Properties

Label 4704.2.p.a.3919.1
Level $4704$
Weight $2$
Character 4704.3919
Analytic conductor $37.562$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4704,2,Mod(3919,4704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4704.3919");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4704 = 2^{5} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4704.p (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.5616291108\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3919.1
Character \(\chi\) \(=\) 4704.3919
Dual form 4704.2.p.a.3919.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +2.50301 q^{5} -1.00000 q^{9} +5.67619 q^{11} +5.31228 q^{13} -2.50301i q^{15} -0.454858i q^{17} -3.69433i q^{19} -5.12043i q^{23} +1.26504 q^{25} +1.00000i q^{27} -2.57962i q^{29} -6.00666 q^{31} -5.67619i q^{33} -9.01565i q^{37} -5.31228i q^{39} -4.65692i q^{41} -3.66703 q^{43} -2.50301 q^{45} +0.957682 q^{47} -0.454858 q^{51} +6.24836i q^{53} +14.2075 q^{55} -3.69433 q^{57} +10.1222i q^{59} -5.00367 q^{61} +13.2967 q^{65} +9.30266 q^{67} -5.12043 q^{69} +7.35240i q^{71} +6.85362i q^{73} -1.26504i q^{75} +8.91293i q^{79} +1.00000 q^{81} +1.96259i q^{83} -1.13851i q^{85} -2.57962 q^{87} -6.82845i q^{89} +6.00666i q^{93} -9.24692i q^{95} -3.71270i q^{97} -5.67619 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{9} + 16 q^{11} + 32 q^{25} + 16 q^{43} + 16 q^{57} - 64 q^{67} + 32 q^{81} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4704\mathbb{Z}\right)^\times\).

\(n\) \(1471\) \(1765\) \(3137\) \(4609\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) 2.50301 1.11938 0.559689 0.828703i \(-0.310920\pi\)
0.559689 + 0.828703i \(0.310920\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 5.67619 1.71143 0.855717 0.517443i \(-0.173116\pi\)
0.855717 + 0.517443i \(0.173116\pi\)
\(12\) 0 0
\(13\) 5.31228 1.47336 0.736681 0.676241i \(-0.236392\pi\)
0.736681 + 0.676241i \(0.236392\pi\)
\(14\) 0 0
\(15\) − 2.50301i − 0.646273i
\(16\) 0 0
\(17\) − 0.454858i − 0.110319i −0.998478 0.0551596i \(-0.982433\pi\)
0.998478 0.0551596i \(-0.0175668\pi\)
\(18\) 0 0
\(19\) − 3.69433i − 0.847537i −0.905771 0.423768i \(-0.860707\pi\)
0.905771 0.423768i \(-0.139293\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 5.12043i − 1.06768i −0.845584 0.533842i \(-0.820748\pi\)
0.845584 0.533842i \(-0.179252\pi\)
\(24\) 0 0
\(25\) 1.26504 0.253008
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) − 2.57962i − 0.479024i −0.970893 0.239512i \(-0.923013\pi\)
0.970893 0.239512i \(-0.0769874\pi\)
\(30\) 0 0
\(31\) −6.00666 −1.07883 −0.539414 0.842041i \(-0.681354\pi\)
−0.539414 + 0.842041i \(0.681354\pi\)
\(32\) 0 0
\(33\) − 5.67619i − 0.988097i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 9.01565i − 1.48216i −0.671415 0.741082i \(-0.734313\pi\)
0.671415 0.741082i \(-0.265687\pi\)
\(38\) 0 0
\(39\) − 5.31228i − 0.850646i
\(40\) 0 0
\(41\) − 4.65692i − 0.727289i −0.931538 0.363644i \(-0.881532\pi\)
0.931538 0.363644i \(-0.118468\pi\)
\(42\) 0 0
\(43\) −3.66703 −0.559217 −0.279608 0.960114i \(-0.590205\pi\)
−0.279608 + 0.960114i \(0.590205\pi\)
\(44\) 0 0
\(45\) −2.50301 −0.373126
\(46\) 0 0
\(47\) 0.957682 0.139692 0.0698461 0.997558i \(-0.477749\pi\)
0.0698461 + 0.997558i \(0.477749\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −0.454858 −0.0636929
\(52\) 0 0
\(53\) 6.24836i 0.858278i 0.903239 + 0.429139i \(0.141183\pi\)
−0.903239 + 0.429139i \(0.858817\pi\)
\(54\) 0 0
\(55\) 14.2075 1.91574
\(56\) 0 0
\(57\) −3.69433 −0.489326
\(58\) 0 0
\(59\) 10.1222i 1.31779i 0.752234 + 0.658896i \(0.228976\pi\)
−0.752234 + 0.658896i \(0.771024\pi\)
\(60\) 0 0
\(61\) −5.00367 −0.640654 −0.320327 0.947307i \(-0.603793\pi\)
−0.320327 + 0.947307i \(0.603793\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 13.2967 1.64925
\(66\) 0 0
\(67\) 9.30266 1.13650 0.568251 0.822856i \(-0.307620\pi\)
0.568251 + 0.822856i \(0.307620\pi\)
\(68\) 0 0
\(69\) −5.12043 −0.616428
\(70\) 0 0
\(71\) 7.35240i 0.872569i 0.899809 + 0.436285i \(0.143706\pi\)
−0.899809 + 0.436285i \(0.856294\pi\)
\(72\) 0 0
\(73\) 6.85362i 0.802155i 0.916044 + 0.401078i \(0.131364\pi\)
−0.916044 + 0.401078i \(0.868636\pi\)
\(74\) 0 0
\(75\) − 1.26504i − 0.146074i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.91293i 1.00278i 0.865221 + 0.501391i \(0.167178\pi\)
−0.865221 + 0.501391i \(0.832822\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 1.96259i 0.215423i 0.994182 + 0.107711i \(0.0343522\pi\)
−0.994182 + 0.107711i \(0.965648\pi\)
\(84\) 0 0
\(85\) − 1.13851i − 0.123489i
\(86\) 0 0
\(87\) −2.57962 −0.276565
\(88\) 0 0
\(89\) − 6.82845i − 0.723814i −0.932214 0.361907i \(-0.882126\pi\)
0.932214 0.361907i \(-0.117874\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.00666i 0.622862i
\(94\) 0 0
\(95\) − 9.24692i − 0.948714i
\(96\) 0 0
\(97\) − 3.71270i − 0.376967i −0.982076 0.188484i \(-0.939643\pi\)
0.982076 0.188484i \(-0.0603573\pi\)
\(98\) 0 0
\(99\) −5.67619 −0.570478
\(100\) 0 0
\(101\) 5.68155 0.565335 0.282667 0.959218i \(-0.408781\pi\)
0.282667 + 0.959218i \(0.408781\pi\)
\(102\) 0 0
\(103\) −5.90691 −0.582025 −0.291013 0.956719i \(-0.593992\pi\)
−0.291013 + 0.956719i \(0.593992\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.6609 1.03063 0.515314 0.857002i \(-0.327675\pi\)
0.515314 + 0.857002i \(0.327675\pi\)
\(108\) 0 0
\(109\) − 3.17911i − 0.304504i −0.988342 0.152252i \(-0.951348\pi\)
0.988342 0.152252i \(-0.0486525\pi\)
\(110\) 0 0
\(111\) −9.01565 −0.855727
\(112\) 0 0
\(113\) −0.302446 −0.0284518 −0.0142259 0.999899i \(-0.504528\pi\)
−0.0142259 + 0.999899i \(0.504528\pi\)
\(114\) 0 0
\(115\) − 12.8165i − 1.19514i
\(116\) 0 0
\(117\) −5.31228 −0.491121
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 21.2191 1.92901
\(122\) 0 0
\(123\) −4.65692 −0.419900
\(124\) 0 0
\(125\) −9.34863 −0.836167
\(126\) 0 0
\(127\) − 6.39751i − 0.567687i −0.958871 0.283843i \(-0.908390\pi\)
0.958871 0.283843i \(-0.0916096\pi\)
\(128\) 0 0
\(129\) 3.66703i 0.322864i
\(130\) 0 0
\(131\) − 14.5026i − 1.26710i −0.773703 0.633549i \(-0.781598\pi\)
0.773703 0.633549i \(-0.218402\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.50301i 0.215424i
\(136\) 0 0
\(137\) 1.23112 0.105182 0.0525908 0.998616i \(-0.483252\pi\)
0.0525908 + 0.998616i \(0.483252\pi\)
\(138\) 0 0
\(139\) 15.7788i 1.33834i 0.743108 + 0.669172i \(0.233351\pi\)
−0.743108 + 0.669172i \(0.766649\pi\)
\(140\) 0 0
\(141\) − 0.957682i − 0.0806514i
\(142\) 0 0
\(143\) 30.1535 2.52156
\(144\) 0 0
\(145\) − 6.45681i − 0.536209i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 5.95556i − 0.487898i −0.969788 0.243949i \(-0.921557\pi\)
0.969788 0.243949i \(-0.0784430\pi\)
\(150\) 0 0
\(151\) 3.59257i 0.292359i 0.989258 + 0.146180i \(0.0466977\pi\)
−0.989258 + 0.146180i \(0.953302\pi\)
\(152\) 0 0
\(153\) 0.454858i 0.0367731i
\(154\) 0 0
\(155\) −15.0347 −1.20762
\(156\) 0 0
\(157\) −0.983524 −0.0784937 −0.0392469 0.999230i \(-0.512496\pi\)
−0.0392469 + 0.999230i \(0.512496\pi\)
\(158\) 0 0
\(159\) 6.24836 0.495527
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −2.52167 −0.197512 −0.0987562 0.995112i \(-0.531486\pi\)
−0.0987562 + 0.995112i \(0.531486\pi\)
\(164\) 0 0
\(165\) − 14.2075i − 1.10606i
\(166\) 0 0
\(167\) −5.26232 −0.407211 −0.203605 0.979053i \(-0.565266\pi\)
−0.203605 + 0.979053i \(0.565266\pi\)
\(168\) 0 0
\(169\) 15.2203 1.17079
\(170\) 0 0
\(171\) 3.69433i 0.282512i
\(172\) 0 0
\(173\) −0.143623 −0.0109195 −0.00545974 0.999985i \(-0.501738\pi\)
−0.00545974 + 0.999985i \(0.501738\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 10.1222 0.760827
\(178\) 0 0
\(179\) 18.9248 1.41450 0.707252 0.706961i \(-0.249935\pi\)
0.707252 + 0.706961i \(0.249935\pi\)
\(180\) 0 0
\(181\) −22.2260 −1.65204 −0.826022 0.563637i \(-0.809402\pi\)
−0.826022 + 0.563637i \(0.809402\pi\)
\(182\) 0 0
\(183\) 5.00367i 0.369882i
\(184\) 0 0
\(185\) − 22.5662i − 1.65910i
\(186\) 0 0
\(187\) − 2.58186i − 0.188804i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.7909i 0.853162i 0.904449 + 0.426581i \(0.140282\pi\)
−0.904449 + 0.426581i \(0.859718\pi\)
\(192\) 0 0
\(193\) 26.8224 1.93072 0.965361 0.260918i \(-0.0840252\pi\)
0.965361 + 0.260918i \(0.0840252\pi\)
\(194\) 0 0
\(195\) − 13.2967i − 0.952195i
\(196\) 0 0
\(197\) 16.5842i 1.18157i 0.806828 + 0.590786i \(0.201182\pi\)
−0.806828 + 0.590786i \(0.798818\pi\)
\(198\) 0 0
\(199\) −11.4084 −0.808720 −0.404360 0.914600i \(-0.632506\pi\)
−0.404360 + 0.914600i \(0.632506\pi\)
\(200\) 0 0
\(201\) − 9.30266i − 0.656159i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) − 11.6563i − 0.814112i
\(206\) 0 0
\(207\) 5.12043i 0.355895i
\(208\) 0 0
\(209\) − 20.9697i − 1.45050i
\(210\) 0 0
\(211\) 4.13300 0.284527 0.142264 0.989829i \(-0.454562\pi\)
0.142264 + 0.989829i \(0.454562\pi\)
\(212\) 0 0
\(213\) 7.35240 0.503778
\(214\) 0 0
\(215\) −9.17860 −0.625975
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 6.85362 0.463125
\(220\) 0 0
\(221\) − 2.41633i − 0.162540i
\(222\) 0 0
\(223\) −18.1063 −1.21249 −0.606245 0.795278i \(-0.707325\pi\)
−0.606245 + 0.795278i \(0.707325\pi\)
\(224\) 0 0
\(225\) −1.26504 −0.0843361
\(226\) 0 0
\(227\) − 7.92521i − 0.526015i −0.964794 0.263007i \(-0.915286\pi\)
0.964794 0.263007i \(-0.0847143\pi\)
\(228\) 0 0
\(229\) 2.15573 0.142455 0.0712274 0.997460i \(-0.477308\pi\)
0.0712274 + 0.997460i \(0.477308\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −20.0144 −1.31119 −0.655594 0.755114i \(-0.727582\pi\)
−0.655594 + 0.755114i \(0.727582\pi\)
\(234\) 0 0
\(235\) 2.39708 0.156369
\(236\) 0 0
\(237\) 8.91293 0.578957
\(238\) 0 0
\(239\) 18.8923i 1.22204i 0.791614 + 0.611021i \(0.209241\pi\)
−0.791614 + 0.611021i \(0.790759\pi\)
\(240\) 0 0
\(241\) − 18.3083i − 1.17934i −0.807643 0.589672i \(-0.799257\pi\)
0.807643 0.589672i \(-0.200743\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 19.6253i − 1.24873i
\(248\) 0 0
\(249\) 1.96259 0.124374
\(250\) 0 0
\(251\) 3.43251i 0.216658i 0.994115 + 0.108329i \(0.0345500\pi\)
−0.994115 + 0.108329i \(0.965450\pi\)
\(252\) 0 0
\(253\) − 29.0645i − 1.82727i
\(254\) 0 0
\(255\) −1.13851 −0.0712964
\(256\) 0 0
\(257\) − 25.0690i − 1.56376i −0.623426 0.781882i \(-0.714260\pi\)
0.623426 0.781882i \(-0.285740\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.57962i 0.159675i
\(262\) 0 0
\(263\) 15.5092i 0.956339i 0.878268 + 0.478169i \(0.158699\pi\)
−0.878268 + 0.478169i \(0.841301\pi\)
\(264\) 0 0
\(265\) 15.6397i 0.960738i
\(266\) 0 0
\(267\) −6.82845 −0.417894
\(268\) 0 0
\(269\) −23.7333 −1.44705 −0.723523 0.690300i \(-0.757479\pi\)
−0.723523 + 0.690300i \(0.757479\pi\)
\(270\) 0 0
\(271\) −14.7137 −0.893793 −0.446896 0.894586i \(-0.647471\pi\)
−0.446896 + 0.894586i \(0.647471\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.18061 0.433007
\(276\) 0 0
\(277\) − 7.12245i − 0.427947i −0.976840 0.213973i \(-0.931359\pi\)
0.976840 0.213973i \(-0.0686406\pi\)
\(278\) 0 0
\(279\) 6.00666 0.359609
\(280\) 0 0
\(281\) −13.0561 −0.778861 −0.389430 0.921056i \(-0.627328\pi\)
−0.389430 + 0.921056i \(0.627328\pi\)
\(282\) 0 0
\(283\) 2.11369i 0.125646i 0.998025 + 0.0628230i \(0.0200104\pi\)
−0.998025 + 0.0628230i \(0.979990\pi\)
\(284\) 0 0
\(285\) −9.24692 −0.547740
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 16.7931 0.987830
\(290\) 0 0
\(291\) −3.71270 −0.217642
\(292\) 0 0
\(293\) −0.334002 −0.0195126 −0.00975630 0.999952i \(-0.503106\pi\)
−0.00975630 + 0.999952i \(0.503106\pi\)
\(294\) 0 0
\(295\) 25.3358i 1.47511i
\(296\) 0 0
\(297\) 5.67619i 0.329366i
\(298\) 0 0
\(299\) − 27.2012i − 1.57308i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) − 5.68155i − 0.326396i
\(304\) 0 0
\(305\) −12.5242 −0.717135
\(306\) 0 0
\(307\) − 9.39141i − 0.535996i −0.963419 0.267998i \(-0.913638\pi\)
0.963419 0.267998i \(-0.0863621\pi\)
\(308\) 0 0
\(309\) 5.90691i 0.336032i
\(310\) 0 0
\(311\) −15.8750 −0.900189 −0.450095 0.892981i \(-0.648610\pi\)
−0.450095 + 0.892981i \(0.648610\pi\)
\(312\) 0 0
\(313\) 32.1656i 1.81811i 0.416679 + 0.909054i \(0.363194\pi\)
−0.416679 + 0.909054i \(0.636806\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.2712i 0.857714i 0.903373 + 0.428857i \(0.141083\pi\)
−0.903373 + 0.428857i \(0.858917\pi\)
\(318\) 0 0
\(319\) − 14.6424i − 0.819818i
\(320\) 0 0
\(321\) − 10.6609i − 0.595033i
\(322\) 0 0
\(323\) −1.68039 −0.0934996
\(324\) 0 0
\(325\) 6.72025 0.372773
\(326\) 0 0
\(327\) −3.17911 −0.175805
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 21.0379 1.15635 0.578174 0.815914i \(-0.303766\pi\)
0.578174 + 0.815914i \(0.303766\pi\)
\(332\) 0 0
\(333\) 9.01565i 0.494054i
\(334\) 0 0
\(335\) 23.2846 1.27217
\(336\) 0 0
\(337\) 1.18351 0.0644697 0.0322348 0.999480i \(-0.489738\pi\)
0.0322348 + 0.999480i \(0.489738\pi\)
\(338\) 0 0
\(339\) 0.302446i 0.0164266i
\(340\) 0 0
\(341\) −34.0949 −1.84634
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −12.8165 −0.690016
\(346\) 0 0
\(347\) 4.81341 0.258397 0.129199 0.991619i \(-0.458759\pi\)
0.129199 + 0.991619i \(0.458759\pi\)
\(348\) 0 0
\(349\) 35.4792 1.89916 0.949578 0.313530i \(-0.101512\pi\)
0.949578 + 0.313530i \(0.101512\pi\)
\(350\) 0 0
\(351\) 5.31228i 0.283549i
\(352\) 0 0
\(353\) − 4.77713i − 0.254261i −0.991886 0.127131i \(-0.959423\pi\)
0.991886 0.127131i \(-0.0405767\pi\)
\(354\) 0 0
\(355\) 18.4031i 0.976735i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 36.9146i − 1.94828i −0.225947 0.974140i \(-0.572547\pi\)
0.225947 0.974140i \(-0.427453\pi\)
\(360\) 0 0
\(361\) 5.35195 0.281682
\(362\) 0 0
\(363\) − 21.2191i − 1.11371i
\(364\) 0 0
\(365\) 17.1547i 0.897916i
\(366\) 0 0
\(367\) −0.568832 −0.0296928 −0.0148464 0.999890i \(-0.504726\pi\)
−0.0148464 + 0.999890i \(0.504726\pi\)
\(368\) 0 0
\(369\) 4.65692i 0.242430i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 23.4322i 1.21328i 0.794979 + 0.606638i \(0.207482\pi\)
−0.794979 + 0.606638i \(0.792518\pi\)
\(374\) 0 0
\(375\) 9.34863i 0.482761i
\(376\) 0 0
\(377\) − 13.7037i − 0.705775i
\(378\) 0 0
\(379\) 14.7240 0.756320 0.378160 0.925740i \(-0.376557\pi\)
0.378160 + 0.925740i \(0.376557\pi\)
\(380\) 0 0
\(381\) −6.39751 −0.327754
\(382\) 0 0
\(383\) 4.99508 0.255237 0.127618 0.991823i \(-0.459267\pi\)
0.127618 + 0.991823i \(0.459267\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.66703 0.186406
\(388\) 0 0
\(389\) 31.8810i 1.61643i 0.588887 + 0.808216i \(0.299566\pi\)
−0.588887 + 0.808216i \(0.700434\pi\)
\(390\) 0 0
\(391\) −2.32907 −0.117786
\(392\) 0 0
\(393\) −14.5026 −0.731559
\(394\) 0 0
\(395\) 22.3091i 1.12249i
\(396\) 0 0
\(397\) 32.9060 1.65151 0.825753 0.564032i \(-0.190751\pi\)
0.825753 + 0.564032i \(0.190751\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0.212472 0.0106103 0.00530517 0.999986i \(-0.498311\pi\)
0.00530517 + 0.999986i \(0.498311\pi\)
\(402\) 0 0
\(403\) −31.9091 −1.58950
\(404\) 0 0
\(405\) 2.50301 0.124375
\(406\) 0 0
\(407\) − 51.1745i − 2.53663i
\(408\) 0 0
\(409\) 20.4715i 1.01225i 0.862461 + 0.506124i \(0.168922\pi\)
−0.862461 + 0.506124i \(0.831078\pi\)
\(410\) 0 0
\(411\) − 1.23112i − 0.0607266i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 4.91239i 0.241140i
\(416\) 0 0
\(417\) 15.7788 0.772693
\(418\) 0 0
\(419\) − 11.8439i − 0.578614i −0.957236 0.289307i \(-0.906575\pi\)
0.957236 0.289307i \(-0.0934248\pi\)
\(420\) 0 0
\(421\) 21.7928i 1.06211i 0.847336 + 0.531057i \(0.178205\pi\)
−0.847336 + 0.531057i \(0.821795\pi\)
\(422\) 0 0
\(423\) −0.957682 −0.0465641
\(424\) 0 0
\(425\) − 0.575414i − 0.0279117i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) − 30.1535i − 1.45582i
\(430\) 0 0
\(431\) − 16.5393i − 0.796669i −0.917240 0.398335i \(-0.869588\pi\)
0.917240 0.398335i \(-0.130412\pi\)
\(432\) 0 0
\(433\) 39.2724i 1.88731i 0.330929 + 0.943656i \(0.392638\pi\)
−0.330929 + 0.943656i \(0.607362\pi\)
\(434\) 0 0
\(435\) −6.45681 −0.309580
\(436\) 0 0
\(437\) −18.9166 −0.904901
\(438\) 0 0
\(439\) 31.0331 1.48113 0.740564 0.671986i \(-0.234558\pi\)
0.740564 + 0.671986i \(0.234558\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.844928 0.0401438 0.0200719 0.999799i \(-0.493610\pi\)
0.0200719 + 0.999799i \(0.493610\pi\)
\(444\) 0 0
\(445\) − 17.0917i − 0.810222i
\(446\) 0 0
\(447\) −5.95556 −0.281688
\(448\) 0 0
\(449\) −41.7433 −1.96999 −0.984995 0.172585i \(-0.944788\pi\)
−0.984995 + 0.172585i \(0.944788\pi\)
\(450\) 0 0
\(451\) − 26.4336i − 1.24471i
\(452\) 0 0
\(453\) 3.59257 0.168794
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7.48572 −0.350167 −0.175083 0.984554i \(-0.556020\pi\)
−0.175083 + 0.984554i \(0.556020\pi\)
\(458\) 0 0
\(459\) 0.454858 0.0212310
\(460\) 0 0
\(461\) −4.33499 −0.201901 −0.100950 0.994891i \(-0.532188\pi\)
−0.100950 + 0.994891i \(0.532188\pi\)
\(462\) 0 0
\(463\) − 35.3200i − 1.64146i −0.571316 0.820730i \(-0.693567\pi\)
0.571316 0.820730i \(-0.306433\pi\)
\(464\) 0 0
\(465\) 15.0347i 0.697218i
\(466\) 0 0
\(467\) 10.4987i 0.485821i 0.970049 + 0.242911i \(0.0781022\pi\)
−0.970049 + 0.242911i \(0.921898\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0.983524i 0.0453184i
\(472\) 0 0
\(473\) −20.8147 −0.957063
\(474\) 0 0
\(475\) − 4.67348i − 0.214434i
\(476\) 0 0
\(477\) − 6.24836i − 0.286093i
\(478\) 0 0
\(479\) −16.9275 −0.773437 −0.386719 0.922198i \(-0.626392\pi\)
−0.386719 + 0.922198i \(0.626392\pi\)
\(480\) 0 0
\(481\) − 47.8937i − 2.18376i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 9.29291i − 0.421969i
\(486\) 0 0
\(487\) 23.7270i 1.07517i 0.843209 + 0.537586i \(0.180664\pi\)
−0.843209 + 0.537586i \(0.819336\pi\)
\(488\) 0 0
\(489\) 2.52167i 0.114034i
\(490\) 0 0
\(491\) 3.41198 0.153980 0.0769901 0.997032i \(-0.475469\pi\)
0.0769901 + 0.997032i \(0.475469\pi\)
\(492\) 0 0
\(493\) −1.17336 −0.0528456
\(494\) 0 0
\(495\) −14.2075 −0.638581
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 17.4600 0.781615 0.390808 0.920472i \(-0.372196\pi\)
0.390808 + 0.920472i \(0.372196\pi\)
\(500\) 0 0
\(501\) 5.26232i 0.235103i
\(502\) 0 0
\(503\) 7.08646 0.315970 0.157985 0.987442i \(-0.449500\pi\)
0.157985 + 0.987442i \(0.449500\pi\)
\(504\) 0 0
\(505\) 14.2209 0.632824
\(506\) 0 0
\(507\) − 15.2203i − 0.675959i
\(508\) 0 0
\(509\) 37.9306 1.68124 0.840622 0.541623i \(-0.182190\pi\)
0.840622 + 0.541623i \(0.182190\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 3.69433 0.163109
\(514\) 0 0
\(515\) −14.7850 −0.651506
\(516\) 0 0
\(517\) 5.43598 0.239074
\(518\) 0 0
\(519\) 0.143623i 0.00630436i
\(520\) 0 0
\(521\) 7.98089i 0.349649i 0.984600 + 0.174825i \(0.0559358\pi\)
−0.984600 + 0.174825i \(0.944064\pi\)
\(522\) 0 0
\(523\) 14.2336i 0.622393i 0.950346 + 0.311196i \(0.100730\pi\)
−0.950346 + 0.311196i \(0.899270\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.73218i 0.119016i
\(528\) 0 0
\(529\) −3.21883 −0.139949
\(530\) 0 0
\(531\) − 10.1222i − 0.439264i
\(532\) 0 0
\(533\) − 24.7389i − 1.07156i
\(534\) 0 0
\(535\) 26.6843 1.15366
\(536\) 0 0
\(537\) − 18.9248i − 0.816664i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) − 7.42798i − 0.319354i −0.987169 0.159677i \(-0.948955\pi\)
0.987169 0.159677i \(-0.0510452\pi\)
\(542\) 0 0
\(543\) 22.2260i 0.953809i
\(544\) 0 0
\(545\) − 7.95734i − 0.340855i
\(546\) 0 0
\(547\) 28.2287 1.20697 0.603485 0.797374i \(-0.293778\pi\)
0.603485 + 0.797374i \(0.293778\pi\)
\(548\) 0 0
\(549\) 5.00367 0.213551
\(550\) 0 0
\(551\) −9.52997 −0.405990
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −22.5662 −0.957883
\(556\) 0 0
\(557\) − 34.5692i − 1.46474i −0.680906 0.732371i \(-0.738414\pi\)
0.680906 0.732371i \(-0.261586\pi\)
\(558\) 0 0
\(559\) −19.4803 −0.823929
\(560\) 0 0
\(561\) −2.58186 −0.109006
\(562\) 0 0
\(563\) 11.7207i 0.493967i 0.969020 + 0.246983i \(0.0794393\pi\)
−0.969020 + 0.246983i \(0.920561\pi\)
\(564\) 0 0
\(565\) −0.757026 −0.0318483
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11.1065 −0.465608 −0.232804 0.972524i \(-0.574790\pi\)
−0.232804 + 0.972524i \(0.574790\pi\)
\(570\) 0 0
\(571\) 35.5114 1.48610 0.743052 0.669234i \(-0.233378\pi\)
0.743052 + 0.669234i \(0.233378\pi\)
\(572\) 0 0
\(573\) 11.7909 0.492573
\(574\) 0 0
\(575\) − 6.47756i − 0.270133i
\(576\) 0 0
\(577\) − 27.0551i − 1.12632i −0.826348 0.563159i \(-0.809586\pi\)
0.826348 0.563159i \(-0.190414\pi\)
\(578\) 0 0
\(579\) − 26.8224i − 1.11470i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 35.4668i 1.46889i
\(584\) 0 0
\(585\) −13.2967 −0.549750
\(586\) 0 0
\(587\) − 35.3797i − 1.46027i −0.683300 0.730137i \(-0.739456\pi\)
0.683300 0.730137i \(-0.260544\pi\)
\(588\) 0 0
\(589\) 22.1906i 0.914347i
\(590\) 0 0
\(591\) 16.5842 0.682181
\(592\) 0 0
\(593\) 39.2204i 1.61059i 0.592875 + 0.805294i \(0.297993\pi\)
−0.592875 + 0.805294i \(0.702007\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 11.4084i 0.466915i
\(598\) 0 0
\(599\) − 47.6722i − 1.94783i −0.226908 0.973916i \(-0.572862\pi\)
0.226908 0.973916i \(-0.427138\pi\)
\(600\) 0 0
\(601\) 13.4207i 0.547442i 0.961809 + 0.273721i \(0.0882544\pi\)
−0.961809 + 0.273721i \(0.911746\pi\)
\(602\) 0 0
\(603\) −9.30266 −0.378834
\(604\) 0 0
\(605\) 53.1116 2.15929
\(606\) 0 0
\(607\) 38.2781 1.55366 0.776831 0.629709i \(-0.216826\pi\)
0.776831 + 0.629709i \(0.216826\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.08748 0.205817
\(612\) 0 0
\(613\) − 19.5404i − 0.789230i −0.918847 0.394615i \(-0.870878\pi\)
0.918847 0.394615i \(-0.129122\pi\)
\(614\) 0 0
\(615\) −11.6563 −0.470028
\(616\) 0 0
\(617\) −1.16195 −0.0467785 −0.0233892 0.999726i \(-0.507446\pi\)
−0.0233892 + 0.999726i \(0.507446\pi\)
\(618\) 0 0
\(619\) − 35.8930i − 1.44266i −0.692592 0.721330i \(-0.743531\pi\)
0.692592 0.721330i \(-0.256469\pi\)
\(620\) 0 0
\(621\) 5.12043 0.205476
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −29.7249 −1.18900
\(626\) 0 0
\(627\) −20.9697 −0.837449
\(628\) 0 0
\(629\) −4.10084 −0.163511
\(630\) 0 0
\(631\) − 8.26460i − 0.329008i −0.986376 0.164504i \(-0.947398\pi\)
0.986376 0.164504i \(-0.0526024\pi\)
\(632\) 0 0
\(633\) − 4.13300i − 0.164272i
\(634\) 0 0
\(635\) − 16.0130i − 0.635457i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) − 7.35240i − 0.290856i
\(640\) 0 0
\(641\) 28.9910 1.14508 0.572539 0.819878i \(-0.305959\pi\)
0.572539 + 0.819878i \(0.305959\pi\)
\(642\) 0 0
\(643\) 39.1239i 1.54289i 0.636293 + 0.771447i \(0.280467\pi\)
−0.636293 + 0.771447i \(0.719533\pi\)
\(644\) 0 0
\(645\) 9.17860i 0.361407i
\(646\) 0 0
\(647\) −12.1898 −0.479231 −0.239616 0.970868i \(-0.577021\pi\)
−0.239616 + 0.970868i \(0.577021\pi\)
\(648\) 0 0
\(649\) 57.4552i 2.25531i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 10.1636i 0.397732i 0.980027 + 0.198866i \(0.0637259\pi\)
−0.980027 + 0.198866i \(0.936274\pi\)
\(654\) 0 0
\(655\) − 36.3001i − 1.41836i
\(656\) 0 0
\(657\) − 6.85362i − 0.267385i
\(658\) 0 0
\(659\) 8.28558 0.322760 0.161380 0.986892i \(-0.448405\pi\)
0.161380 + 0.986892i \(0.448405\pi\)
\(660\) 0 0
\(661\) 16.6178 0.646358 0.323179 0.946338i \(-0.395248\pi\)
0.323179 + 0.946338i \(0.395248\pi\)
\(662\) 0 0
\(663\) −2.41633 −0.0938426
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −13.2088 −0.511446
\(668\) 0 0
\(669\) 18.1063i 0.700031i
\(670\) 0 0
\(671\) −28.4018 −1.09644
\(672\) 0 0
\(673\) 13.1599 0.507278 0.253639 0.967299i \(-0.418372\pi\)
0.253639 + 0.967299i \(0.418372\pi\)
\(674\) 0 0
\(675\) 1.26504i 0.0486915i
\(676\) 0 0
\(677\) −20.4402 −0.785580 −0.392790 0.919628i \(-0.628490\pi\)
−0.392790 + 0.919628i \(0.628490\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −7.92521 −0.303695
\(682\) 0 0
\(683\) 15.7455 0.602484 0.301242 0.953548i \(-0.402599\pi\)
0.301242 + 0.953548i \(0.402599\pi\)
\(684\) 0 0
\(685\) 3.08150 0.117738
\(686\) 0 0
\(687\) − 2.15573i − 0.0822464i
\(688\) 0 0
\(689\) 33.1930i 1.26455i
\(690\) 0 0
\(691\) 3.19097i 0.121390i 0.998156 + 0.0606952i \(0.0193318\pi\)
−0.998156 + 0.0606952i \(0.980668\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 39.4945i 1.49811i
\(696\) 0 0
\(697\) −2.11824 −0.0802340
\(698\) 0 0
\(699\) 20.0144i 0.757015i
\(700\) 0 0
\(701\) − 39.2121i − 1.48102i −0.672045 0.740511i \(-0.734584\pi\)
0.672045 0.740511i \(-0.265416\pi\)
\(702\) 0 0
\(703\) −33.3067 −1.25619
\(704\) 0 0
\(705\) − 2.39708i − 0.0902794i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 38.5269i 1.44691i 0.690372 + 0.723454i \(0.257447\pi\)
−0.690372 + 0.723454i \(0.742553\pi\)
\(710\) 0 0
\(711\) − 8.91293i − 0.334261i
\(712\) 0 0
\(713\) 30.7567i 1.15185i
\(714\) 0 0
\(715\) 75.4744 2.82258
\(716\) 0 0
\(717\) 18.8923 0.705547
\(718\) 0 0
\(719\) −23.0018 −0.857824 −0.428912 0.903346i \(-0.641103\pi\)
−0.428912 + 0.903346i \(0.641103\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −18.3083 −0.680894
\(724\) 0 0
\(725\) − 3.26333i − 0.121197i
\(726\) 0 0
\(727\) 21.8433 0.810125 0.405062 0.914289i \(-0.367250\pi\)
0.405062 + 0.914289i \(0.367250\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 1.66798i 0.0616924i
\(732\) 0 0
\(733\) −48.1361 −1.77795 −0.888974 0.457957i \(-0.848581\pi\)
−0.888974 + 0.457957i \(0.848581\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 52.8037 1.94505
\(738\) 0 0
\(739\) 6.46911 0.237970 0.118985 0.992896i \(-0.462036\pi\)
0.118985 + 0.992896i \(0.462036\pi\)
\(740\) 0 0
\(741\) −19.6253 −0.720953
\(742\) 0 0
\(743\) 16.6709i 0.611597i 0.952096 + 0.305798i \(0.0989234\pi\)
−0.952096 + 0.305798i \(0.901077\pi\)
\(744\) 0 0
\(745\) − 14.9068i − 0.546143i
\(746\) 0 0
\(747\) − 1.96259i − 0.0718076i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) − 24.5602i − 0.896215i −0.893980 0.448108i \(-0.852098\pi\)
0.893980 0.448108i \(-0.147902\pi\)
\(752\) 0 0
\(753\) 3.43251 0.125088
\(754\) 0 0
\(755\) 8.99223i 0.327261i
\(756\) 0 0
\(757\) 2.80888i 0.102091i 0.998696 + 0.0510453i \(0.0162553\pi\)
−0.998696 + 0.0510453i \(0.983745\pi\)
\(758\) 0 0
\(759\) −29.0645 −1.05498
\(760\) 0 0
\(761\) 20.1736i 0.731292i 0.930754 + 0.365646i \(0.119152\pi\)
−0.930754 + 0.365646i \(0.880848\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.13851i 0.0411630i
\(766\) 0 0
\(767\) 53.7717i 1.94158i
\(768\) 0 0
\(769\) 32.1388i 1.15895i 0.814988 + 0.579477i \(0.196743\pi\)
−0.814988 + 0.579477i \(0.803257\pi\)
\(770\) 0 0
\(771\) −25.0690 −0.902840
\(772\) 0 0
\(773\) −22.5863 −0.812371 −0.406186 0.913791i \(-0.633141\pi\)
−0.406186 + 0.913791i \(0.633141\pi\)
\(774\) 0 0
\(775\) −7.59867 −0.272952
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −17.2042 −0.616404
\(780\) 0 0
\(781\) 41.7336i 1.49335i
\(782\) 0 0
\(783\) 2.57962 0.0921882
\(784\) 0 0
\(785\) −2.46177 −0.0878642
\(786\) 0 0
\(787\) 33.7858i 1.20433i 0.798371 + 0.602166i \(0.205696\pi\)
−0.798371 + 0.602166i \(0.794304\pi\)
\(788\) 0 0
\(789\) 15.5092 0.552142
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −26.5809 −0.943916
\(794\) 0 0
\(795\) 15.6397 0.554682
\(796\) 0 0
\(797\) −27.0472 −0.958061 −0.479030 0.877798i \(-0.659012\pi\)
−0.479030 + 0.877798i \(0.659012\pi\)
\(798\) 0 0
\(799\) − 0.435609i − 0.0154108i
\(800\) 0 0
\(801\) 6.82845i 0.241271i
\(802\) 0 0
\(803\) 38.9024i 1.37284i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 23.7333i 0.835453i
\(808\) 0 0
\(809\) −49.8449 −1.75245 −0.876226 0.481900i \(-0.839947\pi\)
−0.876226 + 0.481900i \(0.839947\pi\)
\(810\) 0 0
\(811\) 36.5330i 1.28285i 0.767188 + 0.641423i \(0.221655\pi\)
−0.767188 + 0.641423i \(0.778345\pi\)
\(812\) 0 0
\(813\) 14.7137i 0.516031i
\(814\) 0 0
\(815\) −6.31175 −0.221091
\(816\) 0 0
\(817\) 13.5472i 0.473957i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 3.00119i − 0.104742i −0.998628 0.0523711i \(-0.983322\pi\)
0.998628 0.0523711i \(-0.0166779\pi\)
\(822\) 0 0
\(823\) 15.9975i 0.557639i 0.960343 + 0.278820i \(0.0899432\pi\)
−0.960343 + 0.278820i \(0.910057\pi\)
\(824\) 0 0
\(825\) − 7.18061i − 0.249997i
\(826\) 0 0
\(827\) −4.57856 −0.159212 −0.0796060 0.996826i \(-0.525366\pi\)
−0.0796060 + 0.996826i \(0.525366\pi\)
\(828\) 0 0
\(829\) −3.06153 −0.106331 −0.0531657 0.998586i \(-0.516931\pi\)
−0.0531657 + 0.998586i \(0.516931\pi\)
\(830\) 0 0
\(831\) −7.12245 −0.247075
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −13.1716 −0.455823
\(836\) 0 0
\(837\) − 6.00666i − 0.207621i
\(838\) 0 0
\(839\) −39.0864 −1.34941 −0.674706 0.738087i \(-0.735730\pi\)
−0.674706 + 0.738087i \(0.735730\pi\)
\(840\) 0 0
\(841\) 22.3456 0.770536
\(842\) 0 0
\(843\) 13.0561i 0.449676i
\(844\) 0 0
\(845\) 38.0966 1.31056
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 2.11369 0.0725418
\(850\) 0 0
\(851\) −46.1640 −1.58248
\(852\) 0 0
\(853\) 26.4897 0.906989 0.453495 0.891259i \(-0.350177\pi\)
0.453495 + 0.891259i \(0.350177\pi\)
\(854\) 0 0
\(855\) 9.24692i 0.316238i
\(856\) 0 0
\(857\) 44.9255i 1.53462i 0.641273 + 0.767312i \(0.278406\pi\)
−0.641273 + 0.767312i \(0.721594\pi\)
\(858\) 0 0
\(859\) 35.4056i 1.20802i 0.796976 + 0.604011i \(0.206432\pi\)
−0.796976 + 0.604011i \(0.793568\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 2.77632i − 0.0945072i −0.998883 0.0472536i \(-0.984953\pi\)
0.998883 0.0472536i \(-0.0150469\pi\)
\(864\) 0 0
\(865\) −0.359490 −0.0122230
\(866\) 0 0
\(867\) − 16.7931i − 0.570324i
\(868\) 0 0
\(869\) 50.5915i 1.71620i
\(870\) 0 0
\(871\) 49.4184 1.67448
\(872\) 0 0
\(873\) 3.71270i 0.125656i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 16.5427i − 0.558608i −0.960203 0.279304i \(-0.909896\pi\)
0.960203 0.279304i \(-0.0901036\pi\)
\(878\) 0 0
\(879\) 0.334002i 0.0112656i
\(880\) 0 0
\(881\) − 24.6158i − 0.829327i −0.909975 0.414664i \(-0.863899\pi\)
0.909975 0.414664i \(-0.136101\pi\)
\(882\) 0 0
\(883\) −40.4623 −1.36167 −0.680833 0.732439i \(-0.738382\pi\)
−0.680833 + 0.732439i \(0.738382\pi\)
\(884\) 0 0
\(885\) 25.3358 0.851654
\(886\) 0 0
\(887\) −9.28462 −0.311747 −0.155873 0.987777i \(-0.549819\pi\)
−0.155873 + 0.987777i \(0.549819\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 5.67619 0.190159
\(892\) 0 0
\(893\) − 3.53799i − 0.118394i
\(894\) 0 0
\(895\) 47.3688 1.58337
\(896\) 0 0
\(897\) −27.2012 −0.908221
\(898\) 0 0
\(899\) 15.4949i 0.516784i
\(900\) 0 0
\(901\) 2.84212 0.0946846
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −55.6318 −1.84926
\(906\) 0 0
\(907\) −5.10654 −0.169560 −0.0847800 0.996400i \(-0.527019\pi\)
−0.0847800 + 0.996400i \(0.527019\pi\)
\(908\) 0 0
\(909\) −5.68155 −0.188445
\(910\) 0 0
\(911\) 36.3702i 1.20500i 0.798119 + 0.602500i \(0.205829\pi\)
−0.798119 + 0.602500i \(0.794171\pi\)
\(912\) 0 0
\(913\) 11.1401i 0.368682i
\(914\) 0 0
\(915\) 12.5242i 0.414038i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) − 46.6786i − 1.53978i −0.638174 0.769892i \(-0.720310\pi\)
0.638174 0.769892i \(-0.279690\pi\)
\(920\) 0 0
\(921\) −9.39141 −0.309458
\(922\) 0 0
\(923\) 39.0580i 1.28561i
\(924\) 0 0
\(925\) − 11.4052i − 0.375000i
\(926\) 0 0
\(927\) 5.90691 0.194008
\(928\) 0 0
\(929\) − 39.1063i − 1.28304i −0.767108 0.641518i \(-0.778305\pi\)
0.767108 0.641518i \(-0.221695\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 15.8750i 0.519724i
\(934\) 0 0
\(935\) − 6.46241i − 0.211343i
\(936\) 0 0
\(937\) 14.4038i 0.470551i 0.971929 + 0.235275i \(0.0755992\pi\)
−0.971929 + 0.235275i \(0.924401\pi\)
\(938\) 0 0
\(939\) 32.1656 1.04969
\(940\) 0 0
\(941\) −26.2537 −0.855848 −0.427924 0.903815i \(-0.640755\pi\)
−0.427924 + 0.903815i \(0.640755\pi\)
\(942\) 0 0
\(943\) −23.8455 −0.776515
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −15.7071 −0.510412 −0.255206 0.966887i \(-0.582143\pi\)
−0.255206 + 0.966887i \(0.582143\pi\)
\(948\) 0 0
\(949\) 36.4084i 1.18187i
\(950\) 0 0
\(951\) 15.2712 0.495201
\(952\) 0 0
\(953\) 42.8466 1.38794 0.693968 0.720006i \(-0.255861\pi\)
0.693968 + 0.720006i \(0.255861\pi\)
\(954\) 0 0
\(955\) 29.5128i 0.955011i
\(956\) 0 0
\(957\) −14.6424 −0.473322
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 5.07998 0.163870
\(962\) 0 0
\(963\) −10.6609 −0.343543
\(964\) 0 0
\(965\) 67.1368 2.16121
\(966\) 0 0
\(967\) 0.672082i 0.0216127i 0.999942 + 0.0108063i \(0.00343983\pi\)
−0.999942 + 0.0108063i \(0.996560\pi\)
\(968\) 0 0
\(969\) 1.68039i 0.0539820i
\(970\) 0 0
\(971\) − 7.45749i − 0.239322i −0.992815 0.119661i \(-0.961819\pi\)
0.992815 0.119661i \(-0.0381808\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) − 6.72025i − 0.215220i
\(976\) 0 0
\(977\) 17.5740 0.562243 0.281121 0.959672i \(-0.409294\pi\)
0.281121 + 0.959672i \(0.409294\pi\)
\(978\) 0 0
\(979\) − 38.7596i − 1.23876i
\(980\) 0 0
\(981\) 3.17911i 0.101501i
\(982\) 0 0
\(983\) 42.7322 1.36294 0.681472 0.731844i \(-0.261340\pi\)
0.681472 + 0.731844i \(0.261340\pi\)
\(984\) 0 0
\(985\) 41.5103i 1.32263i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 18.7768i 0.597067i
\(990\) 0 0
\(991\) 45.4228i 1.44290i 0.692465 + 0.721451i \(0.256525\pi\)
−0.692465 + 0.721451i \(0.743475\pi\)
\(992\) 0 0
\(993\) − 21.0379i − 0.667617i
\(994\) 0 0
\(995\) −28.5553 −0.905264
\(996\) 0 0
\(997\) −43.7436 −1.38537 −0.692687 0.721239i \(-0.743573\pi\)
−0.692687 + 0.721239i \(0.743573\pi\)
\(998\) 0 0
\(999\) 9.01565 0.285242
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4704.2.p.a.3919.1 32
4.3 odd 2 1176.2.p.a.979.27 32
7.4 even 3 672.2.bb.a.271.2 32
7.5 odd 6 672.2.bb.a.367.7 32
7.6 odd 2 inner 4704.2.p.a.3919.16 32
8.3 odd 2 inner 4704.2.p.a.3919.15 32
8.5 even 2 1176.2.p.a.979.26 32
21.5 even 6 2016.2.bs.c.1711.4 32
21.11 odd 6 2016.2.bs.c.271.13 32
28.11 odd 6 168.2.t.a.19.4 32
28.19 even 6 168.2.t.a.115.8 yes 32
28.27 even 2 1176.2.p.a.979.28 32
56.5 odd 6 168.2.t.a.115.4 yes 32
56.11 odd 6 672.2.bb.a.271.7 32
56.13 odd 2 1176.2.p.a.979.25 32
56.19 even 6 672.2.bb.a.367.2 32
56.27 even 2 inner 4704.2.p.a.3919.2 32
56.53 even 6 168.2.t.a.19.8 yes 32
84.11 even 6 504.2.bk.c.19.13 32
84.47 odd 6 504.2.bk.c.451.9 32
168.5 even 6 504.2.bk.c.451.13 32
168.11 even 6 2016.2.bs.c.271.4 32
168.53 odd 6 504.2.bk.c.19.9 32
168.131 odd 6 2016.2.bs.c.1711.13 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.t.a.19.4 32 28.11 odd 6
168.2.t.a.19.8 yes 32 56.53 even 6
168.2.t.a.115.4 yes 32 56.5 odd 6
168.2.t.a.115.8 yes 32 28.19 even 6
504.2.bk.c.19.9 32 168.53 odd 6
504.2.bk.c.19.13 32 84.11 even 6
504.2.bk.c.451.9 32 84.47 odd 6
504.2.bk.c.451.13 32 168.5 even 6
672.2.bb.a.271.2 32 7.4 even 3
672.2.bb.a.271.7 32 56.11 odd 6
672.2.bb.a.367.2 32 56.19 even 6
672.2.bb.a.367.7 32 7.5 odd 6
1176.2.p.a.979.25 32 56.13 odd 2
1176.2.p.a.979.26 32 8.5 even 2
1176.2.p.a.979.27 32 4.3 odd 2
1176.2.p.a.979.28 32 28.27 even 2
2016.2.bs.c.271.4 32 168.11 even 6
2016.2.bs.c.271.13 32 21.11 odd 6
2016.2.bs.c.1711.4 32 21.5 even 6
2016.2.bs.c.1711.13 32 168.131 odd 6
4704.2.p.a.3919.1 32 1.1 even 1 trivial
4704.2.p.a.3919.2 32 56.27 even 2 inner
4704.2.p.a.3919.15 32 8.3 odd 2 inner
4704.2.p.a.3919.16 32 7.6 odd 2 inner