234\pi\)
\(744\) −13.1142 + 10.8009i −0.480789 + 0.395979i
\(745\) 14.9068i 0.546143i
\(746\) −9.60107 + 31.7169i −0.351520 + 1.16124i
\(747\) 1.96259i 0.0718076i
\(748\) 2.86381 4.29681i 0.104711 0.157107i
\(749\) 0 0
\(750\) 3.83048 12.6539i 0.139869 0.462055i
\(751\) 24.5602i 0.896215i 0.893980 + 0.448108i \(0.147902\pi\)
−0.893980 + 0.448108i \(0.852098\pi\)
\(752\) 1.47418 + 3.53571i 0.0537580 + 0.128934i
\(753\) 3.43251 0.125088
\(754\) −5.61491 + 18.5487i −0.204483 + 0.675504i
\(755\) 8.99223i 0.327261i
\(756\) 0 0
\(757\) 2.80888i 0.102091i 0.998696 + 0.0510453i \(0.0162553\pi\)
−0.998696 + 0.0510453i \(0.983745\pi\)
\(758\) −19.9297 6.03296i −0.723880 0.219127i
\(759\) −29.0645 −1.05498
\(760\) −20.1885 + 16.6273i −0.732315 + 0.603136i
\(761\) 20.1736i 0.731292i −0.930754 0.365646i \(-0.880848\pi\)
0.930754 0.365646i \(-0.119152\pi\)
\(762\) 8.65939 + 2.62130i 0.313697 + 0.0949596i
\(763\) 0 0
\(764\) 13.0786 19.6228i 0.473166 0.709929i
\(765\) 1.13851i 0.0411630i
\(766\) 6.76113 + 2.04667i 0.244289 + 0.0739493i
\(767\) 53.7717i 1.94158i
\(768\) 11.3662 + 11.2610i 0.410143 + 0.406345i
\(769\) 32.1388i 1.15895i −0.814988 0.579477i \(-0.803257\pi\)
0.814988 0.579477i \(-0.196743\pi\)
\(770\) 0 0
\(771\) 25.0690 0.902840
\(772\) 44.6387 + 29.7516i 1.60658 + 1.07078i
\(773\) 22.5863 0.812371 0.406186 0.913791i \(-0.366859\pi\)
0.406186 + 0.913791i \(0.366859\pi\)
\(774\) −4.96353 1.50252i −0.178410 0.0540070i
\(775\) −7.59867 −0.272952
\(776\) −8.10583 + 6.67598i −0.290982 + 0.239654i
\(777\) 0 0
\(778\) −13.0628 + 43.1528i −0.468326 + 1.54710i
\(779\) 17.2042 0.616404
\(780\) 14.7487 22.1287i 0.528090 0.792336i
\(781\) 41.7336i 1.49335i
\(782\) −3.15253 0.954308i −0.112734 0.0341260i
\(783\) 2.57962 0.0921882
\(784\) 0 0
\(785\) −2.46177 −0.0878642
\(786\) −19.6301 5.94226i −0.700182 0.211953i
\(787\) 33.7858i 1.20433i 0.798371 + 0.602166i \(0.205696\pi\)
−0.798371 + 0.602166i \(0.794304\pi\)
\(788\) −18.3952 + 27.5999i −0.655303 + 0.983204i
\(789\) −15.5092 −0.552142
\(790\) −9.14088 + 30.1967i −0.325218 + 1.07435i
\(791\) 0 0
\(792\) 10.2066 + 12.3927i 0.362676 + 0.440354i
\(793\) −26.5809 −0.943916
\(794\) −44.5402 13.4828i −1.58067 0.478488i
\(795\) −15.6397 −0.554682
\(796\) −18.9862 12.6543i −0.672948 0.448518i
\(797\) 27.0472 0.958061 0.479030 0.877798i \(-0.340988\pi\)
0.479030 + 0.877798i \(0.340988\pi\)
\(798\) 0 0
\(799\) 0.435609i 0.0154108i
\(800\) 0.722129 + 7.11963i 0.0255311 + 0.251717i
\(801\) 6.82845i 0.241271i
\(802\) 0.287593 + 0.0870577i 0.0101553 + 0.00307411i
\(803\) 38.9024i 1.37284i
\(804\) −10.3186 + 15.4818i −0.363908 + 0.546000i
\(805\) 0 0
\(806\) 43.1907 + 13.0743i 1.52133 + 0.460524i
\(807\) 23.7333i 0.835453i
\(808\) −10.2163 12.4044i −0.359407 0.436384i
\(809\) −49.8449 −1.75245 −0.876226 0.481900i \(-0.839947\pi\)
−0.876226 + 0.481900i \(0.839947\pi\)
\(810\) −3.38796 1.02558i −0.119041 0.0360351i
\(811\) 36.5330i 1.28285i 0.767188 + 0.641423i \(0.221655\pi\)
−0.767188 + 0.641423i \(0.778345\pi\)
\(812\) 0 0
\(813\) 14.7137i 0.516031i
\(814\) −20.9681 + 69.2676i −0.734932 + 2.42783i
\(815\) −6.31175 −0.221091
\(816\) 0.700175 + 1.67931i 0.0245110 + 0.0587877i
\(817\) 13.5472i 0.473957i
\(818\) 8.38793 27.7093i 0.293277 0.968832i
\(819\) 0 0
\(820\) 12.9292 19.3988i 0.451509 0.677435i
\(821\) 3.00119i 0.104742i −0.998628 0.0523711i \(-0.983322\pi\)
0.998628 0.0523711i \(-0.0166779\pi\)
\(822\) 0.504436 1.66639i 0.0175942 0.0581220i
\(823\) 15.9975i 0.557639i −0.960343 0.278820i \(-0.910057\pi\)
0.960343 0.278820i \(-0.0899432\pi\)
\(824\) −10.6215 12.8964i −0.370017 0.449267i
\(825\) 7.18061i 0.249997i
\(826\) 0 0
\(827\) 4.57856 0.159212 0.0796060 0.996826i \(-0.474634\pi\)
0.0796060 + 0.996826i \(0.474634\pi\)
\(828\) 5.67961 8.52158i 0.197380 0.296145i
\(829\) 3.06153 0.106331 0.0531657 0.998586i \(-0.483069\pi\)
0.0531657 + 0.998586i \(0.483069\pi\)
\(830\) 2.01279 6.64919i 0.0698649 0.230797i
\(831\) −7.12245 −0.247075
\(832\) 8.14552 41.7103i 0.282395 1.44605i
\(833\) 0 0
\(834\) 21.3575 + 6.46518i 0.739551 + 0.223871i
\(835\) 13.1716 0.455823
\(836\) −23.2597 + 34.8984i −0.804454 + 1.20699i
\(837\) 6.00666i 0.207621i
\(838\) 4.85290 16.0314i 0.167641 0.553796i
\(839\) −39.0864 −1.34941 −0.674706 0.738087i \(-0.735730\pi\)
−0.674706 + 0.738087i \(0.735730\pi\)
\(840\) 0 0
\(841\) 22.3456 0.770536
\(842\) −8.92932 + 29.4977i −0.307725 + 1.01656i
\(843\) 13.0561i 0.449676i
\(844\) −6.87826 4.58435i −0.236760 0.157800i
\(845\) −38.0966 −1.31056
\(846\) −1.29628 0.392398i −0.0445669 0.0134909i
\(847\) 0 0
\(848\) −23.0686 + 9.61825i −0.792179 + 0.330292i
\(849\) 2.11369 0.0725418
\(850\) −0.235769 + 0.778856i −0.00808680 + 0.0267145i
\(851\) 46.1640 1.58248
\(852\) −12.2361 8.15532i −0.419201 0.279397i
\(853\) −26.4897 −0.906989 −0.453495 0.891259i \(-0.649823\pi\)
−0.453495 + 0.891259i \(0.649823\pi\)
\(854\) 0 0
\(855\) 9.24692i 0.316238i
\(856\) −19.1699 23.2756i −0.655212 0.795544i
\(857\) 44.9255i 1.53462i −0.641273 0.767312i \(-0.721594\pi\)
0.641273 0.767312i \(-0.278406\pi\)
\(858\) 12.3550 40.8145i 0.421794 1.39338i
\(859\) 35.4056i 1.20802i 0.796976 + 0.604011i \(0.206432\pi\)
−0.796976 + 0.604011i \(0.793568\pi\)
\(860\) −15.2753 10.1810i −0.520883 0.347168i
\(861\) 0 0
\(862\) −6.77677 + 22.3869i −0.230818 + 0.762499i
\(863\) 2.77632i 0.0945072i 0.998883 + 0.0472536i \(0.0150469\pi\)
−0.998883 + 0.0472536i \(0.984953\pi\)
\(864\) −5.62798 + 0.570834i −0.191468 + 0.0194202i
\(865\) −0.359490 −0.0122230
\(866\) 16.0914 53.1574i 0.546807 1.80636i
\(867\) 16.7931i 0.570324i
\(868\) 0 0
\(869\) 50.5915i 1.71620i
\(870\) 8.73966 + 2.64560i 0.296302 + 0.0896942i
\(871\) 49.4184 1.67448
\(872\) 6.94086 5.71651i 0.235047 0.193585i
\(873\) 3.71270i 0.125656i
\(874\) 25.6046 + 7.75082i 0.866089 + 0.262175i
\(875\) 0 0
\(876\) −11.4060 7.60207i −0.385373 0.256850i
\(877\) 16.5427i 0.558608i −0.960203 0.279304i \(-0.909896\pi\)
0.960203 0.279304i \(-0.0901036\pi\)
\(878\) 42.0050 + 12.7154i 1.41760 + 0.429125i
\(879\) 0.334002i 0.0112656i
\(880\) 21.8700 + 52.4535i 0.737238 + 1.76821i
\(881\) 24.6158i 0.829327i 0.909975 + 0.414664i \(0.136101\pi\)
−0.909975 + 0.414664i \(0.863899\pi\)
\(882\) 0 0
\(883\) 40.4623 1.36167 0.680833 0.732439i \(-0.261618\pi\)
0.680833 + 0.732439i \(0.261618\pi\)
\(884\) 2.68021 4.02134i 0.0901453 0.135252i
\(885\) −25.3358 −0.851654
\(886\) −1.14366 0.346199i −0.0384219 0.0116308i
\(887\) −9.28462 −0.311747 −0.155873 0.987777i \(-0.549819\pi\)
−0.155873 + 0.987777i \(0.549819\pi\)
\(888\) −16.2115 19.6836i −0.544021 0.660538i
\(889\) 0 0
\(890\) 7.00309 23.1345i 0.234744 0.775471i
\(891\) −5.67619 −0.190159
\(892\) −30.1331 20.0836i −1.00893 0.672450i
\(893\) 3.53799i 0.118394i
\(894\) −8.06119 2.44022i −0.269606 0.0816130i
\(895\) 47.3688 1.58337
\(896\) 0 0
\(897\) −27.2012 −0.908221
\(898\) −56.5019 17.1038i −1.88549 0.570761i
\(899\) 15.4949i 0.516784i
\(900\) −2.10532 1.40319i −0.0701773 0.0467730i
\(901\) −2.84212 −0.0946846
\(902\) 10.8308 35.7793i 0.360627 1.19132i
\(903\) 0 0
\(904\) −0.543843 0.660322i −0.0180880 0.0219620i
\(905\) −55.6318 −1.84926
\(906\) −4.86275 1.47201i −0.161554 0.0489043i
\(907\) 5.10654 0.169560 0.0847800 0.996400i \(-0.472981\pi\)
0.0847800 + 0.996400i \(0.472981\pi\)
\(908\) 8.79069 13.1894i 0.291729 0.437705i
\(909\) 5.68155 0.188445
\(910\) 0 0
\(911\) 36.3702i 1.20500i −0.798119 0.602500i \(-0.794171\pi\)
0.798119 0.602500i \(-0.205829\pi\)
\(912\) −5.68677 13.6393i −0.188308 0.451641i
\(913\) 11.1401i 0.368682i
\(914\) −10.1323 3.06718i −0.335148 0.101453i
\(915\) 12.5242i 0.414038i
\(916\) −3.58764 2.39115i −0.118539 0.0790059i
\(917\) 0 0
\(918\) −0.615676 0.186372i −0.0203203 0.00615121i
\(919\) 46.6786i 1.53978i 0.638174 + 0.769892i \(0.279690\pi\)
−0.638174 + 0.769892i \(0.720310\pi\)
\(920\) 27.9818 23.0459i 0.922534 0.759801i
\(921\) −9.39141 −0.309458
\(922\) 5.86765 + 1.77621i 0.193241 + 0.0584963i
\(923\) 39.0580i 1.28561i
\(924\) 0 0
\(925\) 11.4052i 0.375000i
\(926\) −14.4719 + 47.8076i −0.475577 + 1.57106i
\(927\) 5.90691 0.194008
\(928\) 14.5181 1.47254i 0.476579 0.0483384i
\(929\) 39.1063i 1.28304i 0.767108 + 0.641518i \(0.221695\pi\)
−0.767108 + 0.641518i \(0.778305\pi\)
\(930\) 6.16029 20.3503i 0.202004 0.667314i
\(931\) 0 0
\(932\) −33.3086 22.2001i −1.09106 0.727188i
\(933\) 15.8750i 0.519724i
\(934\) −4.30170 + 14.2106i −0.140756 + 0.464984i
\(935\) 6.46241i 0.211343i
\(936\) 9.55226 + 11.5981i 0.312225 + 0.379097i
\(937\) 14.4038i 0.470551i −0.971929 0.235275i \(-0.924401\pi\)
0.971929 0.235275i \(-0.0755992\pi\)
\(938\) 0 0
\(939\) −32.1656 −1.04969
\(940\) −3.98930 2.65886i −0.130117 0.0867224i
\(941\) 26.2537 0.855848 0.427924 0.903815i \(-0.359245\pi\)
0.427924 + 0.903815i \(0.359245\pi\)
\(942\) 0.402987 1.33125i 0.0131300 0.0433746i
\(943\) −23.8455 −0.776515
\(944\) −37.3704 + 15.5813i −1.21630 + 0.507128i
\(945\) 0 0
\(946\) −28.1739 8.52858i −0.916014 0.277288i
\(947\) 15.7071 0.510412 0.255206 0.966887i \(-0.417857\pi\)
0.255206 + 0.966887i \(0.417857\pi\)
\(948\) −14.8332 9.88627i −0.481759 0.321091i
\(949\) 36.4084i 1.18187i
\(950\) 1.91490 6.32581i 0.0621275 0.205236i
\(951\) 15.2712 0.495201
\(952\) 0 0
\(953\) 42.8466 1.38794 0.693968 0.720006i \(-0.255861\pi\)
0.693968 + 0.720006i \(0.255861\pi\)
\(954\) 2.56019 8.45750i 0.0828891 0.273822i
\(955\) 29.5128i 0.955011i
\(956\) 20.9555 31.4412i 0.677748 1.01688i
\(957\) 14.6424 0.473322
\(958\) −22.9123 6.93583i −0.740264 0.224087i
\(959\) 0 0
\(960\) −19.6528 3.83795i −0.634292 0.123869i
\(961\) 5.07998 0.163870
\(962\) −19.6238 + 64.8268i −0.632698 + 2.09010i
\(963\) 10.6609 0.343543
\(964\) −20.3077 + 30.4693i −0.654067 + 0.981350i
\(965\) −67.1368 −2.16121
\(966\) 0 0
\(967\) 0.672082i 0.0216127i −0.999942 0.0108063i \(-0.996560\pi\)
0.999942 0.0108063i \(-0.00343983\pi\)
\(968\) 38.1551 + 46.3270i 1.22635 + 1.48901i
\(969\) 1.68039i 0.0539820i
\(970\) 3.80765 12.5785i 0.122256 0.403871i
\(971\) 7.45749i 0.239322i −0.992815 0.119661i \(-0.961819\pi\)
0.992815 0.119661i \(-0.0381808\pi\)
\(972\) 1.10921 1.66423i 0.0355778 0.0533802i
\(973\) 0 0
\(974\) 9.72184 32.1158i 0.311508 1.02906i
\(975\) 6.72025i 0.215220i
\(976\) 7.70228 + 18.4733i 0.246544 + 0.591316i
\(977\) 17.5740 0.562243 0.281121 0.959672i \(-0.409294\pi\)
0.281121 + 0.959672i \(0.409294\pi\)
\(978\) 1.03322 3.41322i 0.0330388 0.109143i
\(979\) 38.7596i 1.23876i
\(980\) 0 0
\(981\) 3.17911i 0.101501i
\(982\) −4.61830 1.39801i −0.147376 0.0446124i
\(983\) 42.7322 1.36294 0.681472 0.731844i \(-0.261340\pi\)
0.681472 + 0.731844i \(0.261340\pi\)
\(984\) 8.37383 + 10.1673i 0.266948 + 0.324122i
\(985\) 41.5103i 1.32263i
\(986\) 1.58821 + 0.480770i 0.0505790 + 0.0153108i
\(987\) 0 0
\(988\) −21.7685 + 32.6610i −0.692548 + 1.03909i
\(989\) 18.7768i 0.597067i
\(990\) −19.2307 5.82136i −0.611192 0.185015i
\(991\) 45.4228i 1.44290i −0.692465 0.721451i \(-0.743475\pi\)
0.692465 0.721451i \(-0.256525\pi\)
\(992\) −3.42881 33.8054i −0.108865 1.07332i
\(993\) 21.0379i 0.667617i
\(994\) 0 0
\(995\) 28.5553 0.905264
\(996\) 3.26621 + 2.17692i 0.103494 + 0.0689784i
\(997\) 43.7436 1.38537 0.692687 0.721239i \(-0.256427\pi\)
0.692687 + 0.721239i \(0.256427\pi\)
\(998\) −23.6330 7.15400i −0.748091 0.226456i
\(999\) 9.01565 0.285242
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1176.2.p.a.979.28 32
4.3 odd 2 4704.2.p.a.3919.16 32
7.2 even 3 168.2.t.a.115.8 yes 32
7.3 odd 6 168.2.t.a.19.4 32
7.6 odd 2 inner 1176.2.p.a.979.27 32
8.3 odd 2 inner 1176.2.p.a.979.25 32
8.5 even 2 4704.2.p.a.3919.2 32
21.2 odd 6 504.2.bk.c.451.9 32
21.17 even 6 504.2.bk.c.19.13 32
28.3 even 6 672.2.bb.a.271.2 32
28.23 odd 6 672.2.bb.a.367.7 32
28.27 even 2 4704.2.p.a.3919.1 32
56.3 even 6 168.2.t.a.19.8 yes 32
56.13 odd 2 4704.2.p.a.3919.15 32
56.27 even 2 inner 1176.2.p.a.979.26 32
56.37 even 6 672.2.bb.a.367.2 32
56.45 odd 6 672.2.bb.a.271.7 32
56.51 odd 6 168.2.t.a.115.4 yes 32
84.23 even 6 2016.2.bs.c.1711.4 32
84.59 odd 6 2016.2.bs.c.271.13 32
168.59 odd 6 504.2.bk.c.19.9 32
168.101 even 6 2016.2.bs.c.271.4 32
168.107 even 6 504.2.bk.c.451.13 32
168.149 odd 6 2016.2.bs.c.1711.13 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.t.a.19.4 32 7.3 odd 6
168.2.t.a.19.8 yes 32 56.3 even 6
168.2.t.a.115.4 yes 32 56.51 odd 6
168.2.t.a.115.8 yes 32 7.2 even 3
504.2.bk.c.19.9 32 168.59 odd 6
504.2.bk.c.19.13 32 21.17 even 6
504.2.bk.c.451.9 32 21.2 odd 6
504.2.bk.c.451.13 32 168.107 even 6
672.2.bb.a.271.2 32 28.3 even 6
672.2.bb.a.271.7 32 56.45 odd 6
672.2.bb.a.367.2 32 56.37 even 6
672.2.bb.a.367.7 32 28.23 odd 6
1176.2.p.a.979.25 32 8.3 odd 2 inner
1176.2.p.a.979.26 32 56.27 even 2 inner
1176.2.p.a.979.27 32 7.6 odd 2 inner
1176.2.p.a.979.28 32 1.1 even 1 trivial
2016.2.bs.c.271.4 32 168.101 even 6
2016.2.bs.c.271.13 32 84.59 odd 6
2016.2.bs.c.1711.4 32 84.23 even 6
2016.2.bs.c.1711.13 32 168.149 odd 6
4704.2.p.a.3919.1 32 28.27 even 2
4704.2.p.a.3919.2 32 8.5 even 2
4704.2.p.a.3919.15 32 56.13 odd 2
4704.2.p.a.3919.16 32 4.3 odd 2