Properties

Label 1176.2.u.c.521.23
Level $1176$
Weight $2$
Character 1176.521
Analytic conductor $9.390$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1176,2,Mod(521,1176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1176, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1176.521");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1176.u (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.39040727770\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.23
Character \(\chi\) \(=\) 1176.521
Dual form 1176.2.u.c.1097.23

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.70977 + 0.276907i) q^{3} +(-0.655965 - 1.13616i) q^{5} +(2.84664 + 0.946897i) q^{9} +(-4.31240 - 2.48976i) q^{11} -0.733252i q^{13} +(-0.806939 - 2.12423i) q^{15} +(-0.364175 + 0.630770i) q^{17} +(6.01418 - 3.47229i) q^{19} +(6.86694 - 3.96463i) q^{23} +(1.63942 - 2.83956i) q^{25} +(4.60491 + 2.40724i) q^{27} -4.62960i q^{29} +(-1.56144 - 0.901500i) q^{31} +(-6.68379 - 5.45106i) q^{33} +(2.61211 + 4.52431i) q^{37} +(0.203043 - 1.25369i) q^{39} +7.83857 q^{41} -1.27217 q^{43} +(-0.791468 - 3.85539i) q^{45} +(2.12081 + 3.67336i) q^{47} +(-0.797322 + 0.977630i) q^{51} +(-12.4851 - 7.20830i) q^{53} +6.53279i q^{55} +(11.2444 - 4.27145i) q^{57} +(-4.67659 + 8.10009i) q^{59} +(-11.7677 + 6.79406i) q^{61} +(-0.833095 + 0.480987i) q^{65} +(3.77405 - 6.53685i) q^{67} +(12.8387 - 4.87711i) q^{69} -6.92721i q^{71} +(3.29014 + 1.89956i) q^{73} +(3.58933 - 4.40103i) q^{75} +(-6.79638 - 11.7717i) q^{79} +(7.20677 + 5.39096i) q^{81} +6.58972 q^{83} +0.955545 q^{85} +(1.28197 - 7.91557i) q^{87} +(2.18923 + 3.79185i) q^{89} +(-2.42008 - 1.97374i) q^{93} +(-7.89018 - 4.55540i) q^{95} +15.1510i q^{97} +(-9.91831 - 11.1709i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 32 q^{15} - 8 q^{25} - 16 q^{37} + 64 q^{39} + 32 q^{43} - 48 q^{51} + 96 q^{57} - 16 q^{67} - 80 q^{81} - 128 q^{85} + 32 q^{93} - 112 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1176\mathbb{Z}\right)^\times\).

\(n\) \(295\) \(589\) \(785\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.70977 + 0.276907i 0.987138 + 0.159873i
\(4\) 0 0
\(5\) −0.655965 1.13616i −0.293356 0.508108i 0.681245 0.732056i \(-0.261439\pi\)
−0.974601 + 0.223947i \(0.928106\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.84664 + 0.946897i 0.948882 + 0.315632i
\(10\) 0 0
\(11\) −4.31240 2.48976i −1.30024 0.750692i −0.319792 0.947488i \(-0.603613\pi\)
−0.980445 + 0.196796i \(0.936946\pi\)
\(12\) 0 0
\(13\) 0.733252i 0.203367i −0.994817 0.101684i \(-0.967577\pi\)
0.994817 0.101684i \(-0.0324230\pi\)
\(14\) 0 0
\(15\) −0.806939 2.12423i −0.208351 0.548473i
\(16\) 0 0
\(17\) −0.364175 + 0.630770i −0.0883255 + 0.152984i −0.906803 0.421554i \(-0.861485\pi\)
0.818478 + 0.574538i \(0.194818\pi\)
\(18\) 0 0
\(19\) 6.01418 3.47229i 1.37975 0.796597i 0.387618 0.921820i \(-0.373298\pi\)
0.992129 + 0.125223i \(0.0399646\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.86694 3.96463i 1.43186 0.826683i 0.434594 0.900626i \(-0.356892\pi\)
0.997262 + 0.0739435i \(0.0235584\pi\)
\(24\) 0 0
\(25\) 1.63942 2.83956i 0.327884 0.567912i
\(26\) 0 0
\(27\) 4.60491 + 2.40724i 0.886216 + 0.463273i
\(28\) 0 0
\(29\) 4.62960i 0.859696i −0.902901 0.429848i \(-0.858567\pi\)
0.902901 0.429848i \(-0.141433\pi\)
\(30\) 0 0
\(31\) −1.56144 0.901500i −0.280444 0.161914i 0.353181 0.935555i \(-0.385100\pi\)
−0.633624 + 0.773641i \(0.718433\pi\)
\(32\) 0 0
\(33\) −6.68379 5.45106i −1.16350 0.948909i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.61211 + 4.52431i 0.429429 + 0.743792i 0.996823 0.0796541i \(-0.0253816\pi\)
−0.567394 + 0.823447i \(0.692048\pi\)
\(38\) 0 0
\(39\) 0.203043 1.25369i 0.0325129 0.200752i
\(40\) 0 0
\(41\) 7.83857 1.22418 0.612089 0.790789i \(-0.290329\pi\)
0.612089 + 0.790789i \(0.290329\pi\)
\(42\) 0 0
\(43\) −1.27217 −0.194004 −0.0970020 0.995284i \(-0.530925\pi\)
−0.0970020 + 0.995284i \(0.530925\pi\)
\(44\) 0 0
\(45\) −0.791468 3.85539i −0.117985 0.574727i
\(46\) 0 0
\(47\) 2.12081 + 3.67336i 0.309352 + 0.535814i 0.978221 0.207567i \(-0.0665544\pi\)
−0.668868 + 0.743381i \(0.733221\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −0.797322 + 0.977630i −0.111647 + 0.136896i
\(52\) 0 0
\(53\) −12.4851 7.20830i −1.71497 0.990136i −0.927537 0.373732i \(-0.878078\pi\)
−0.787430 0.616404i \(-0.788589\pi\)
\(54\) 0 0
\(55\) 6.53279i 0.880882i
\(56\) 0 0
\(57\) 11.2444 4.27145i 1.48935 0.565767i
\(58\) 0 0
\(59\) −4.67659 + 8.10009i −0.608840 + 1.05454i 0.382592 + 0.923917i \(0.375032\pi\)
−0.991432 + 0.130624i \(0.958302\pi\)
\(60\) 0 0
\(61\) −11.7677 + 6.79406i −1.50669 + 0.869890i −0.506725 + 0.862108i \(0.669144\pi\)
−0.999970 + 0.00778252i \(0.997523\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.833095 + 0.480987i −0.103333 + 0.0596592i
\(66\) 0 0
\(67\) 3.77405 6.53685i 0.461074 0.798604i −0.537941 0.842983i \(-0.680798\pi\)
0.999015 + 0.0443788i \(0.0141309\pi\)
\(68\) 0 0
\(69\) 12.8387 4.87711i 1.54560 0.587135i
\(70\) 0 0
\(71\) 6.92721i 0.822109i −0.911611 0.411055i \(-0.865161\pi\)
0.911611 0.411055i \(-0.134839\pi\)
\(72\) 0 0
\(73\) 3.29014 + 1.89956i 0.385082 + 0.222327i 0.680027 0.733187i \(-0.261968\pi\)
−0.294945 + 0.955514i \(0.595301\pi\)
\(74\) 0 0
\(75\) 3.58933 4.40103i 0.414460 0.508187i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −6.79638 11.7717i −0.764653 1.32442i −0.940430 0.339988i \(-0.889577\pi\)
0.175777 0.984430i \(-0.443756\pi\)
\(80\) 0 0
\(81\) 7.20677 + 5.39096i 0.800752 + 0.598996i
\(82\) 0 0
\(83\) 6.58972 0.723316 0.361658 0.932311i \(-0.382211\pi\)
0.361658 + 0.932311i \(0.382211\pi\)
\(84\) 0 0
\(85\) 0.955545 0.103643
\(86\) 0 0
\(87\) 1.28197 7.91557i 0.137442 0.848638i
\(88\) 0 0
\(89\) 2.18923 + 3.79185i 0.232057 + 0.401935i 0.958413 0.285383i \(-0.0921209\pi\)
−0.726356 + 0.687319i \(0.758788\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −2.42008 1.97374i −0.250951 0.204667i
\(94\) 0 0
\(95\) −7.89018 4.55540i −0.809515 0.467374i
\(96\) 0 0
\(97\) 15.1510i 1.53835i 0.639039 + 0.769174i \(0.279332\pi\)
−0.639039 + 0.769174i \(0.720668\pi\)
\(98\) 0 0
\(99\) −9.91831 11.1709i −0.996828 1.12271i
\(100\) 0 0
\(101\) −5.49796 + 9.52275i −0.547068 + 0.947549i 0.451406 + 0.892319i \(0.350923\pi\)
−0.998474 + 0.0552302i \(0.982411\pi\)
\(102\) 0 0
\(103\) 9.03199 5.21462i 0.889949 0.513812i 0.0160229 0.999872i \(-0.494900\pi\)
0.873926 + 0.486060i \(0.161566\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.66747 + 1.54006i −0.257874 + 0.148883i −0.623364 0.781932i \(-0.714235\pi\)
0.365491 + 0.930815i \(0.380901\pi\)
\(108\) 0 0
\(109\) −6.87562 + 11.9089i −0.658565 + 1.14067i 0.322422 + 0.946596i \(0.395503\pi\)
−0.980987 + 0.194072i \(0.937830\pi\)
\(110\) 0 0
\(111\) 3.21330 + 8.45886i 0.304993 + 0.802879i
\(112\) 0 0
\(113\) 12.6414i 1.18920i 0.804022 + 0.594599i \(0.202689\pi\)
−0.804022 + 0.594599i \(0.797311\pi\)
\(114\) 0 0
\(115\) −9.00895 5.20132i −0.840089 0.485026i
\(116\) 0 0
\(117\) 0.694314 2.08731i 0.0641894 0.192972i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 6.89785 + 11.9474i 0.627077 + 1.08613i
\(122\) 0 0
\(123\) 13.4022 + 2.17056i 1.20843 + 0.195713i
\(124\) 0 0
\(125\) −10.8613 −0.971461
\(126\) 0 0
\(127\) 3.31989 0.294593 0.147296 0.989092i \(-0.452943\pi\)
0.147296 + 0.989092i \(0.452943\pi\)
\(128\) 0 0
\(129\) −2.17512 0.352273i −0.191509 0.0310159i
\(130\) 0 0
\(131\) 8.00611 + 13.8670i 0.699497 + 1.21157i 0.968641 + 0.248465i \(0.0799261\pi\)
−0.269143 + 0.963100i \(0.586741\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.285645 6.81100i −0.0245844 0.586198i
\(136\) 0 0
\(137\) −9.31267 5.37667i −0.795635 0.459360i 0.0463076 0.998927i \(-0.485255\pi\)
−0.841943 + 0.539567i \(0.818588\pi\)
\(138\) 0 0
\(139\) 18.5535i 1.57369i −0.617152 0.786844i \(-0.711714\pi\)
0.617152 0.786844i \(-0.288286\pi\)
\(140\) 0 0
\(141\) 2.60893 + 6.86787i 0.219711 + 0.578379i
\(142\) 0 0
\(143\) −1.82562 + 3.16207i −0.152666 + 0.264426i
\(144\) 0 0
\(145\) −5.25999 + 3.03686i −0.436819 + 0.252197i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.21624 2.43425i 0.345408 0.199421i −0.317253 0.948341i \(-0.602760\pi\)
0.662661 + 0.748920i \(0.269427\pi\)
\(150\) 0 0
\(151\) −0.850601 + 1.47328i −0.0692209 + 0.119894i −0.898559 0.438854i \(-0.855385\pi\)
0.829338 + 0.558748i \(0.188718\pi\)
\(152\) 0 0
\(153\) −1.63395 + 1.45074i −0.132097 + 0.117285i
\(154\) 0 0
\(155\) 2.36541i 0.189994i
\(156\) 0 0
\(157\) 15.7423 + 9.08881i 1.25637 + 0.725366i 0.972367 0.233457i \(-0.0750038\pi\)
0.284004 + 0.958823i \(0.408337\pi\)
\(158\) 0 0
\(159\) −19.3507 15.7818i −1.53461 1.25158i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.51166 + 4.35032i 0.196728 + 0.340744i 0.947466 0.319857i \(-0.103635\pi\)
−0.750737 + 0.660601i \(0.770302\pi\)
\(164\) 0 0
\(165\) −1.80898 + 11.1696i −0.140829 + 0.869551i
\(166\) 0 0
\(167\) −16.4374 −1.27196 −0.635982 0.771704i \(-0.719405\pi\)
−0.635982 + 0.771704i \(0.719405\pi\)
\(168\) 0 0
\(169\) 12.4623 0.958642
\(170\) 0 0
\(171\) 20.4081 4.18956i 1.56065 0.320384i
\(172\) 0 0
\(173\) 2.10223 + 3.64118i 0.159830 + 0.276834i 0.934807 0.355156i \(-0.115572\pi\)
−0.774977 + 0.631989i \(0.782239\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −10.2389 + 12.5543i −0.769601 + 0.943641i
\(178\) 0 0
\(179\) 7.04948 + 4.07002i 0.526903 + 0.304208i 0.739754 0.672877i \(-0.234942\pi\)
−0.212851 + 0.977085i \(0.568275\pi\)
\(180\) 0 0
\(181\) 17.8884i 1.32963i −0.747007 0.664817i \(-0.768510\pi\)
0.747007 0.664817i \(-0.231490\pi\)
\(182\) 0 0
\(183\) −22.0013 + 8.35775i −1.62639 + 0.617823i
\(184\) 0 0
\(185\) 3.42691 5.93558i 0.251951 0.436393i
\(186\) 0 0
\(187\) 3.14094 1.81342i 0.229688 0.132610i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.55972 2.05520i 0.257572 0.148709i −0.365654 0.930751i \(-0.619155\pi\)
0.623226 + 0.782041i \(0.285821\pi\)
\(192\) 0 0
\(193\) 1.61460 2.79656i 0.116221 0.201301i −0.802046 0.597262i \(-0.796255\pi\)
0.918267 + 0.395961i \(0.129589\pi\)
\(194\) 0 0
\(195\) −1.55759 + 0.591689i −0.111541 + 0.0423717i
\(196\) 0 0
\(197\) 4.70768i 0.335408i 0.985837 + 0.167704i \(0.0536353\pi\)
−0.985837 + 0.167704i \(0.946365\pi\)
\(198\) 0 0
\(199\) −14.7081 8.49175i −1.04263 0.601964i −0.122055 0.992523i \(-0.538948\pi\)
−0.920578 + 0.390559i \(0.872282\pi\)
\(200\) 0 0
\(201\) 8.26288 10.1315i 0.582819 0.714619i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −5.14183 8.90590i −0.359121 0.622015i
\(206\) 0 0
\(207\) 23.3018 4.78361i 1.61959 0.332484i
\(208\) 0 0
\(209\) −34.5807 −2.39200
\(210\) 0 0
\(211\) −1.89126 −0.130199 −0.0650997 0.997879i \(-0.520737\pi\)
−0.0650997 + 0.997879i \(0.520737\pi\)
\(212\) 0 0
\(213\) 1.91820 11.8440i 0.131433 0.811535i
\(214\) 0 0
\(215\) 0.834498 + 1.44539i 0.0569123 + 0.0985750i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 5.09939 + 4.15889i 0.344585 + 0.281032i
\(220\) 0 0
\(221\) 0.462513 + 0.267032i 0.0311120 + 0.0179625i
\(222\) 0 0
\(223\) 9.29671i 0.622554i −0.950319 0.311277i \(-0.899243\pi\)
0.950319 0.311277i \(-0.100757\pi\)
\(224\) 0 0
\(225\) 7.35562 6.53085i 0.490374 0.435390i
\(226\) 0 0
\(227\) 2.48497 4.30410i 0.164933 0.285673i −0.771698 0.635989i \(-0.780592\pi\)
0.936632 + 0.350316i \(0.113926\pi\)
\(228\) 0 0
\(229\) −4.61728 + 2.66579i −0.305118 + 0.176160i −0.644740 0.764402i \(-0.723034\pi\)
0.339622 + 0.940562i \(0.389701\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.03312 + 1.75118i −0.198707 + 0.114723i −0.596052 0.802946i \(-0.703265\pi\)
0.397345 + 0.917669i \(0.369931\pi\)
\(234\) 0 0
\(235\) 2.78236 4.81919i 0.181501 0.314369i
\(236\) 0 0
\(237\) −8.36061 22.0089i −0.543080 1.42963i
\(238\) 0 0
\(239\) 23.4769i 1.51859i 0.650744 + 0.759297i \(0.274457\pi\)
−0.650744 + 0.759297i \(0.725543\pi\)
\(240\) 0 0
\(241\) 8.71865 + 5.03371i 0.561618 + 0.324250i 0.753794 0.657110i \(-0.228221\pi\)
−0.192177 + 0.981360i \(0.561555\pi\)
\(242\) 0 0
\(243\) 10.8291 + 11.2129i 0.694690 + 0.719309i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2.54606 4.40991i −0.162002 0.280596i
\(248\) 0 0
\(249\) 11.2669 + 1.82474i 0.714012 + 0.115638i
\(250\) 0 0
\(251\) −19.7932 −1.24933 −0.624666 0.780892i \(-0.714765\pi\)
−0.624666 + 0.780892i \(0.714765\pi\)
\(252\) 0 0
\(253\) −39.4840 −2.48234
\(254\) 0 0
\(255\) 1.63376 + 0.264597i 0.102310 + 0.0165697i
\(256\) 0 0
\(257\) 6.30815 + 10.9260i 0.393492 + 0.681548i 0.992907 0.118890i \(-0.0379336\pi\)
−0.599416 + 0.800438i \(0.704600\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 4.38376 13.1788i 0.271348 0.815750i
\(262\) 0 0
\(263\) 5.48367 + 3.16600i 0.338137 + 0.195224i 0.659448 0.751750i \(-0.270790\pi\)
−0.321311 + 0.946974i \(0.604123\pi\)
\(264\) 0 0
\(265\) 18.9136i 1.16185i
\(266\) 0 0
\(267\) 2.69309 + 7.08941i 0.164814 + 0.433865i
\(268\) 0 0
\(269\) −12.1920 + 21.1171i −0.743356 + 1.28753i 0.207602 + 0.978213i \(0.433434\pi\)
−0.950959 + 0.309318i \(0.899899\pi\)
\(270\) 0 0
\(271\) −0.297975 + 0.172036i −0.0181007 + 0.0104504i −0.509023 0.860753i \(-0.669993\pi\)
0.490922 + 0.871203i \(0.336660\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −14.1397 + 8.16354i −0.852654 + 0.492280i
\(276\) 0 0
\(277\) −6.11798 + 10.5966i −0.367594 + 0.636691i −0.989189 0.146648i \(-0.953152\pi\)
0.621595 + 0.783339i \(0.286485\pi\)
\(278\) 0 0
\(279\) −3.59125 4.04478i −0.215002 0.242155i
\(280\) 0 0
\(281\) 16.6761i 0.994810i 0.867519 + 0.497405i \(0.165714\pi\)
−0.867519 + 0.497405i \(0.834286\pi\)
\(282\) 0 0
\(283\) 2.68606 + 1.55080i 0.159670 + 0.0921853i 0.577706 0.816245i \(-0.303948\pi\)
−0.418036 + 0.908430i \(0.637281\pi\)
\(284\) 0 0
\(285\) −12.2290 9.97354i −0.724383 0.590782i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.23475 + 14.2630i 0.484397 + 0.839001i
\(290\) 0 0
\(291\) −4.19542 + 25.9047i −0.245940 + 1.51856i
\(292\) 0 0
\(293\) 16.2490 0.949278 0.474639 0.880181i \(-0.342579\pi\)
0.474639 + 0.880181i \(0.342579\pi\)
\(294\) 0 0
\(295\) 12.2707 0.714429
\(296\) 0 0
\(297\) −13.8648 21.8461i −0.804515 1.26764i
\(298\) 0 0
\(299\) −2.90707 5.03520i −0.168120 0.291193i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −12.0372 + 14.7593i −0.691518 + 0.847900i
\(304\) 0 0
\(305\) 15.4383 + 8.91333i 0.883997 + 0.510376i
\(306\) 0 0
\(307\) 2.82559i 0.161265i −0.996744 0.0806326i \(-0.974306\pi\)
0.996744 0.0806326i \(-0.0256940\pi\)
\(308\) 0 0
\(309\) 16.8866 6.41479i 0.960646 0.364925i
\(310\) 0 0
\(311\) 8.20180 14.2059i 0.465081 0.805544i −0.534124 0.845406i \(-0.679358\pi\)
0.999205 + 0.0398618i \(0.0126918\pi\)
\(312\) 0 0
\(313\) 0.281285 0.162400i 0.0158991 0.00917938i −0.492029 0.870579i \(-0.663745\pi\)
0.507929 + 0.861399i \(0.330411\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.4345 + 6.02438i −0.586062 + 0.338363i −0.763539 0.645762i \(-0.776540\pi\)
0.177477 + 0.984125i \(0.443206\pi\)
\(318\) 0 0
\(319\) −11.5266 + 19.9647i −0.645367 + 1.11781i
\(320\) 0 0
\(321\) −4.98721 + 1.89451i −0.278359 + 0.105742i
\(322\) 0 0
\(323\) 5.05808i 0.281439i
\(324\) 0 0
\(325\) −2.08211 1.20211i −0.115495 0.0666809i
\(326\) 0 0
\(327\) −15.0534 + 18.4576i −0.832456 + 1.02071i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −3.50003 6.06222i −0.192379 0.333210i 0.753659 0.657265i \(-0.228287\pi\)
−0.946038 + 0.324055i \(0.894954\pi\)
\(332\) 0 0
\(333\) 3.15170 + 15.3525i 0.172712 + 0.841313i
\(334\) 0 0
\(335\) −9.90259 −0.541036
\(336\) 0 0
\(337\) −12.2829 −0.669094 −0.334547 0.942379i \(-0.608583\pi\)
−0.334547 + 0.942379i \(0.608583\pi\)
\(338\) 0 0
\(339\) −3.50048 + 21.6138i −0.190120 + 1.17390i
\(340\) 0 0
\(341\) 4.48905 + 7.77525i 0.243095 + 0.421054i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −13.9630 11.3877i −0.751741 0.613094i
\(346\) 0 0
\(347\) −17.9947 10.3892i −0.966006 0.557724i −0.0679895 0.997686i \(-0.521658\pi\)
−0.898016 + 0.439962i \(0.854992\pi\)
\(348\) 0 0
\(349\) 1.72878i 0.0925396i −0.998929 0.0462698i \(-0.985267\pi\)
0.998929 0.0462698i \(-0.0147334\pi\)
\(350\) 0 0
\(351\) 1.76511 3.37656i 0.0942146 0.180227i
\(352\) 0 0
\(353\) −5.31556 + 9.20681i −0.282919 + 0.490029i −0.972102 0.234557i \(-0.924636\pi\)
0.689184 + 0.724587i \(0.257969\pi\)
\(354\) 0 0
\(355\) −7.87046 + 4.54401i −0.417720 + 0.241171i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.65893 + 2.11249i −0.193111 + 0.111493i −0.593438 0.804880i \(-0.702230\pi\)
0.400327 + 0.916372i \(0.368897\pi\)
\(360\) 0 0
\(361\) 14.6135 25.3114i 0.769134 1.33218i
\(362\) 0 0
\(363\) 8.48542 + 22.3374i 0.445369 + 1.17241i
\(364\) 0 0
\(365\) 4.98419i 0.260885i
\(366\) 0 0
\(367\) 20.8212 + 12.0212i 1.08686 + 0.627499i 0.932739 0.360553i \(-0.117412\pi\)
0.154121 + 0.988052i \(0.450745\pi\)
\(368\) 0 0
\(369\) 22.3136 + 7.42232i 1.16160 + 0.386390i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −16.2951 28.2239i −0.843727 1.46138i −0.886722 0.462302i \(-0.847023\pi\)
0.0429957 0.999075i \(-0.486310\pi\)
\(374\) 0 0
\(375\) −18.5703 3.00756i −0.958965 0.155310i
\(376\) 0 0
\(377\) −3.39466 −0.174834
\(378\) 0 0
\(379\) 19.2333 0.987948 0.493974 0.869477i \(-0.335544\pi\)
0.493974 + 0.869477i \(0.335544\pi\)
\(380\) 0 0
\(381\) 5.67626 + 0.919302i 0.290804 + 0.0470973i
\(382\) 0 0
\(383\) 12.9702 + 22.4650i 0.662745 + 1.14791i 0.979891 + 0.199532i \(0.0639422\pi\)
−0.317146 + 0.948377i \(0.602725\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.62141 1.20461i −0.184087 0.0612339i
\(388\) 0 0
\(389\) 19.5518 + 11.2882i 0.991316 + 0.572336i 0.905667 0.423989i \(-0.139370\pi\)
0.0856485 + 0.996325i \(0.472704\pi\)
\(390\) 0 0
\(391\) 5.77528i 0.292069i
\(392\) 0 0
\(393\) 9.84876 + 25.9264i 0.496804 + 1.30781i
\(394\) 0 0
\(395\) −8.91638 + 15.4436i −0.448632 + 0.777053i
\(396\) 0 0
\(397\) 5.82800 3.36479i 0.292499 0.168874i −0.346569 0.938024i \(-0.612654\pi\)
0.639068 + 0.769150i \(0.279320\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.66935 + 3.27320i −0.283114 + 0.163456i −0.634832 0.772650i \(-0.718931\pi\)
0.351719 + 0.936106i \(0.385597\pi\)
\(402\) 0 0
\(403\) −0.661027 + 1.14493i −0.0329281 + 0.0570331i
\(404\) 0 0
\(405\) 1.39763 11.7244i 0.0694487 0.582588i
\(406\) 0 0
\(407\) 26.0142i 1.28948i
\(408\) 0 0
\(409\) −17.5082 10.1084i −0.865726 0.499827i 0.000199559 1.00000i \(-0.499936\pi\)
−0.865926 + 0.500173i \(0.833270\pi\)
\(410\) 0 0
\(411\) −14.4337 11.7716i −0.711962 0.580652i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −4.32263 7.48701i −0.212189 0.367523i
\(416\) 0 0
\(417\) 5.13760 31.7223i 0.251589 1.55345i
\(418\) 0 0
\(419\) 13.0519 0.637627 0.318813 0.947817i \(-0.396716\pi\)
0.318813 + 0.947817i \(0.396716\pi\)
\(420\) 0 0
\(421\) −33.1602 −1.61613 −0.808065 0.589093i \(-0.799485\pi\)
−0.808065 + 0.589093i \(0.799485\pi\)
\(422\) 0 0
\(423\) 2.55891 + 12.4649i 0.124418 + 0.606066i
\(424\) 0 0
\(425\) 1.19407 + 2.06819i 0.0579210 + 0.100322i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −3.99700 + 4.90090i −0.192977 + 0.236618i
\(430\) 0 0
\(431\) 0.969987 + 0.560022i 0.0467226 + 0.0269753i 0.523179 0.852223i \(-0.324746\pi\)
−0.476457 + 0.879198i \(0.658079\pi\)
\(432\) 0 0
\(433\) 29.9594i 1.43976i 0.694100 + 0.719878i \(0.255802\pi\)
−0.694100 + 0.719878i \(0.744198\pi\)
\(434\) 0 0
\(435\) −9.83432 + 3.73581i −0.471520 + 0.179118i
\(436\) 0 0
\(437\) 27.5327 47.6880i 1.31707 2.28123i
\(438\) 0 0
\(439\) 18.7386 10.8187i 0.894344 0.516350i 0.0189834 0.999820i \(-0.493957\pi\)
0.875361 + 0.483470i \(0.160624\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.82437 3.94005i 0.324236 0.187198i −0.329043 0.944315i \(-0.606726\pi\)
0.653279 + 0.757117i \(0.273393\pi\)
\(444\) 0 0
\(445\) 2.87211 4.97464i 0.136151 0.235821i
\(446\) 0 0
\(447\) 7.88287 2.99450i 0.372847 0.141635i
\(448\) 0 0
\(449\) 29.5174i 1.39301i −0.717550 0.696507i \(-0.754737\pi\)
0.717550 0.696507i \(-0.245263\pi\)
\(450\) 0 0
\(451\) −33.8030 19.5162i −1.59172 0.918981i
\(452\) 0 0
\(453\) −1.86230 + 2.28344i −0.0874983 + 0.107285i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.28872 2.23213i −0.0602839 0.104415i 0.834308 0.551298i \(-0.185867\pi\)
−0.894592 + 0.446883i \(0.852534\pi\)
\(458\) 0 0
\(459\) −3.19541 + 2.02798i −0.149149 + 0.0946582i
\(460\) 0 0
\(461\) 30.8387 1.43630 0.718151 0.695888i \(-0.244989\pi\)
0.718151 + 0.695888i \(0.244989\pi\)
\(462\) 0 0
\(463\) 36.6548 1.70349 0.851745 0.523956i \(-0.175544\pi\)
0.851745 + 0.523956i \(0.175544\pi\)
\(464\) 0 0
\(465\) −0.655000 + 4.04431i −0.0303749 + 0.187551i
\(466\) 0 0
\(467\) −17.5386 30.3777i −0.811588 1.40571i −0.911752 0.410740i \(-0.865270\pi\)
0.100165 0.994971i \(-0.468063\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 24.3990 + 19.8990i 1.12425 + 0.916896i
\(472\) 0 0
\(473\) 5.48610 + 3.16740i 0.252251 + 0.145637i
\(474\) 0 0
\(475\) 22.7701i 1.04477i
\(476\) 0 0
\(477\) −28.7152 32.3416i −1.31478 1.48082i
\(478\) 0 0
\(479\) −14.3841 + 24.9141i −0.657228 + 1.13835i 0.324102 + 0.946022i \(0.394938\pi\)
−0.981330 + 0.192331i \(0.938395\pi\)
\(480\) 0 0
\(481\) 3.31746 1.91534i 0.151263 0.0873318i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 17.2140 9.93851i 0.781648 0.451284i
\(486\) 0 0
\(487\) −18.0375 + 31.2418i −0.817356 + 1.41570i 0.0902675 + 0.995918i \(0.471228\pi\)
−0.907624 + 0.419785i \(0.862106\pi\)
\(488\) 0 0
\(489\) 3.08973 + 8.13356i 0.139723 + 0.367812i
\(490\) 0 0
\(491\) 26.0949i 1.17764i 0.808263 + 0.588822i \(0.200408\pi\)
−0.808263 + 0.588822i \(0.799592\pi\)
\(492\) 0 0
\(493\) 2.92022 + 1.68599i 0.131520 + 0.0759330i
\(494\) 0 0
\(495\) −6.18588 + 18.5965i −0.278035 + 0.835852i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 9.27200 + 16.0596i 0.415072 + 0.718925i 0.995436 0.0954319i \(-0.0304232\pi\)
−0.580364 + 0.814357i \(0.697090\pi\)
\(500\) 0 0
\(501\) −28.1042 4.55164i −1.25560 0.203352i
\(502\) 0 0
\(503\) 19.2682 0.859126 0.429563 0.903037i \(-0.358668\pi\)
0.429563 + 0.903037i \(0.358668\pi\)
\(504\) 0 0
\(505\) 14.4259 0.641943
\(506\) 0 0
\(507\) 21.3078 + 3.45091i 0.946311 + 0.153260i
\(508\) 0 0
\(509\) −12.9656 22.4570i −0.574688 0.995389i −0.996075 0.0885081i \(-0.971790\pi\)
0.421387 0.906881i \(-0.361543\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 36.0534 1.51203i 1.59180 0.0667578i
\(514\) 0 0
\(515\) −11.8493 6.84122i −0.522144 0.301460i
\(516\) 0 0
\(517\) 21.1213i 0.928914i
\(518\) 0 0
\(519\) 2.58607 + 6.80771i 0.113516 + 0.298825i
\(520\) 0 0
\(521\) −5.53584 + 9.58836i −0.242530 + 0.420074i −0.961434 0.275035i \(-0.911310\pi\)
0.718905 + 0.695109i \(0.244644\pi\)
\(522\) 0 0
\(523\) −30.7081 + 17.7293i −1.34277 + 0.775249i −0.987213 0.159405i \(-0.949042\pi\)
−0.355558 + 0.934654i \(0.615709\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.13728 0.656608i 0.0495406 0.0286023i
\(528\) 0 0
\(529\) 19.9366 34.5312i 0.866809 1.50136i
\(530\) 0 0
\(531\) −20.9825 + 18.6298i −0.910565 + 0.808466i
\(532\) 0 0
\(533\) 5.74764i 0.248958i
\(534\) 0 0
\(535\) 3.49953 + 2.02045i 0.151298 + 0.0873518i
\(536\) 0 0
\(537\) 10.9260 + 8.91086i 0.471491 + 0.384532i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.02456 + 6.97075i 0.173029 + 0.299696i 0.939478 0.342610i \(-0.111311\pi\)
−0.766448 + 0.642306i \(0.777978\pi\)
\(542\) 0 0
\(543\) 4.95343 30.5851i 0.212572 1.31253i
\(544\) 0 0
\(545\) 18.0407 0.772777
\(546\) 0 0
\(547\) 15.3821 0.657690 0.328845 0.944384i \(-0.393341\pi\)
0.328845 + 0.944384i \(0.393341\pi\)
\(548\) 0 0
\(549\) −39.9316 + 8.19751i −1.70424 + 0.349861i
\(550\) 0 0
\(551\) −16.0753 27.8433i −0.684831 1.18616i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 7.50284 9.19956i 0.318478 0.390500i
\(556\) 0 0
\(557\) −29.5356 17.0524i −1.25147 0.722534i −0.280065 0.959981i \(-0.590356\pi\)
−0.971400 + 0.237447i \(0.923689\pi\)
\(558\) 0 0
\(559\) 0.932820i 0.0394541i
\(560\) 0 0
\(561\) 5.87244 2.23079i 0.247934 0.0941840i
\(562\) 0 0
\(563\) 16.3328 28.2892i 0.688343 1.19225i −0.284030 0.958815i \(-0.591672\pi\)
0.972374 0.233430i \(-0.0749951\pi\)
\(564\) 0 0
\(565\) 14.3627 8.29228i 0.604242 0.348859i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 20.7309 11.9690i 0.869084 0.501766i 0.00203998 0.999998i \(-0.499351\pi\)
0.867044 + 0.498232i \(0.166017\pi\)
\(570\) 0 0
\(571\) 12.4750 21.6074i 0.522065 0.904242i −0.477606 0.878574i \(-0.658495\pi\)
0.999671 0.0256682i \(-0.00817134\pi\)
\(572\) 0 0
\(573\) 6.65540 2.52822i 0.278034 0.105618i
\(574\) 0 0
\(575\) 25.9988i 1.08422i
\(576\) 0 0
\(577\) 18.0068 + 10.3962i 0.749633 + 0.432801i 0.825561 0.564313i \(-0.190859\pi\)
−0.0759284 + 0.997113i \(0.524192\pi\)
\(578\) 0 0
\(579\) 3.53498 4.33439i 0.146909 0.180131i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 35.8939 + 62.1701i 1.48658 + 2.57482i
\(584\) 0 0
\(585\) −2.82697 + 0.580345i −0.116881 + 0.0239943i
\(586\) 0 0
\(587\) 11.7010 0.482951 0.241475 0.970407i \(-0.422369\pi\)
0.241475 + 0.970407i \(0.422369\pi\)
\(588\) 0 0
\(589\) −12.5211 −0.515922
\(590\) 0 0
\(591\) −1.30359 + 8.04906i −0.0536226 + 0.331094i
\(592\) 0 0
\(593\) −16.8227 29.1378i −0.690826 1.19655i −0.971567 0.236763i \(-0.923914\pi\)
0.280741 0.959784i \(-0.409420\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −22.7962 18.5918i −0.932985 0.760910i
\(598\) 0 0
\(599\) 9.70331 + 5.60221i 0.396467 + 0.228900i 0.684958 0.728582i \(-0.259820\pi\)
−0.288492 + 0.957482i \(0.593154\pi\)
\(600\) 0 0
\(601\) 6.08245i 0.248108i 0.992275 + 0.124054i \(0.0395897\pi\)
−0.992275 + 0.124054i \(0.960410\pi\)
\(602\) 0 0
\(603\) 16.9331 15.0345i 0.689570 0.612251i
\(604\) 0 0
\(605\) 9.04950 15.6742i 0.367914 0.637246i
\(606\) 0 0
\(607\) 6.00021 3.46422i 0.243541 0.140608i −0.373262 0.927726i \(-0.621761\pi\)
0.616803 + 0.787117i \(0.288427\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.69349 1.55509i 0.108967 0.0629122i
\(612\) 0 0
\(613\) −6.76156 + 11.7114i −0.273097 + 0.473018i −0.969653 0.244484i \(-0.921381\pi\)
0.696556 + 0.717502i \(0.254715\pi\)
\(614\) 0 0
\(615\) −6.32524 16.6509i −0.255058 0.671428i
\(616\) 0 0
\(617\) 3.82786i 0.154104i −0.997027 0.0770519i \(-0.975449\pi\)
0.997027 0.0770519i \(-0.0245507\pi\)
\(618\) 0 0
\(619\) 5.10279 + 2.94610i 0.205099 + 0.118414i 0.599031 0.800726i \(-0.295552\pi\)
−0.393933 + 0.919139i \(0.628886\pi\)
\(620\) 0 0
\(621\) 41.1655 1.72643i 1.65191 0.0692791i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.07249 1.85761i −0.0428997 0.0743044i
\(626\) 0 0
\(627\) −59.1251 9.57565i −2.36123 0.382415i
\(628\) 0 0
\(629\) −3.80507 −0.151718
\(630\) 0 0
\(631\) −3.83697 −0.152747 −0.0763737 0.997079i \(-0.524334\pi\)
−0.0763737 + 0.997079i \(0.524334\pi\)
\(632\) 0 0
\(633\) −3.23362 0.523703i −0.128525 0.0208153i
\(634\) 0 0
\(635\) −2.17773 3.77194i −0.0864207 0.149685i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 6.55936 19.7193i 0.259484 0.780084i
\(640\) 0 0
\(641\) 3.45196 + 1.99299i 0.136344 + 0.0787183i 0.566621 0.823979i \(-0.308251\pi\)
−0.430276 + 0.902697i \(0.641584\pi\)
\(642\) 0 0
\(643\) 15.4887i 0.610814i 0.952222 + 0.305407i \(0.0987925\pi\)
−0.952222 + 0.305407i \(0.901207\pi\)
\(644\) 0 0
\(645\) 1.02656 + 2.70237i 0.0404209 + 0.106406i
\(646\) 0 0
\(647\) 10.3128 17.8623i 0.405437 0.702238i −0.588935 0.808180i \(-0.700453\pi\)
0.994372 + 0.105943i \(0.0337860\pi\)
\(648\) 0 0
\(649\) 40.3346 23.2872i 1.58327 0.914103i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 43.5115 25.1214i 1.70274 0.983075i 0.759767 0.650196i \(-0.225313\pi\)
0.942969 0.332879i \(-0.108020\pi\)
\(654\) 0 0
\(655\) 10.5035 18.1925i 0.410404 0.710841i
\(656\) 0 0
\(657\) 7.56717 + 8.52281i 0.295224 + 0.332507i
\(658\) 0 0
\(659\) 34.6160i 1.34845i −0.738528 0.674223i \(-0.764479\pi\)
0.738528 0.674223i \(-0.235521\pi\)
\(660\) 0 0
\(661\) 8.65013 + 4.99416i 0.336451 + 0.194250i 0.658702 0.752404i \(-0.271106\pi\)
−0.322250 + 0.946654i \(0.604439\pi\)
\(662\) 0 0
\(663\) 0.716849 + 0.584637i 0.0278401 + 0.0227054i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −18.3547 31.7912i −0.710696 1.23096i
\(668\) 0 0
\(669\) 2.57433 15.8953i 0.0995292 0.614546i
\(670\) 0 0
\(671\) 67.6624 2.61208
\(672\) 0 0
\(673\) −8.78901 −0.338791 −0.169396 0.985548i \(-0.554182\pi\)
−0.169396 + 0.985548i \(0.554182\pi\)
\(674\) 0 0
\(675\) 14.3849 9.12945i 0.553674 0.351393i
\(676\) 0 0
\(677\) 2.37938 + 4.12120i 0.0914468 + 0.158391i 0.908120 0.418710i \(-0.137518\pi\)
−0.816673 + 0.577100i \(0.804184\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 5.44057 6.67092i 0.208483 0.255630i
\(682\) 0 0
\(683\) 22.5997 + 13.0479i 0.864752 + 0.499265i 0.865601 0.500735i \(-0.166937\pi\)
−0.000848961 1.00000i \(0.500270\pi\)
\(684\) 0 0
\(685\) 14.1076i 0.539025i
\(686\) 0 0
\(687\) −8.63267 + 3.27933i −0.329357 + 0.125114i
\(688\) 0 0
\(689\) −5.28550 + 9.15475i −0.201361 + 0.348768i
\(690\) 0 0
\(691\) −26.5047 + 15.3025i −1.00829 + 0.582134i −0.910689 0.413092i \(-0.864449\pi\)
−0.0975962 + 0.995226i \(0.531115\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −21.0798 + 12.1704i −0.799604 + 0.461651i
\(696\) 0 0
\(697\) −2.85461 + 4.94433i −0.108126 + 0.187280i
\(698\) 0 0
\(699\) −5.67087 + 2.15422i −0.214492 + 0.0814800i
\(700\) 0 0
\(701\) 45.8510i 1.73177i −0.500246 0.865884i \(-0.666757\pi\)
0.500246 0.865884i \(-0.333243\pi\)
\(702\) 0 0
\(703\) 31.4194 + 18.1400i 1.18501 + 0.684163i
\(704\) 0 0
\(705\) 6.09167 7.46926i 0.229426 0.281309i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 3.66229 + 6.34327i 0.137540 + 0.238227i 0.926565 0.376135i \(-0.122747\pi\)
−0.789025 + 0.614361i \(0.789414\pi\)
\(710\) 0 0
\(711\) −8.20032 39.9453i −0.307536 1.49806i
\(712\) 0 0
\(713\) −14.2965 −0.535407
\(714\) 0 0
\(715\) 4.79018 0.179143
\(716\) 0 0
\(717\) −6.50092 + 40.1401i −0.242781 + 1.49906i
\(718\) 0 0
\(719\) −9.32123 16.1448i −0.347623 0.602101i 0.638204 0.769868i \(-0.279678\pi\)
−0.985827 + 0.167767i \(0.946344\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 13.5130 + 11.0208i 0.502555 + 0.409867i
\(724\) 0 0
\(725\) −13.1460 7.58986i −0.488231 0.281880i
\(726\) 0 0
\(727\) 4.44113i 0.164712i −0.996603 0.0823562i \(-0.973755\pi\)
0.996603 0.0823562i \(-0.0262445\pi\)
\(728\) 0 0
\(729\) 15.4104 + 22.1702i 0.570757 + 0.821119i
\(730\) 0 0
\(731\) 0.463292 0.802446i 0.0171355 0.0296795i
\(732\) 0 0
\(733\) −32.3277 + 18.6644i −1.19405 + 0.689385i −0.959223 0.282652i \(-0.908786\pi\)
−0.234827 + 0.972037i \(0.575452\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −32.5505 + 18.7930i −1.19901 + 0.692249i
\(738\) 0 0
\(739\) −7.85335 + 13.6024i −0.288890 + 0.500373i −0.973545 0.228495i \(-0.926620\pi\)
0.684655 + 0.728867i \(0.259953\pi\)
\(740\) 0 0
\(741\) −3.13205 8.24496i −0.115059 0.302886i
\(742\) 0 0
\(743\) 41.4427i 1.52039i 0.649697 + 0.760193i \(0.274896\pi\)
−0.649697 + 0.760193i \(0.725104\pi\)
\(744\) 0 0
\(745\) −5.53141 3.19356i −0.202655 0.117003i
\(746\) 0 0
\(747\) 18.7586 + 6.23979i 0.686341 + 0.228302i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −5.95974 10.3226i −0.217474 0.376676i 0.736561 0.676371i \(-0.236448\pi\)
−0.954035 + 0.299695i \(0.903115\pi\)
\(752\) 0 0
\(753\) −33.8418 5.48087i −1.23326 0.199734i
\(754\) 0 0
\(755\) 2.23186 0.0812256
\(756\) 0 0
\(757\) 20.9855 0.762731 0.381365 0.924424i \(-0.375454\pi\)
0.381365 + 0.924424i \(0.375454\pi\)
\(758\) 0 0
\(759\) −67.5086 10.9334i −2.45041 0.396858i
\(760\) 0 0
\(761\) 13.2481 + 22.9464i 0.480245 + 0.831808i 0.999743 0.0226633i \(-0.00721457\pi\)
−0.519499 + 0.854471i \(0.673881\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.72010 + 0.904803i 0.0983453 + 0.0327132i
\(766\) 0 0
\(767\) 5.93940 + 3.42912i 0.214459 + 0.123818i
\(768\) 0 0
\(769\) 49.5271i 1.78599i 0.450062 + 0.892997i \(0.351402\pi\)
−0.450062 + 0.892997i \(0.648598\pi\)
\(770\) 0 0
\(771\) 7.76001 + 20.4278i 0.279470 + 0.735690i
\(772\) 0 0
\(773\) −3.68724 + 6.38649i −0.132621 + 0.229706i −0.924686 0.380730i \(-0.875673\pi\)
0.792065 + 0.610436i \(0.209006\pi\)
\(774\) 0 0
\(775\) −5.11972 + 2.95587i −0.183906 + 0.106178i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 47.1425 27.2177i 1.68906 0.975177i
\(780\) 0 0
\(781\) −17.2471 + 29.8729i −0.617151 + 1.06894i
\(782\) 0 0
\(783\) 11.1445 21.3189i 0.398274 0.761876i
\(784\) 0 0
\(785\) 23.8478i 0.851164i
\(786\) 0 0
\(787\) −31.2674 18.0523i −1.11456 0.643493i −0.174556 0.984647i \(-0.555849\pi\)
−0.940007 + 0.341154i \(0.889182\pi\)
\(788\) 0 0
\(789\) 8.49914 + 6.93160i 0.302577 + 0.246772i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.98176 + 8.62866i 0.176907 + 0.306413i
\(794\) 0 0
\(795\) −5.23731 + 32.3379i −0.185748 + 1.14691i
\(796\) 0 0
\(797\) 25.6502 0.908576 0.454288 0.890855i \(-0.349894\pi\)
0.454288 + 0.890855i \(0.349894\pi\)
\(798\) 0 0
\(799\) −3.08939 −0.109295
\(800\) 0 0
\(801\) 2.64145 + 12.8670i 0.0933312 + 0.454634i
\(802\) 0 0
\(803\) −9.45893 16.3834i −0.333799 0.578156i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −26.6929 + 32.7294i −0.939636 + 1.15213i
\(808\) 0 0
\(809\) 28.2515 + 16.3110i 0.993269 + 0.573464i 0.906250 0.422742i \(-0.138932\pi\)
0.0870195 + 0.996207i \(0.472266\pi\)
\(810\) 0 0
\(811\) 12.7234i 0.446779i 0.974729 + 0.223390i \(0.0717122\pi\)
−0.974729 + 0.223390i \(0.928288\pi\)
\(812\) 0 0
\(813\) −0.557107 + 0.211631i −0.0195386 + 0.00742221i
\(814\) 0 0
\(815\) 3.29512 5.70732i 0.115423 0.199919i
\(816\) 0 0
\(817\) −7.65105 + 4.41734i −0.267676 + 0.154543i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −45.7231 + 26.3982i −1.59575 + 0.921305i −0.603452 + 0.797399i \(0.706209\pi\)
−0.992294 + 0.123905i \(0.960458\pi\)
\(822\) 0 0
\(823\) −6.33692 + 10.9759i −0.220891 + 0.382595i −0.955079 0.296352i \(-0.904230\pi\)
0.734188 + 0.678947i \(0.237563\pi\)
\(824\) 0 0
\(825\) −26.4361 + 10.0424i −0.920388 + 0.349632i
\(826\) 0 0
\(827\) 30.4839i 1.06003i −0.847988 0.530015i \(-0.822186\pi\)
0.847988 0.530015i \(-0.177814\pi\)
\(828\) 0 0
\(829\) −6.89227 3.97925i −0.239378 0.138205i 0.375513 0.926817i \(-0.377467\pi\)
−0.614891 + 0.788612i \(0.710800\pi\)
\(830\) 0 0
\(831\) −13.3946 + 16.4237i −0.464655 + 0.569733i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 10.7824 + 18.6756i 0.373139 + 0.646296i
\(836\) 0 0
\(837\) −5.02019 7.91009i −0.173523 0.273413i
\(838\) 0 0
\(839\) 15.9255 0.549808 0.274904 0.961472i \(-0.411354\pi\)
0.274904 + 0.961472i \(0.411354\pi\)
\(840\) 0 0
\(841\) 7.56677 0.260923
\(842\) 0 0
\(843\) −4.61772 + 28.5123i −0.159043 + 0.982014i
\(844\) 0 0
\(845\) −8.17486 14.1593i −0.281224 0.487094i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 4.16312 + 3.39530i 0.142878 + 0.116526i
\(850\) 0 0
\(851\) 35.8745 + 20.7121i 1.22976 + 0.710003i
\(852\) 0 0
\(853\) 24.3170i 0.832597i −0.909228 0.416298i \(-0.863327\pi\)
0.909228 0.416298i \(-0.136673\pi\)
\(854\) 0 0
\(855\) −18.1470 20.4388i −0.620616 0.698992i
\(856\) 0 0
\(857\) 22.1459 38.3579i 0.756491 1.31028i −0.188139 0.982142i \(-0.560246\pi\)
0.944630 0.328138i \(-0.106421\pi\)
\(858\) 0 0
\(859\) −19.8175 + 11.4417i −0.676166 + 0.390385i −0.798409 0.602116i \(-0.794325\pi\)
0.122243 + 0.992500i \(0.460991\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −20.4926 + 11.8314i −0.697575 + 0.402745i −0.806443 0.591311i \(-0.798610\pi\)
0.108869 + 0.994056i \(0.465277\pi\)
\(864\) 0 0
\(865\) 2.75798 4.77697i 0.0937743 0.162422i
\(866\) 0 0
\(867\) 10.1300 + 26.6668i 0.344034 + 0.905651i
\(868\) 0 0
\(869\) 67.6856i 2.29608i
\(870\) 0 0
\(871\) −4.79316 2.76733i −0.162410 0.0937675i
\(872\) 0 0
\(873\) −14.3464 + 43.1294i −0.485553 + 1.45971i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −14.7579 25.5615i −0.498340 0.863150i 0.501658 0.865066i \(-0.332724\pi\)
−0.999998 + 0.00191559i \(0.999390\pi\)
\(878\) 0 0
\(879\) 27.7821 + 4.49947i 0.937068 + 0.151763i
\(880\) 0 0
\(881\) 12.0113 0.404673 0.202336 0.979316i \(-0.435147\pi\)
0.202336 + 0.979316i \(0.435147\pi\)
\(882\) 0 0
\(883\) −26.4428 −0.889871 −0.444935 0.895563i \(-0.646773\pi\)
−0.444935 + 0.895563i \(0.646773\pi\)
\(884\) 0 0
\(885\) 20.9801 + 3.39785i 0.705239 + 0.114218i
\(886\) 0 0
\(887\) −1.56238 2.70612i −0.0524596 0.0908628i 0.838603 0.544743i \(-0.183373\pi\)
−0.891063 + 0.453880i \(0.850039\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −17.6562 41.1911i −0.591506 1.37995i
\(892\) 0 0
\(893\) 25.5099 + 14.7281i 0.853656 + 0.492858i
\(894\) 0 0
\(895\) 10.6792i 0.356965i
\(896\) 0 0
\(897\) −3.57615 9.41403i −0.119404 0.314325i
\(898\) 0 0
\(899\) −4.17359 + 7.22887i −0.139197 + 0.241096i
\(900\) 0 0
\(901\) 9.09356 5.25017i 0.302950 0.174909i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −20.3242 + 11.7342i −0.675598 + 0.390057i
\(906\) 0 0
\(907\) 28.9904 50.2128i 0.962610 1.66729i 0.246708 0.969090i \(-0.420651\pi\)
0.715903 0.698200i \(-0.246015\pi\)
\(908\) 0 0
\(909\) −24.6678 + 21.9019i −0.818180 + 0.726439i
\(910\) 0 0
\(911\) 0.434872i 0.0144079i 0.999974 + 0.00720397i \(0.00229312\pi\)
−0.999974 + 0.00720397i \(0.997707\pi\)
\(912\) 0 0
\(913\) −28.4175 16.4068i −0.940482 0.542987i
\(914\) 0 0
\(915\) 23.9279 + 19.5148i 0.791032 + 0.645138i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −20.0768 34.7740i −0.662271 1.14709i −0.980017 0.198912i \(-0.936259\pi\)
0.317746 0.948176i \(-0.397074\pi\)
\(920\) 0 0
\(921\) 0.782428 4.83112i 0.0257819 0.159191i
\(922\) 0 0
\(923\) −5.07939 −0.167190
\(924\) 0 0
\(925\) 17.1294 0.563211
\(926\) 0 0
\(927\) 30.6486 6.29181i 1.00663 0.206650i
\(928\) 0 0
\(929\) −14.0683 24.3670i −0.461566 0.799456i 0.537473 0.843281i \(-0.319379\pi\)
−0.999039 + 0.0438250i \(0.986046\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 17.9569 22.0178i 0.587884 0.720829i
\(934\) 0 0
\(935\) −4.12069 2.37908i −0.134761 0.0778043i
\(936\) 0 0
\(937\) 57.1209i 1.86606i −0.359801 0.933029i \(-0.617156\pi\)
0.359801 0.933029i \(-0.382844\pi\)
\(938\) 0 0
\(939\) 0.525902 0.199777i 0.0171622 0.00651947i
\(940\) 0 0
\(941\) −5.01759 + 8.69073i −0.163569 + 0.283310i −0.936146 0.351611i \(-0.885634\pi\)
0.772577 + 0.634921i \(0.218967\pi\)
\(942\) 0 0
\(943\) 53.8270 31.0770i 1.75285 1.01201i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −15.5402 + 8.97213i −0.504988 + 0.291555i −0.730771 0.682623i \(-0.760839\pi\)
0.225783 + 0.974178i \(0.427506\pi\)
\(948\) 0 0
\(949\) 1.39286 2.41250i 0.0452141 0.0783131i
\(950\) 0 0
\(951\) −19.5089 + 7.41092i −0.632618 + 0.240316i
\(952\) 0 0
\(953\) 1.76188i 0.0570730i −0.999593 0.0285365i \(-0.990915\pi\)
0.999593 0.0285365i \(-0.00908469\pi\)
\(954\) 0 0
\(955\) −4.67010 2.69628i −0.151121 0.0872496i
\(956\) 0 0
\(957\) −25.2363 + 30.9433i −0.815773 + 1.00025i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −13.8746 24.0315i −0.447568 0.775210i
\(962\) 0 0
\(963\) −9.05161 + 1.85819i −0.291684 + 0.0598794i
\(964\) 0 0
\(965\) −4.23647 −0.136377
\(966\) 0 0
\(967\) −20.8379 −0.670102 −0.335051 0.942200i \(-0.608754\pi\)
−0.335051 + 0.942200i \(0.608754\pi\)
\(968\) 0 0
\(969\) −1.40062 + 8.64817i −0.0449944 + 0.277819i
\(970\) 0 0
\(971\) 11.3816 + 19.7136i 0.365254 + 0.632639i 0.988817 0.149134i \(-0.0476487\pi\)
−0.623563 + 0.781773i \(0.714315\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −3.22706 2.63188i −0.103349 0.0842877i
\(976\) 0 0
\(977\) −0.460396 0.265810i −0.0147294 0.00850401i 0.492617 0.870246i \(-0.336040\pi\)
−0.507347 + 0.861742i \(0.669374\pi\)
\(978\) 0 0
\(979\) 21.8026i 0.696815i
\(980\) 0 0
\(981\) −30.8490 + 27.3900i −0.984932 + 0.874495i
\(982\) 0 0
\(983\) −4.83659 + 8.37723i −0.154263 + 0.267192i −0.932791 0.360419i \(-0.882634\pi\)
0.778527 + 0.627611i \(0.215967\pi\)
\(984\) 0 0
\(985\) 5.34870 3.08807i 0.170424 0.0983942i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.73591 + 5.04368i −0.277786 + 0.160380i
\(990\) 0 0
\(991\) −2.07358 + 3.59155i −0.0658695 + 0.114089i −0.897079 0.441869i \(-0.854315\pi\)
0.831210 + 0.555959i \(0.187649\pi\)
\(992\) 0 0
\(993\) −4.30557 11.3342i −0.136633 0.359680i
\(994\) 0 0
\(995\) 22.2812i 0.706361i
\(996\) 0 0
\(997\) −3.79822 2.19290i −0.120291 0.0694500i 0.438647 0.898659i \(-0.355458\pi\)
−0.558938 + 0.829209i \(0.688791\pi\)
\(998\) 0 0
\(999\) 1.13746 + 27.1220i 0.0359878 + 0.858103i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1176.2.u.c.521.23 48
3.2 odd 2 inner 1176.2.u.c.521.19 48
7.2 even 3 inner 1176.2.u.c.1097.6 48
7.3 odd 6 1176.2.k.b.881.16 yes 24
7.4 even 3 1176.2.k.b.881.9 24
7.5 odd 6 inner 1176.2.u.c.1097.19 48
7.6 odd 2 inner 1176.2.u.c.521.2 48
21.2 odd 6 inner 1176.2.u.c.1097.2 48
21.5 even 6 inner 1176.2.u.c.1097.23 48
21.11 odd 6 1176.2.k.b.881.15 yes 24
21.17 even 6 1176.2.k.b.881.10 yes 24
21.20 even 2 inner 1176.2.u.c.521.6 48
28.3 even 6 2352.2.k.j.881.9 24
28.11 odd 6 2352.2.k.j.881.16 24
84.11 even 6 2352.2.k.j.881.10 24
84.59 odd 6 2352.2.k.j.881.15 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1176.2.k.b.881.9 24 7.4 even 3
1176.2.k.b.881.10 yes 24 21.17 even 6
1176.2.k.b.881.15 yes 24 21.11 odd 6
1176.2.k.b.881.16 yes 24 7.3 odd 6
1176.2.u.c.521.2 48 7.6 odd 2 inner
1176.2.u.c.521.6 48 21.20 even 2 inner
1176.2.u.c.521.19 48 3.2 odd 2 inner
1176.2.u.c.521.23 48 1.1 even 1 trivial
1176.2.u.c.1097.2 48 21.2 odd 6 inner
1176.2.u.c.1097.6 48 7.2 even 3 inner
1176.2.u.c.1097.19 48 7.5 odd 6 inner
1176.2.u.c.1097.23 48 21.5 even 6 inner
2352.2.k.j.881.9 24 28.3 even 6
2352.2.k.j.881.10 24 84.11 even 6
2352.2.k.j.881.15 24 84.59 odd 6
2352.2.k.j.881.16 24 28.11 odd 6