Properties

Label 1183.2.c.j.337.6
Level $1183$
Weight $2$
Character 1183.337
Analytic conductor $9.446$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1183,2,Mod(337,1183)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1183, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1183.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44630255912\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.6
Character \(\chi\) \(=\) 1183.337
Dual form 1183.2.c.j.337.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.06743i q^{2} +2.11889 q^{3} -2.27425 q^{4} -2.43928i q^{5} -4.38065i q^{6} +1.00000i q^{7} +0.566992i q^{8} +1.48970 q^{9} -5.04303 q^{10} -3.64779i q^{11} -4.81889 q^{12} +2.06743 q^{14} -5.16857i q^{15} -3.37629 q^{16} -7.04993 q^{17} -3.07985i q^{18} +2.76410i q^{19} +5.54753i q^{20} +2.11889i q^{21} -7.54154 q^{22} +7.75601 q^{23} +1.20139i q^{24} -0.950076 q^{25} -3.20015 q^{27} -2.27425i q^{28} +2.31600 q^{29} -10.6856 q^{30} -7.00738i q^{31} +8.11421i q^{32} -7.72927i q^{33} +14.5752i q^{34} +2.43928 q^{35} -3.38796 q^{36} -7.28412i q^{37} +5.71456 q^{38} +1.38305 q^{40} +3.49162i q^{41} +4.38065 q^{42} -3.44630 q^{43} +8.29599i q^{44} -3.63380i q^{45} -16.0350i q^{46} +2.66883i q^{47} -7.15399 q^{48} -1.00000 q^{49} +1.96421i q^{50} -14.9380 q^{51} +13.3378 q^{53} +6.61608i q^{54} -8.89797 q^{55} -0.566992 q^{56} +5.85682i q^{57} -4.78816i q^{58} -8.24978i q^{59} +11.7546i q^{60} +13.9465 q^{61} -14.4872 q^{62} +1.48970i q^{63} +10.0229 q^{64} -15.9797 q^{66} +3.20893i q^{67} +16.0333 q^{68} +16.4341 q^{69} -5.04303i q^{70} +9.74080i q^{71} +0.844650i q^{72} -3.75697i q^{73} -15.0594 q^{74} -2.01311 q^{75} -6.28624i q^{76} +3.64779 q^{77} -12.8682 q^{79} +8.23570i q^{80} -11.2499 q^{81} +7.21867 q^{82} +5.42451i q^{83} -4.81889i q^{84} +17.1967i q^{85} +7.12496i q^{86} +4.90736 q^{87} +2.06827 q^{88} -0.335808i q^{89} -7.51262 q^{90} -17.6391 q^{92} -14.8479i q^{93} +5.51762 q^{94} +6.74240 q^{95} +17.1931i q^{96} -10.9424i q^{97} +2.06743i q^{98} -5.43413i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 16 q^{3} - 30 q^{4} + 52 q^{9} + 12 q^{10} - 26 q^{12} + 6 q^{14} + 26 q^{16} - 62 q^{17} - 8 q^{22} - 36 q^{23} - 64 q^{25} + 64 q^{27} + 30 q^{29} + 20 q^{30} - 8 q^{35} - 98 q^{36} - 90 q^{38}+ \cdots - 58 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1183\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(1016\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.06743i − 1.46189i −0.682436 0.730945i \(-0.739079\pi\)
0.682436 0.730945i \(-0.260921\pi\)
\(3\) 2.11889 1.22334 0.611671 0.791112i \(-0.290497\pi\)
0.611671 + 0.791112i \(0.290497\pi\)
\(4\) −2.27425 −1.13713
\(5\) − 2.43928i − 1.09088i −0.838150 0.545439i \(-0.816363\pi\)
0.838150 0.545439i \(-0.183637\pi\)
\(6\) − 4.38065i − 1.78839i
\(7\) 1.00000i 0.377964i
\(8\) 0.566992i 0.200462i
\(9\) 1.48970 0.496568
\(10\) −5.04303 −1.59474
\(11\) − 3.64779i − 1.09985i −0.835214 0.549925i \(-0.814656\pi\)
0.835214 0.549925i \(-0.185344\pi\)
\(12\) −4.81889 −1.39109
\(13\) 0 0
\(14\) 2.06743 0.552543
\(15\) − 5.16857i − 1.33452i
\(16\) −3.37629 −0.844072
\(17\) −7.04993 −1.70986 −0.854929 0.518745i \(-0.826400\pi\)
−0.854929 + 0.518745i \(0.826400\pi\)
\(18\) − 3.07985i − 0.725928i
\(19\) 2.76410i 0.634127i 0.948404 + 0.317063i \(0.102697\pi\)
−0.948404 + 0.317063i \(0.897303\pi\)
\(20\) 5.54753i 1.24046i
\(21\) 2.11889i 0.462380i
\(22\) −7.54154 −1.60786
\(23\) 7.75601 1.61724 0.808620 0.588332i \(-0.200215\pi\)
0.808620 + 0.588332i \(0.200215\pi\)
\(24\) 1.20139i 0.245234i
\(25\) −0.950076 −0.190015
\(26\) 0 0
\(27\) −3.20015 −0.615870
\(28\) − 2.27425i − 0.429793i
\(29\) 2.31600 0.430071 0.215035 0.976606i \(-0.431013\pi\)
0.215035 + 0.976606i \(0.431013\pi\)
\(30\) −10.6856 −1.95092
\(31\) − 7.00738i − 1.25856i −0.777178 0.629281i \(-0.783349\pi\)
0.777178 0.629281i \(-0.216651\pi\)
\(32\) 8.11421i 1.43440i
\(33\) − 7.72927i − 1.34549i
\(34\) 14.5752i 2.49963i
\(35\) 2.43928 0.412313
\(36\) −3.38796 −0.564660
\(37\) − 7.28412i − 1.19750i −0.800935 0.598751i \(-0.795664\pi\)
0.800935 0.598751i \(-0.204336\pi\)
\(38\) 5.71456 0.927024
\(39\) 0 0
\(40\) 1.38305 0.218679
\(41\) 3.49162i 0.545300i 0.962113 + 0.272650i \(0.0879000\pi\)
−0.962113 + 0.272650i \(0.912100\pi\)
\(42\) 4.38065 0.675949
\(43\) −3.44630 −0.525555 −0.262778 0.964856i \(-0.584639\pi\)
−0.262778 + 0.964856i \(0.584639\pi\)
\(44\) 8.29599i 1.25067i
\(45\) − 3.63380i − 0.541695i
\(46\) − 16.0350i − 2.36423i
\(47\) 2.66883i 0.389289i 0.980874 + 0.194645i \(0.0623554\pi\)
−0.980874 + 0.194645i \(0.937645\pi\)
\(48\) −7.15399 −1.03259
\(49\) −1.00000 −0.142857
\(50\) 1.96421i 0.277782i
\(51\) −14.9380 −2.09174
\(52\) 0 0
\(53\) 13.3378 1.83208 0.916041 0.401086i \(-0.131367\pi\)
0.916041 + 0.401086i \(0.131367\pi\)
\(54\) 6.61608i 0.900335i
\(55\) −8.89797 −1.19980
\(56\) −0.566992 −0.0757675
\(57\) 5.85682i 0.775755i
\(58\) − 4.78816i − 0.628716i
\(59\) − 8.24978i − 1.07403i −0.843573 0.537015i \(-0.819552\pi\)
0.843573 0.537015i \(-0.180448\pi\)
\(60\) 11.7546i 1.51751i
\(61\) 13.9465 1.78566 0.892831 0.450392i \(-0.148716\pi\)
0.892831 + 0.450392i \(0.148716\pi\)
\(62\) −14.4872 −1.83988
\(63\) 1.48970i 0.187685i
\(64\) 10.0229 1.25287
\(65\) 0 0
\(66\) −15.9797 −1.96697
\(67\) 3.20893i 0.392033i 0.980601 + 0.196017i \(0.0628007\pi\)
−0.980601 + 0.196017i \(0.937199\pi\)
\(68\) 16.0333 1.94432
\(69\) 16.4341 1.97844
\(70\) − 5.04303i − 0.602757i
\(71\) 9.74080i 1.15602i 0.816029 + 0.578010i \(0.196171\pi\)
−0.816029 + 0.578010i \(0.803829\pi\)
\(72\) 0.844650i 0.0995429i
\(73\) − 3.75697i − 0.439720i −0.975531 0.219860i \(-0.929440\pi\)
0.975531 0.219860i \(-0.0705601\pi\)
\(74\) −15.0594 −1.75062
\(75\) −2.01311 −0.232454
\(76\) − 6.28624i − 0.721082i
\(77\) 3.64779 0.415704
\(78\) 0 0
\(79\) −12.8682 −1.44778 −0.723890 0.689915i \(-0.757648\pi\)
−0.723890 + 0.689915i \(0.757648\pi\)
\(80\) 8.23570i 0.920779i
\(81\) −11.2499 −1.24999
\(82\) 7.21867 0.797168
\(83\) 5.42451i 0.595417i 0.954657 + 0.297709i \(0.0962224\pi\)
−0.954657 + 0.297709i \(0.903778\pi\)
\(84\) − 4.81889i − 0.525784i
\(85\) 17.1967i 1.86525i
\(86\) 7.12496i 0.768304i
\(87\) 4.90736 0.526124
\(88\) 2.06827 0.220478
\(89\) − 0.335808i − 0.0355955i −0.999842 0.0177978i \(-0.994334\pi\)
0.999842 0.0177978i \(-0.00566551\pi\)
\(90\) −7.51262 −0.791899
\(91\) 0 0
\(92\) −17.6391 −1.83900
\(93\) − 14.8479i − 1.53965i
\(94\) 5.51762 0.569099
\(95\) 6.74240 0.691755
\(96\) 17.1931i 1.75477i
\(97\) − 10.9424i − 1.11103i −0.831505 0.555517i \(-0.812520\pi\)
0.831505 0.555517i \(-0.187480\pi\)
\(98\) 2.06743i 0.208842i
\(99\) − 5.43413i − 0.546150i
\(100\) 2.16071 0.216071
\(101\) −8.92269 −0.887841 −0.443920 0.896066i \(-0.646413\pi\)
−0.443920 + 0.896066i \(0.646413\pi\)
\(102\) 30.8833i 3.05790i
\(103\) 2.66966 0.263049 0.131525 0.991313i \(-0.458013\pi\)
0.131525 + 0.991313i \(0.458013\pi\)
\(104\) 0 0
\(105\) 5.16857 0.504400
\(106\) − 27.5748i − 2.67830i
\(107\) 14.9485 1.44513 0.722563 0.691305i \(-0.242964\pi\)
0.722563 + 0.691305i \(0.242964\pi\)
\(108\) 7.27795 0.700321
\(109\) 1.45686i 0.139542i 0.997563 + 0.0697710i \(0.0222269\pi\)
−0.997563 + 0.0697710i \(0.977773\pi\)
\(110\) 18.3959i 1.75398i
\(111\) − 15.4343i − 1.46496i
\(112\) − 3.37629i − 0.319029i
\(113\) 14.8440 1.39641 0.698204 0.715899i \(-0.253983\pi\)
0.698204 + 0.715899i \(0.253983\pi\)
\(114\) 12.1085 1.13407
\(115\) − 18.9191i − 1.76421i
\(116\) −5.26716 −0.489044
\(117\) 0 0
\(118\) −17.0558 −1.57011
\(119\) − 7.04993i − 0.646266i
\(120\) 2.93053 0.267520
\(121\) −2.30638 −0.209670
\(122\) − 28.8333i − 2.61044i
\(123\) 7.39837i 0.667088i
\(124\) 15.9365i 1.43114i
\(125\) − 9.87889i − 0.883595i
\(126\) 3.07985 0.274375
\(127\) −5.83060 −0.517382 −0.258691 0.965960i \(-0.583291\pi\)
−0.258691 + 0.965960i \(0.583291\pi\)
\(128\) − 4.49329i − 0.397154i
\(129\) −7.30233 −0.642934
\(130\) 0 0
\(131\) 15.0558 1.31543 0.657714 0.753268i \(-0.271523\pi\)
0.657714 + 0.753268i \(0.271523\pi\)
\(132\) 17.5783i 1.52999i
\(133\) −2.76410 −0.239677
\(134\) 6.63423 0.573110
\(135\) 7.80607i 0.671839i
\(136\) − 3.99725i − 0.342761i
\(137\) 4.23709i 0.361999i 0.983483 + 0.181000i \(0.0579333\pi\)
−0.983483 + 0.181000i \(0.942067\pi\)
\(138\) − 33.9764i − 2.89226i
\(139\) −2.70802 −0.229691 −0.114846 0.993383i \(-0.536637\pi\)
−0.114846 + 0.993383i \(0.536637\pi\)
\(140\) −5.54753 −0.468852
\(141\) 5.65497i 0.476235i
\(142\) 20.1384 1.68998
\(143\) 0 0
\(144\) −5.02967 −0.419139
\(145\) − 5.64937i − 0.469155i
\(146\) −7.76726 −0.642823
\(147\) −2.11889 −0.174763
\(148\) 16.5659i 1.36171i
\(149\) − 0.891186i − 0.0730088i −0.999333 0.0365044i \(-0.988378\pi\)
0.999333 0.0365044i \(-0.0116223\pi\)
\(150\) 4.16195i 0.339822i
\(151\) 16.2557i 1.32287i 0.750001 + 0.661436i \(0.230053\pi\)
−0.750001 + 0.661436i \(0.769947\pi\)
\(152\) −1.56722 −0.127118
\(153\) −10.5023 −0.849061
\(154\) − 7.54154i − 0.607714i
\(155\) −17.0929 −1.37294
\(156\) 0 0
\(157\) −3.94721 −0.315022 −0.157511 0.987517i \(-0.550347\pi\)
−0.157511 + 0.987517i \(0.550347\pi\)
\(158\) 26.6040i 2.11650i
\(159\) 28.2613 2.24126
\(160\) 19.7928 1.56476
\(161\) 7.75601i 0.611259i
\(162\) 23.2583i 1.82735i
\(163\) − 4.48439i − 0.351245i −0.984458 0.175622i \(-0.943806\pi\)
0.984458 0.175622i \(-0.0561937\pi\)
\(164\) − 7.94082i − 0.620074i
\(165\) −18.8538 −1.46777
\(166\) 11.2148 0.870435
\(167\) 8.06225i 0.623875i 0.950103 + 0.311938i \(0.100978\pi\)
−0.950103 + 0.311938i \(0.899022\pi\)
\(168\) −1.20139 −0.0926896
\(169\) 0 0
\(170\) 35.5530 2.72679
\(171\) 4.11768i 0.314887i
\(172\) 7.83774 0.597622
\(173\) 7.74395 0.588761 0.294381 0.955688i \(-0.404887\pi\)
0.294381 + 0.955688i \(0.404887\pi\)
\(174\) − 10.1456i − 0.769136i
\(175\) − 0.950076i − 0.0718190i
\(176\) 12.3160i 0.928352i
\(177\) − 17.4804i − 1.31391i
\(178\) −0.694258 −0.0520368
\(179\) 16.3124 1.21924 0.609621 0.792693i \(-0.291321\pi\)
0.609621 + 0.792693i \(0.291321\pi\)
\(180\) 8.26417i 0.615975i
\(181\) −8.28425 −0.615763 −0.307882 0.951425i \(-0.599620\pi\)
−0.307882 + 0.951425i \(0.599620\pi\)
\(182\) 0 0
\(183\) 29.5510 2.18448
\(184\) 4.39759i 0.324195i
\(185\) −17.7680 −1.30633
\(186\) −30.6969 −2.25081
\(187\) 25.7167i 1.88059i
\(188\) − 6.06960i − 0.442671i
\(189\) − 3.20015i − 0.232777i
\(190\) − 13.9394i − 1.01127i
\(191\) 10.7356 0.776803 0.388402 0.921490i \(-0.373027\pi\)
0.388402 + 0.921490i \(0.373027\pi\)
\(192\) 21.2375 1.53269
\(193\) 0.762728i 0.0549024i 0.999623 + 0.0274512i \(0.00873908\pi\)
−0.999623 + 0.0274512i \(0.991261\pi\)
\(194\) −22.6226 −1.62421
\(195\) 0 0
\(196\) 2.27425 0.162446
\(197\) 12.1127i 0.862997i 0.902114 + 0.431498i \(0.142015\pi\)
−0.902114 + 0.431498i \(0.857985\pi\)
\(198\) −11.2347 −0.798412
\(199\) 4.27032 0.302715 0.151358 0.988479i \(-0.451636\pi\)
0.151358 + 0.988479i \(0.451636\pi\)
\(200\) − 0.538685i − 0.0380908i
\(201\) 6.79938i 0.479591i
\(202\) 18.4470i 1.29793i
\(203\) 2.31600i 0.162551i
\(204\) 33.9728 2.37857
\(205\) 8.51703 0.594855
\(206\) − 5.51932i − 0.384549i
\(207\) 11.5542 0.803069
\(208\) 0 0
\(209\) 10.0828 0.697445
\(210\) − 10.6856i − 0.737378i
\(211\) −7.26849 −0.500384 −0.250192 0.968196i \(-0.580494\pi\)
−0.250192 + 0.968196i \(0.580494\pi\)
\(212\) −30.3334 −2.08331
\(213\) 20.6397i 1.41421i
\(214\) − 30.9049i − 2.11262i
\(215\) 8.40647i 0.573317i
\(216\) − 1.81446i − 0.123458i
\(217\) 7.00738 0.475692
\(218\) 3.01195 0.203995
\(219\) − 7.96062i − 0.537929i
\(220\) 20.2362 1.36433
\(221\) 0 0
\(222\) −31.9092 −2.14161
\(223\) 11.5634i 0.774343i 0.922008 + 0.387172i \(0.126548\pi\)
−0.922008 + 0.387172i \(0.873452\pi\)
\(224\) −8.11421 −0.542153
\(225\) −1.41533 −0.0943555
\(226\) − 30.6889i − 2.04140i
\(227\) 3.02967i 0.201086i 0.994933 + 0.100543i \(0.0320580\pi\)
−0.994933 + 0.100543i \(0.967942\pi\)
\(228\) − 13.3199i − 0.882130i
\(229\) 3.56377i 0.235500i 0.993043 + 0.117750i \(0.0375682\pi\)
−0.993043 + 0.117750i \(0.962432\pi\)
\(230\) −39.1137 −2.57908
\(231\) 7.72927 0.508549
\(232\) 1.31315i 0.0862127i
\(233\) 12.8151 0.839547 0.419774 0.907629i \(-0.362109\pi\)
0.419774 + 0.907629i \(0.362109\pi\)
\(234\) 0 0
\(235\) 6.51003 0.424667
\(236\) 18.7621i 1.22131i
\(237\) −27.2662 −1.77113
\(238\) −14.5752 −0.944770
\(239\) − 25.3757i − 1.64142i −0.571347 0.820708i \(-0.693579\pi\)
0.571347 0.820708i \(-0.306421\pi\)
\(240\) 17.4506i 1.12643i
\(241\) 6.80302i 0.438221i 0.975700 + 0.219111i \(0.0703156\pi\)
−0.975700 + 0.219111i \(0.929684\pi\)
\(242\) 4.76826i 0.306515i
\(243\) −14.2368 −0.913294
\(244\) −31.7177 −2.03052
\(245\) 2.43928i 0.155840i
\(246\) 15.2956 0.975210
\(247\) 0 0
\(248\) 3.97313 0.252294
\(249\) 11.4940i 0.728400i
\(250\) −20.4239 −1.29172
\(251\) 22.8556 1.44263 0.721317 0.692605i \(-0.243537\pi\)
0.721317 + 0.692605i \(0.243537\pi\)
\(252\) − 3.38796i − 0.213421i
\(253\) − 28.2923i − 1.77872i
\(254\) 12.0543i 0.756356i
\(255\) 36.4380i 2.28184i
\(256\) 10.7564 0.672272
\(257\) 3.85941 0.240743 0.120372 0.992729i \(-0.461591\pi\)
0.120372 + 0.992729i \(0.461591\pi\)
\(258\) 15.0970i 0.939899i
\(259\) 7.28412 0.452613
\(260\) 0 0
\(261\) 3.45016 0.213559
\(262\) − 31.1267i − 1.92301i
\(263\) −16.2197 −1.00015 −0.500075 0.865982i \(-0.666694\pi\)
−0.500075 + 0.865982i \(0.666694\pi\)
\(264\) 4.38243 0.269720
\(265\) − 32.5345i − 1.99858i
\(266\) 5.71456i 0.350382i
\(267\) − 0.711540i − 0.0435456i
\(268\) − 7.29791i − 0.445791i
\(269\) −23.0815 −1.40731 −0.703653 0.710544i \(-0.748449\pi\)
−0.703653 + 0.710544i \(0.748449\pi\)
\(270\) 16.1385 0.982156
\(271\) − 10.7673i − 0.654067i −0.945013 0.327034i \(-0.893951\pi\)
0.945013 0.327034i \(-0.106049\pi\)
\(272\) 23.8026 1.44324
\(273\) 0 0
\(274\) 8.75987 0.529203
\(275\) 3.46568i 0.208988i
\(276\) −37.3753 −2.24973
\(277\) 11.7786 0.707708 0.353854 0.935301i \(-0.384871\pi\)
0.353854 + 0.935301i \(0.384871\pi\)
\(278\) 5.59863i 0.335784i
\(279\) − 10.4389i − 0.624962i
\(280\) 1.38305i 0.0826531i
\(281\) − 27.3072i − 1.62901i −0.580154 0.814507i \(-0.697008\pi\)
0.580154 0.814507i \(-0.302992\pi\)
\(282\) 11.6912 0.696203
\(283\) −22.8247 −1.35679 −0.678393 0.734699i \(-0.737323\pi\)
−0.678393 + 0.734699i \(0.737323\pi\)
\(284\) − 22.1530i − 1.31454i
\(285\) 14.2864 0.846254
\(286\) 0 0
\(287\) −3.49162 −0.206104
\(288\) 12.0878i 0.712278i
\(289\) 32.7015 1.92362
\(290\) −11.6797 −0.685853
\(291\) − 23.1858i − 1.35918i
\(292\) 8.54430i 0.500017i
\(293\) − 19.8388i − 1.15899i −0.814974 0.579497i \(-0.803249\pi\)
0.814974 0.579497i \(-0.196751\pi\)
\(294\) 4.38065i 0.255485i
\(295\) −20.1235 −1.17164
\(296\) 4.13004 0.240054
\(297\) 11.6735i 0.677365i
\(298\) −1.84246 −0.106731
\(299\) 0 0
\(300\) 4.57831 0.264329
\(301\) − 3.44630i − 0.198641i
\(302\) 33.6075 1.93390
\(303\) −18.9062 −1.08613
\(304\) − 9.33238i − 0.535249i
\(305\) − 34.0193i − 1.94794i
\(306\) 21.7127i 1.24123i
\(307\) 10.3240i 0.589219i 0.955618 + 0.294610i \(0.0951896\pi\)
−0.955618 + 0.294610i \(0.904810\pi\)
\(308\) −8.29599 −0.472708
\(309\) 5.65672 0.321800
\(310\) 35.3384i 2.00709i
\(311\) −22.2930 −1.26412 −0.632060 0.774919i \(-0.717790\pi\)
−0.632060 + 0.774919i \(0.717790\pi\)
\(312\) 0 0
\(313\) −19.4600 −1.09995 −0.549973 0.835182i \(-0.685362\pi\)
−0.549973 + 0.835182i \(0.685362\pi\)
\(314\) 8.16057i 0.460528i
\(315\) 3.63380 0.204742
\(316\) 29.2654 1.64631
\(317\) − 27.4413i − 1.54126i −0.637284 0.770629i \(-0.719942\pi\)
0.637284 0.770629i \(-0.280058\pi\)
\(318\) − 58.4281i − 3.27648i
\(319\) − 8.44829i − 0.473013i
\(320\) − 24.4488i − 1.36673i
\(321\) 31.6743 1.76789
\(322\) 16.0350 0.893594
\(323\) − 19.4867i − 1.08427i
\(324\) 25.5851 1.42139
\(325\) 0 0
\(326\) −9.27115 −0.513481
\(327\) 3.08693i 0.170708i
\(328\) −1.97972 −0.109312
\(329\) −2.66883 −0.147138
\(330\) 38.9789i 2.14572i
\(331\) − 20.3710i − 1.11969i −0.828596 0.559846i \(-0.810860\pi\)
0.828596 0.559846i \(-0.189140\pi\)
\(332\) − 12.3367i − 0.677064i
\(333\) − 10.8512i − 0.594641i
\(334\) 16.6681 0.912038
\(335\) 7.82748 0.427661
\(336\) − 7.15399i − 0.390282i
\(337\) 2.67053 0.145473 0.0727366 0.997351i \(-0.476827\pi\)
0.0727366 + 0.997351i \(0.476827\pi\)
\(338\) 0 0
\(339\) 31.4529 1.70829
\(340\) − 39.1097i − 2.12102i
\(341\) −25.5615 −1.38423
\(342\) 8.51301 0.460331
\(343\) − 1.00000i − 0.0539949i
\(344\) − 1.95402i − 0.105354i
\(345\) − 40.0874i − 2.15823i
\(346\) − 16.0100i − 0.860705i
\(347\) −0.317819 −0.0170614 −0.00853071 0.999964i \(-0.502715\pi\)
−0.00853071 + 0.999964i \(0.502715\pi\)
\(348\) −11.1606 −0.598268
\(349\) 0.514513i 0.0275413i 0.999905 + 0.0137706i \(0.00438347\pi\)
−0.999905 + 0.0137706i \(0.995617\pi\)
\(350\) −1.96421 −0.104992
\(351\) 0 0
\(352\) 29.5989 1.57763
\(353\) − 0.627678i − 0.0334080i −0.999860 0.0167040i \(-0.994683\pi\)
0.999860 0.0167040i \(-0.00531729\pi\)
\(354\) −36.1394 −1.92079
\(355\) 23.7605 1.26108
\(356\) 0.763711i 0.0404766i
\(357\) − 14.9380i − 0.790605i
\(358\) − 33.7246i − 1.78240i
\(359\) 31.9224i 1.68480i 0.538854 + 0.842399i \(0.318857\pi\)
−0.538854 + 0.842399i \(0.681143\pi\)
\(360\) 2.06034 0.108589
\(361\) 11.3598 0.597883
\(362\) 17.1271i 0.900179i
\(363\) −4.88696 −0.256499
\(364\) 0 0
\(365\) −9.16430 −0.479681
\(366\) − 61.0946i − 3.19347i
\(367\) 10.6064 0.553651 0.276826 0.960920i \(-0.410718\pi\)
0.276826 + 0.960920i \(0.410718\pi\)
\(368\) −26.1865 −1.36507
\(369\) 5.20148i 0.270778i
\(370\) 36.7340i 1.90971i
\(371\) 13.3378i 0.692462i
\(372\) 33.7678i 1.75078i
\(373\) 10.6129 0.549514 0.274757 0.961514i \(-0.411403\pi\)
0.274757 + 0.961514i \(0.411403\pi\)
\(374\) 53.1673 2.74921
\(375\) − 20.9323i − 1.08094i
\(376\) −1.51321 −0.0780377
\(377\) 0 0
\(378\) −6.61608 −0.340295
\(379\) 13.5259i 0.694779i 0.937721 + 0.347390i \(0.112932\pi\)
−0.937721 + 0.347390i \(0.887068\pi\)
\(380\) −15.3339 −0.786612
\(381\) −12.3544 −0.632935
\(382\) − 22.1951i − 1.13560i
\(383\) 14.4264i 0.737155i 0.929597 + 0.368577i \(0.120155\pi\)
−0.929597 + 0.368577i \(0.879845\pi\)
\(384\) − 9.52079i − 0.485856i
\(385\) − 8.89797i − 0.453483i
\(386\) 1.57688 0.0802613
\(387\) −5.13396 −0.260974
\(388\) 24.8858i 1.26338i
\(389\) −15.1018 −0.765692 −0.382846 0.923812i \(-0.625056\pi\)
−0.382846 + 0.923812i \(0.625056\pi\)
\(390\) 0 0
\(391\) −54.6793 −2.76525
\(392\) − 0.566992i − 0.0286374i
\(393\) 31.9015 1.60922
\(394\) 25.0422 1.26161
\(395\) 31.3890i 1.57935i
\(396\) 12.3586i 0.621041i
\(397\) 15.6944i 0.787679i 0.919179 + 0.393840i \(0.128853\pi\)
−0.919179 + 0.393840i \(0.871147\pi\)
\(398\) − 8.82858i − 0.442536i
\(399\) −5.85682 −0.293208
\(400\) 3.20773 0.160386
\(401\) 18.9270i 0.945168i 0.881286 + 0.472584i \(0.156679\pi\)
−0.881286 + 0.472584i \(0.843321\pi\)
\(402\) 14.0572 0.701110
\(403\) 0 0
\(404\) 20.2924 1.00959
\(405\) 27.4416i 1.36358i
\(406\) 4.78816 0.237632
\(407\) −26.5710 −1.31707
\(408\) − 8.46974i − 0.419315i
\(409\) 2.37052i 0.117215i 0.998281 + 0.0586074i \(0.0186660\pi\)
−0.998281 + 0.0586074i \(0.981334\pi\)
\(410\) − 17.6083i − 0.869614i
\(411\) 8.97794i 0.442849i
\(412\) −6.07147 −0.299120
\(413\) 8.24978 0.405945
\(414\) − 23.8874i − 1.17400i
\(415\) 13.2319 0.649528
\(416\) 0 0
\(417\) −5.73800 −0.280991
\(418\) − 20.8455i − 1.01959i
\(419\) 21.4796 1.04935 0.524673 0.851304i \(-0.324188\pi\)
0.524673 + 0.851304i \(0.324188\pi\)
\(420\) −11.7546 −0.573566
\(421\) 20.1413i 0.981626i 0.871265 + 0.490813i \(0.163300\pi\)
−0.871265 + 0.490813i \(0.836700\pi\)
\(422\) 15.0271i 0.731506i
\(423\) 3.97577i 0.193309i
\(424\) 7.56239i 0.367262i
\(425\) 6.69797 0.324899
\(426\) 42.6711 2.06742
\(427\) 13.9465i 0.674917i
\(428\) −33.9966 −1.64329
\(429\) 0 0
\(430\) 17.3798 0.838126
\(431\) − 18.0221i − 0.868092i −0.900891 0.434046i \(-0.857085\pi\)
0.900891 0.434046i \(-0.142915\pi\)
\(432\) 10.8046 0.519838
\(433\) −35.8293 −1.72184 −0.860922 0.508737i \(-0.830113\pi\)
−0.860922 + 0.508737i \(0.830113\pi\)
\(434\) − 14.4872i − 0.695410i
\(435\) − 11.9704i − 0.573937i
\(436\) − 3.31327i − 0.158677i
\(437\) 21.4383i 1.02553i
\(438\) −16.4580 −0.786393
\(439\) 2.24154 0.106983 0.0534914 0.998568i \(-0.482965\pi\)
0.0534914 + 0.998568i \(0.482965\pi\)
\(440\) − 5.04508i − 0.240515i
\(441\) −1.48970 −0.0709383
\(442\) 0 0
\(443\) −5.70925 −0.271254 −0.135627 0.990760i \(-0.543305\pi\)
−0.135627 + 0.990760i \(0.543305\pi\)
\(444\) 35.1014i 1.66584i
\(445\) −0.819128 −0.0388304
\(446\) 23.9065 1.13201
\(447\) − 1.88833i − 0.0893148i
\(448\) 10.0229i 0.473540i
\(449\) 32.3594i 1.52714i 0.645728 + 0.763568i \(0.276554\pi\)
−0.645728 + 0.763568i \(0.723446\pi\)
\(450\) 2.92609i 0.137937i
\(451\) 12.7367 0.599748
\(452\) −33.7590 −1.58789
\(453\) 34.4441i 1.61833i
\(454\) 6.26362 0.293966
\(455\) 0 0
\(456\) −3.32077 −0.155509
\(457\) 24.8614i 1.16297i 0.813559 + 0.581483i \(0.197527\pi\)
−0.813559 + 0.581483i \(0.802473\pi\)
\(458\) 7.36782 0.344276
\(459\) 22.5609 1.05305
\(460\) 43.0267i 2.00613i
\(461\) 17.5977i 0.819607i 0.912174 + 0.409804i \(0.134403\pi\)
−0.912174 + 0.409804i \(0.865597\pi\)
\(462\) − 15.9797i − 0.743443i
\(463\) − 31.9863i − 1.48653i −0.668997 0.743265i \(-0.733276\pi\)
0.668997 0.743265i \(-0.266724\pi\)
\(464\) −7.81948 −0.363010
\(465\) −36.2181 −1.67957
\(466\) − 26.4943i − 1.22733i
\(467\) −2.98855 −0.138294 −0.0691468 0.997606i \(-0.522028\pi\)
−0.0691468 + 0.997606i \(0.522028\pi\)
\(468\) 0 0
\(469\) −3.20893 −0.148175
\(470\) − 13.4590i − 0.620817i
\(471\) −8.36372 −0.385380
\(472\) 4.67756 0.215302
\(473\) 12.5714i 0.578032i
\(474\) 56.3709i 2.58920i
\(475\) − 2.62610i − 0.120494i
\(476\) 16.0333i 0.734885i
\(477\) 19.8693 0.909753
\(478\) −52.4624 −2.39957
\(479\) 19.2718i 0.880553i 0.897862 + 0.440277i \(0.145120\pi\)
−0.897862 + 0.440277i \(0.854880\pi\)
\(480\) 41.9388 1.91424
\(481\) 0 0
\(482\) 14.0647 0.640632
\(483\) 16.4341i 0.747779i
\(484\) 5.24527 0.238422
\(485\) −26.6916 −1.21200
\(486\) 29.4336i 1.33514i
\(487\) 18.2603i 0.827451i 0.910402 + 0.413726i \(0.135773\pi\)
−0.910402 + 0.413726i \(0.864227\pi\)
\(488\) 7.90753i 0.357957i
\(489\) − 9.50194i − 0.429693i
\(490\) 5.04303 0.227821
\(491\) 32.6604 1.47394 0.736971 0.675924i \(-0.236255\pi\)
0.736971 + 0.675924i \(0.236255\pi\)
\(492\) − 16.8257i − 0.758563i
\(493\) −16.3276 −0.735360
\(494\) 0 0
\(495\) −13.2553 −0.595784
\(496\) 23.6589i 1.06232i
\(497\) −9.74080 −0.436935
\(498\) 23.7629 1.06484
\(499\) − 5.35967i − 0.239932i −0.992778 0.119966i \(-0.961721\pi\)
0.992778 0.119966i \(-0.0382785\pi\)
\(500\) 22.4671i 1.00476i
\(501\) 17.0830i 0.763214i
\(502\) − 47.2523i − 2.10897i
\(503\) −20.9055 −0.932129 −0.466065 0.884751i \(-0.654329\pi\)
−0.466065 + 0.884751i \(0.654329\pi\)
\(504\) −0.844650 −0.0376237
\(505\) 21.7649i 0.968526i
\(506\) −58.4922 −2.60030
\(507\) 0 0
\(508\) 13.2602 0.588328
\(509\) − 25.0852i − 1.11188i −0.831222 0.555941i \(-0.812358\pi\)
0.831222 0.555941i \(-0.187642\pi\)
\(510\) 75.3329 3.33580
\(511\) 3.75697 0.166199
\(512\) − 31.2245i − 1.37994i
\(513\) − 8.84553i − 0.390540i
\(514\) − 7.97905i − 0.351941i
\(515\) − 6.51204i − 0.286955i
\(516\) 16.6073 0.731096
\(517\) 9.73535 0.428160
\(518\) − 15.0594i − 0.661671i
\(519\) 16.4086 0.720257
\(520\) 0 0
\(521\) −8.13575 −0.356434 −0.178217 0.983991i \(-0.557033\pi\)
−0.178217 + 0.983991i \(0.557033\pi\)
\(522\) − 7.13294i − 0.312200i
\(523\) 36.6634 1.60318 0.801589 0.597875i \(-0.203988\pi\)
0.801589 + 0.597875i \(0.203988\pi\)
\(524\) −34.2406 −1.49581
\(525\) − 2.01311i − 0.0878593i
\(526\) 33.5330i 1.46211i
\(527\) 49.4015i 2.15196i
\(528\) 26.0962i 1.13569i
\(529\) 37.1556 1.61546
\(530\) −67.2626 −2.92170
\(531\) − 12.2897i − 0.533329i
\(532\) 6.28624 0.272543
\(533\) 0 0
\(534\) −1.47106 −0.0636589
\(535\) − 36.4636i − 1.57646i
\(536\) −1.81944 −0.0785877
\(537\) 34.5641 1.49155
\(538\) 47.7194i 2.05733i
\(539\) 3.64779i 0.157121i
\(540\) − 17.7529i − 0.763965i
\(541\) 16.6320i 0.715063i 0.933901 + 0.357532i \(0.116382\pi\)
−0.933901 + 0.357532i \(0.883618\pi\)
\(542\) −22.2606 −0.956175
\(543\) −17.5534 −0.753290
\(544\) − 57.2046i − 2.45263i
\(545\) 3.55369 0.152223
\(546\) 0 0
\(547\) −36.0139 −1.53984 −0.769921 0.638139i \(-0.779704\pi\)
−0.769921 + 0.638139i \(0.779704\pi\)
\(548\) − 9.63620i − 0.411638i
\(549\) 20.7761 0.886702
\(550\) 7.16503 0.305518
\(551\) 6.40165i 0.272719i
\(552\) 9.31802i 0.396601i
\(553\) − 12.8682i − 0.547210i
\(554\) − 24.3514i − 1.03459i
\(555\) −37.6485 −1.59809
\(556\) 6.15872 0.261188
\(557\) − 11.2328i − 0.475948i −0.971272 0.237974i \(-0.923517\pi\)
0.971272 0.237974i \(-0.0764833\pi\)
\(558\) −21.5817 −0.913626
\(559\) 0 0
\(560\) −8.23570 −0.348022
\(561\) 54.4908i 2.30060i
\(562\) −56.4557 −2.38144
\(563\) −11.1199 −0.468649 −0.234324 0.972158i \(-0.575288\pi\)
−0.234324 + 0.972158i \(0.575288\pi\)
\(564\) − 12.8608i − 0.541538i
\(565\) − 36.2087i − 1.52331i
\(566\) 47.1883i 1.98347i
\(567\) − 11.2499i − 0.472451i
\(568\) −5.52296 −0.231738
\(569\) 2.48545 0.104196 0.0520978 0.998642i \(-0.483409\pi\)
0.0520978 + 0.998642i \(0.483409\pi\)
\(570\) − 29.5361i − 1.23713i
\(571\) −0.537621 −0.0224987 −0.0112494 0.999937i \(-0.503581\pi\)
−0.0112494 + 0.999937i \(0.503581\pi\)
\(572\) 0 0
\(573\) 22.7476 0.950297
\(574\) 7.21867i 0.301301i
\(575\) −7.36880 −0.307300
\(576\) 14.9312 0.622134
\(577\) − 27.0563i − 1.12637i −0.826331 0.563184i \(-0.809576\pi\)
0.826331 0.563184i \(-0.190424\pi\)
\(578\) − 67.6079i − 2.81212i
\(579\) 1.61614i 0.0671644i
\(580\) 12.8481i 0.533487i
\(581\) −5.42451 −0.225047
\(582\) −47.9349 −1.98697
\(583\) − 48.6533i − 2.01501i
\(584\) 2.13017 0.0881472
\(585\) 0 0
\(586\) −41.0152 −1.69432
\(587\) − 20.7196i − 0.855189i −0.903971 0.427594i \(-0.859361\pi\)
0.903971 0.427594i \(-0.140639\pi\)
\(588\) 4.81889 0.198728
\(589\) 19.3691 0.798089
\(590\) 41.6039i 1.71280i
\(591\) 25.6656i 1.05574i
\(592\) 24.5933i 1.01078i
\(593\) 23.2747i 0.955776i 0.878421 + 0.477888i \(0.158598\pi\)
−0.878421 + 0.477888i \(0.841402\pi\)
\(594\) 24.1341 0.990233
\(595\) −17.1967 −0.704997
\(596\) 2.02678i 0.0830202i
\(597\) 9.04835 0.370324
\(598\) 0 0
\(599\) 9.28114 0.379217 0.189609 0.981860i \(-0.439278\pi\)
0.189609 + 0.981860i \(0.439278\pi\)
\(600\) − 1.14142i − 0.0465981i
\(601\) −23.6534 −0.964843 −0.482421 0.875939i \(-0.660243\pi\)
−0.482421 + 0.875939i \(0.660243\pi\)
\(602\) −7.12496 −0.290392
\(603\) 4.78036i 0.194671i
\(604\) − 36.9696i − 1.50427i
\(605\) 5.62589i 0.228725i
\(606\) 39.0872i 1.58781i
\(607\) −24.1600 −0.980623 −0.490312 0.871547i \(-0.663117\pi\)
−0.490312 + 0.871547i \(0.663117\pi\)
\(608\) −22.4284 −0.909593
\(609\) 4.90736i 0.198856i
\(610\) −70.3324 −2.84767
\(611\) 0 0
\(612\) 23.8849 0.965488
\(613\) 27.6780i 1.11790i 0.829200 + 0.558952i \(0.188796\pi\)
−0.829200 + 0.558952i \(0.811204\pi\)
\(614\) 21.3440 0.861374
\(615\) 18.0467 0.727712
\(616\) 2.06827i 0.0833328i
\(617\) 10.5982i 0.426669i 0.976979 + 0.213335i \(0.0684325\pi\)
−0.976979 + 0.213335i \(0.931568\pi\)
\(618\) − 11.6948i − 0.470436i
\(619\) 42.9657i 1.72694i 0.504403 + 0.863468i \(0.331712\pi\)
−0.504403 + 0.863468i \(0.668288\pi\)
\(620\) 38.8736 1.56120
\(621\) −24.8204 −0.996009
\(622\) 46.0891i 1.84801i
\(623\) 0.335808 0.0134539
\(624\) 0 0
\(625\) −28.8477 −1.15391
\(626\) 40.2322i 1.60800i
\(627\) 21.3645 0.853214
\(628\) 8.97695 0.358219
\(629\) 51.3525i 2.04756i
\(630\) − 7.51262i − 0.299310i
\(631\) 15.4963i 0.616899i 0.951241 + 0.308449i \(0.0998100\pi\)
−0.951241 + 0.308449i \(0.900190\pi\)
\(632\) − 7.29614i − 0.290225i
\(633\) −15.4012 −0.612141
\(634\) −56.7329 −2.25315
\(635\) 14.2224i 0.564400i
\(636\) −64.2732 −2.54860
\(637\) 0 0
\(638\) −17.4662 −0.691494
\(639\) 14.5109i 0.574043i
\(640\) −10.9604 −0.433247
\(641\) −22.2240 −0.877796 −0.438898 0.898537i \(-0.644631\pi\)
−0.438898 + 0.898537i \(0.644631\pi\)
\(642\) − 65.4842i − 2.58446i
\(643\) 26.6384i 1.05052i 0.850943 + 0.525259i \(0.176031\pi\)
−0.850943 + 0.525259i \(0.823969\pi\)
\(644\) − 17.6391i − 0.695078i
\(645\) 17.8124i 0.701363i
\(646\) −40.2872 −1.58508
\(647\) −15.7389 −0.618758 −0.309379 0.950939i \(-0.600121\pi\)
−0.309379 + 0.950939i \(0.600121\pi\)
\(648\) − 6.37860i − 0.250575i
\(649\) −30.0935 −1.18127
\(650\) 0 0
\(651\) 14.8479 0.581934
\(652\) 10.1986i 0.399409i
\(653\) −9.13364 −0.357427 −0.178714 0.983901i \(-0.557194\pi\)
−0.178714 + 0.983901i \(0.557194\pi\)
\(654\) 6.38201 0.249556
\(655\) − 36.7252i − 1.43497i
\(656\) − 11.7887i − 0.460272i
\(657\) − 5.59678i − 0.218351i
\(658\) 5.51762i 0.215099i
\(659\) 0.447782 0.0174431 0.00872156 0.999962i \(-0.497224\pi\)
0.00872156 + 0.999962i \(0.497224\pi\)
\(660\) 42.8784 1.66904
\(661\) 46.9277i 1.82528i 0.408769 + 0.912638i \(0.365958\pi\)
−0.408769 + 0.912638i \(0.634042\pi\)
\(662\) −42.1156 −1.63687
\(663\) 0 0
\(664\) −3.07565 −0.119358
\(665\) 6.74240i 0.261459i
\(666\) −22.4340 −0.869301
\(667\) 17.9629 0.695527
\(668\) − 18.3356i − 0.709424i
\(669\) 24.5016i 0.947287i
\(670\) − 16.1827i − 0.625193i
\(671\) − 50.8738i − 1.96396i
\(672\) −17.1931 −0.663239
\(673\) 16.5829 0.639225 0.319612 0.947548i \(-0.396447\pi\)
0.319612 + 0.947548i \(0.396447\pi\)
\(674\) − 5.52113i − 0.212666i
\(675\) 3.04039 0.117025
\(676\) 0 0
\(677\) 16.1027 0.618878 0.309439 0.950919i \(-0.399859\pi\)
0.309439 + 0.950919i \(0.399859\pi\)
\(678\) − 65.0265i − 2.49733i
\(679\) 10.9424 0.419931
\(680\) −9.75040 −0.373911
\(681\) 6.41954i 0.245997i
\(682\) 52.8464i 2.02359i
\(683\) 10.7304i 0.410589i 0.978700 + 0.205294i \(0.0658152\pi\)
−0.978700 + 0.205294i \(0.934185\pi\)
\(684\) − 9.36464i − 0.358066i
\(685\) 10.3354 0.394897
\(686\) −2.06743 −0.0789347
\(687\) 7.55123i 0.288098i
\(688\) 11.6357 0.443606
\(689\) 0 0
\(690\) −82.8778 −3.15510
\(691\) 24.1742i 0.919631i 0.888015 + 0.459815i \(0.152084\pi\)
−0.888015 + 0.459815i \(0.847916\pi\)
\(692\) −17.6117 −0.669495
\(693\) 5.43413 0.206425
\(694\) 0.657068i 0.0249419i
\(695\) 6.60562i 0.250565i
\(696\) 2.78243i 0.105468i
\(697\) − 24.6157i − 0.932385i
\(698\) 1.06372 0.0402623
\(699\) 27.1539 1.02705
\(700\) 2.16071i 0.0816672i
\(701\) 14.4328 0.545120 0.272560 0.962139i \(-0.412130\pi\)
0.272560 + 0.962139i \(0.412130\pi\)
\(702\) 0 0
\(703\) 20.1340 0.759369
\(704\) − 36.5616i − 1.37797i
\(705\) 13.7940 0.519514
\(706\) −1.29768 −0.0488388
\(707\) − 8.92269i − 0.335572i
\(708\) 39.7548i 1.49408i
\(709\) − 15.1940i − 0.570623i −0.958435 0.285311i \(-0.907903\pi\)
0.958435 0.285311i \(-0.0920970\pi\)
\(710\) − 49.1231i − 1.84356i
\(711\) −19.1697 −0.718921
\(712\) 0.190400 0.00713555
\(713\) − 54.3493i − 2.03540i
\(714\) −30.8833 −1.15578
\(715\) 0 0
\(716\) −37.0984 −1.38643
\(717\) − 53.7683i − 2.00802i
\(718\) 65.9971 2.46299
\(719\) −4.99848 −0.186412 −0.0932060 0.995647i \(-0.529712\pi\)
−0.0932060 + 0.995647i \(0.529712\pi\)
\(720\) 12.2688i 0.457230i
\(721\) 2.66966i 0.0994233i
\(722\) − 23.4855i − 0.874040i
\(723\) 14.4149i 0.536095i
\(724\) 18.8405 0.700200
\(725\) −2.20038 −0.0817199
\(726\) 10.1034i 0.374973i
\(727\) 7.22850 0.268090 0.134045 0.990975i \(-0.457203\pi\)
0.134045 + 0.990975i \(0.457203\pi\)
\(728\) 0 0
\(729\) 3.58334 0.132716
\(730\) 18.9465i 0.701242i
\(731\) 24.2961 0.898625
\(732\) −67.2065 −2.48402
\(733\) 34.3382i 1.26831i 0.773206 + 0.634154i \(0.218652\pi\)
−0.773206 + 0.634154i \(0.781348\pi\)
\(734\) − 21.9280i − 0.809377i
\(735\) 5.16857i 0.190645i
\(736\) 62.9338i 2.31977i
\(737\) 11.7055 0.431178
\(738\) 10.7537 0.395848
\(739\) 40.3619i 1.48474i 0.669992 + 0.742369i \(0.266298\pi\)
−0.669992 + 0.742369i \(0.733702\pi\)
\(740\) 40.4089 1.48546
\(741\) 0 0
\(742\) 27.5748 1.01230
\(743\) − 15.9115i − 0.583736i −0.956459 0.291868i \(-0.905723\pi\)
0.956459 0.291868i \(-0.0942768\pi\)
\(744\) 8.41863 0.308642
\(745\) −2.17385 −0.0796437
\(746\) − 21.9413i − 0.803329i
\(747\) 8.08091i 0.295665i
\(748\) − 58.4861i − 2.13846i
\(749\) 14.9485i 0.546207i
\(750\) −43.2760 −1.58022
\(751\) −1.10100 −0.0401760 −0.0200880 0.999798i \(-0.506395\pi\)
−0.0200880 + 0.999798i \(0.506395\pi\)
\(752\) − 9.01075i − 0.328588i
\(753\) 48.4286 1.76484
\(754\) 0 0
\(755\) 39.6522 1.44309
\(756\) 7.27795i 0.264697i
\(757\) −28.9466 −1.05208 −0.526041 0.850459i \(-0.676324\pi\)
−0.526041 + 0.850459i \(0.676324\pi\)
\(758\) 27.9638 1.01569
\(759\) − 59.9483i − 2.17599i
\(760\) 3.82288i 0.138671i
\(761\) 12.6820i 0.459721i 0.973224 + 0.229860i \(0.0738270\pi\)
−0.973224 + 0.229860i \(0.926173\pi\)
\(762\) 25.5418i 0.925282i
\(763\) −1.45686 −0.0527419
\(764\) −24.4155 −0.883322
\(765\) 25.6180i 0.926222i
\(766\) 29.8255 1.07764
\(767\) 0 0
\(768\) 22.7916 0.822419
\(769\) − 40.2042i − 1.44980i −0.688855 0.724899i \(-0.741886\pi\)
0.688855 0.724899i \(-0.258114\pi\)
\(770\) −18.3959 −0.662942
\(771\) 8.17768 0.294512
\(772\) − 1.73463i − 0.0624309i
\(773\) 42.3905i 1.52468i 0.647177 + 0.762340i \(0.275949\pi\)
−0.647177 + 0.762340i \(0.724051\pi\)
\(774\) 10.6141i 0.381515i
\(775\) 6.65754i 0.239146i
\(776\) 6.20426 0.222720
\(777\) 15.4343 0.553701
\(778\) 31.2218i 1.11936i
\(779\) −9.65117 −0.345789
\(780\) 0 0
\(781\) 35.5324 1.27145
\(782\) 113.045i 4.04249i
\(783\) −7.41156 −0.264868
\(784\) 3.37629 0.120582
\(785\) 9.62835i 0.343650i
\(786\) − 65.9541i − 2.35250i
\(787\) − 43.9833i − 1.56784i −0.620865 0.783918i \(-0.713218\pi\)
0.620865 0.783918i \(-0.286782\pi\)
\(788\) − 27.5474i − 0.981335i
\(789\) −34.3678 −1.22353
\(790\) 64.8944 2.30884
\(791\) 14.8440i 0.527793i
\(792\) 3.08111 0.109482
\(793\) 0 0
\(794\) 32.4470 1.15150
\(795\) − 68.9371i − 2.44495i
\(796\) −9.71178 −0.344225
\(797\) −48.0486 −1.70197 −0.850984 0.525192i \(-0.823993\pi\)
−0.850984 + 0.525192i \(0.823993\pi\)
\(798\) 12.1085i 0.428638i
\(799\) − 18.8151i − 0.665630i
\(800\) − 7.70911i − 0.272558i
\(801\) − 0.500254i − 0.0176756i
\(802\) 39.1301 1.38173
\(803\) −13.7046 −0.483627
\(804\) − 15.4635i − 0.545355i
\(805\) 18.9191 0.666809
\(806\) 0 0
\(807\) −48.9073 −1.72162
\(808\) − 5.05909i − 0.177978i
\(809\) 0.460055 0.0161747 0.00808733 0.999967i \(-0.497426\pi\)
0.00808733 + 0.999967i \(0.497426\pi\)
\(810\) 56.7335 1.99341
\(811\) 29.7828i 1.04582i 0.852389 + 0.522908i \(0.175153\pi\)
−0.852389 + 0.522908i \(0.824847\pi\)
\(812\) − 5.26716i − 0.184841i
\(813\) − 22.8148i − 0.800148i
\(814\) 54.9335i 1.92542i
\(815\) −10.9387 −0.383165
\(816\) 50.4351 1.76558
\(817\) − 9.52589i − 0.333269i
\(818\) 4.90088 0.171355
\(819\) 0 0
\(820\) −19.3699 −0.676425
\(821\) − 3.59326i − 0.125406i −0.998032 0.0627028i \(-0.980028\pi\)
0.998032 0.0627028i \(-0.0199720\pi\)
\(822\) 18.5612 0.647397
\(823\) −21.8141 −0.760391 −0.380196 0.924906i \(-0.624143\pi\)
−0.380196 + 0.924906i \(0.624143\pi\)
\(824\) 1.51367i 0.0527313i
\(825\) 7.34340i 0.255664i
\(826\) − 17.0558i − 0.593447i
\(827\) 42.7217i 1.48558i 0.669525 + 0.742790i \(0.266498\pi\)
−0.669525 + 0.742790i \(0.733502\pi\)
\(828\) −26.2770 −0.913190
\(829\) 36.5078 1.26797 0.633985 0.773345i \(-0.281418\pi\)
0.633985 + 0.773345i \(0.281418\pi\)
\(830\) − 27.3559i − 0.949539i
\(831\) 24.9576 0.865770
\(832\) 0 0
\(833\) 7.04993 0.244265
\(834\) 11.8629i 0.410779i
\(835\) 19.6661 0.680572
\(836\) −22.9309 −0.793082
\(837\) 22.4247i 0.775111i
\(838\) − 44.4075i − 1.53403i
\(839\) − 6.70588i − 0.231513i −0.993278 0.115756i \(-0.963071\pi\)
0.993278 0.115756i \(-0.0369292\pi\)
\(840\) 2.93053i 0.101113i
\(841\) −23.6361 −0.815039
\(842\) 41.6406 1.43503
\(843\) − 57.8611i − 1.99284i
\(844\) 16.5304 0.568999
\(845\) 0 0
\(846\) 8.21962 0.282596
\(847\) − 2.30638i − 0.0792480i
\(848\) −45.0321 −1.54641
\(849\) −48.3630 −1.65981
\(850\) − 13.8475i − 0.474967i
\(851\) − 56.4957i − 1.93665i
\(852\) − 46.9399i − 1.60813i
\(853\) − 27.2554i − 0.933207i −0.884467 0.466603i \(-0.845478\pi\)
0.884467 0.466603i \(-0.154522\pi\)
\(854\) 28.8333 0.986654
\(855\) 10.0442 0.343504
\(856\) 8.47568i 0.289693i
\(857\) −46.1474 −1.57637 −0.788183 0.615441i \(-0.788978\pi\)
−0.788183 + 0.615441i \(0.788978\pi\)
\(858\) 0 0
\(859\) −9.45682 −0.322662 −0.161331 0.986900i \(-0.551579\pi\)
−0.161331 + 0.986900i \(0.551579\pi\)
\(860\) − 19.1184i − 0.651933i
\(861\) −7.39837 −0.252136
\(862\) −37.2593 −1.26906
\(863\) 28.8550i 0.982237i 0.871093 + 0.491119i \(0.163412\pi\)
−0.871093 + 0.491119i \(0.836588\pi\)
\(864\) − 25.9667i − 0.883406i
\(865\) − 18.8896i − 0.642267i
\(866\) 74.0743i 2.51715i
\(867\) 69.2909 2.35324
\(868\) −15.9365 −0.540921
\(869\) 46.9403i 1.59234i
\(870\) −24.7479 −0.839033
\(871\) 0 0
\(872\) −0.826029 −0.0279729
\(873\) − 16.3010i − 0.551704i
\(874\) 44.3222 1.49922
\(875\) 9.87889 0.333967
\(876\) 18.1044i 0.611692i
\(877\) 8.55393i 0.288846i 0.989516 + 0.144423i \(0.0461326\pi\)
−0.989516 + 0.144423i \(0.953867\pi\)
\(878\) − 4.63422i − 0.156397i
\(879\) − 42.0363i − 1.41785i
\(880\) 30.0421 1.01272
\(881\) −27.9911 −0.943046 −0.471523 0.881854i \(-0.656296\pi\)
−0.471523 + 0.881854i \(0.656296\pi\)
\(882\) 3.07985i 0.103704i
\(883\) 44.7564 1.50617 0.753086 0.657922i \(-0.228564\pi\)
0.753086 + 0.657922i \(0.228564\pi\)
\(884\) 0 0
\(885\) −42.6395 −1.43331
\(886\) 11.8034i 0.396544i
\(887\) −9.56744 −0.321243 −0.160622 0.987016i \(-0.551350\pi\)
−0.160622 + 0.987016i \(0.551350\pi\)
\(888\) 8.75110 0.293668
\(889\) − 5.83060i − 0.195552i
\(890\) 1.69349i 0.0567658i
\(891\) 41.0373i 1.37480i
\(892\) − 26.2981i − 0.880525i
\(893\) −7.37691 −0.246859
\(894\) −3.90398 −0.130569
\(895\) − 39.7904i − 1.33005i
\(896\) 4.49329 0.150110
\(897\) 0 0
\(898\) 66.9007 2.23251
\(899\) − 16.2291i − 0.541271i
\(900\) 3.21882 0.107294
\(901\) −94.0302 −3.13260
\(902\) − 26.3322i − 0.876766i
\(903\) − 7.30233i − 0.243006i
\(904\) 8.41644i 0.279926i
\(905\) 20.2076i 0.671723i
\(906\) 71.2107 2.36582
\(907\) 18.8652 0.626408 0.313204 0.949686i \(-0.398598\pi\)
0.313204 + 0.949686i \(0.398598\pi\)
\(908\) − 6.89023i − 0.228660i
\(909\) −13.2922 −0.440873
\(910\) 0 0
\(911\) −0.358293 −0.0118708 −0.00593539 0.999982i \(-0.501889\pi\)
−0.00593539 + 0.999982i \(0.501889\pi\)
\(912\) − 19.7743i − 0.654793i
\(913\) 19.7875 0.654870
\(914\) 51.3990 1.70013
\(915\) − 72.0832i − 2.38300i
\(916\) − 8.10489i − 0.267793i
\(917\) 15.0558i 0.497185i
\(918\) − 46.6429i − 1.53944i
\(919\) −12.0902 −0.398818 −0.199409 0.979916i \(-0.563902\pi\)
−0.199409 + 0.979916i \(0.563902\pi\)
\(920\) 10.7269 0.353657
\(921\) 21.8753i 0.720817i
\(922\) 36.3820 1.19818
\(923\) 0 0
\(924\) −17.5783 −0.578284
\(925\) 6.92047i 0.227544i
\(926\) −66.1294 −2.17315
\(927\) 3.97700 0.130622
\(928\) 18.7925i 0.616894i
\(929\) 4.34400i 0.142522i 0.997458 + 0.0712610i \(0.0227023\pi\)
−0.997458 + 0.0712610i \(0.977298\pi\)
\(930\) 74.8783i 2.45535i
\(931\) − 2.76410i − 0.0905896i
\(932\) −29.1448 −0.954670
\(933\) −47.2365 −1.54645
\(934\) 6.17860i 0.202170i
\(935\) 62.7301 2.05149
\(936\) 0 0
\(937\) 44.7092 1.46059 0.730294 0.683133i \(-0.239383\pi\)
0.730294 + 0.683133i \(0.239383\pi\)
\(938\) 6.63423i 0.216615i
\(939\) −41.2337 −1.34561
\(940\) −14.8054 −0.482900
\(941\) 57.3375i 1.86915i 0.355768 + 0.934574i \(0.384219\pi\)
−0.355768 + 0.934574i \(0.615781\pi\)
\(942\) 17.2914i 0.563383i
\(943\) 27.0810i 0.881880i
\(944\) 27.8536i 0.906558i
\(945\) −7.80607 −0.253931
\(946\) 25.9904 0.845020
\(947\) − 46.9376i − 1.52527i −0.646830 0.762634i \(-0.723906\pi\)
0.646830 0.762634i \(-0.276094\pi\)
\(948\) 62.0102 2.01400
\(949\) 0 0
\(950\) −5.42927 −0.176149
\(951\) − 58.1452i − 1.88549i
\(952\) 3.99725 0.129552
\(953\) 35.5773 1.15246 0.576231 0.817287i \(-0.304523\pi\)
0.576231 + 0.817287i \(0.304523\pi\)
\(954\) − 41.0783i − 1.32996i
\(955\) − 26.1872i − 0.847398i
\(956\) 57.7107i 1.86650i
\(957\) − 17.9010i − 0.578657i
\(958\) 39.8431 1.28727
\(959\) −4.23709 −0.136823
\(960\) − 51.8043i − 1.67198i
\(961\) −18.1034 −0.583980
\(962\) 0 0
\(963\) 22.2689 0.717604
\(964\) − 15.4718i − 0.498312i
\(965\) 1.86051 0.0598918
\(966\) 33.9764 1.09317
\(967\) − 18.5576i − 0.596772i −0.954445 0.298386i \(-0.903552\pi\)
0.954445 0.298386i \(-0.0964482\pi\)
\(968\) − 1.30770i − 0.0420309i
\(969\) − 41.2902i − 1.32643i
\(970\) 55.1829i 1.77182i
\(971\) 47.2286 1.51564 0.757819 0.652465i \(-0.226265\pi\)
0.757819 + 0.652465i \(0.226265\pi\)
\(972\) 32.3782 1.03853
\(973\) − 2.70802i − 0.0868152i
\(974\) 37.7517 1.20964
\(975\) 0 0
\(976\) −47.0873 −1.50723
\(977\) − 47.9846i − 1.53516i −0.640951 0.767582i \(-0.721460\pi\)
0.640951 0.767582i \(-0.278540\pi\)
\(978\) −19.6446 −0.628164
\(979\) −1.22496 −0.0391498
\(980\) − 5.54753i − 0.177209i
\(981\) 2.17029i 0.0692921i
\(982\) − 67.5229i − 2.15474i
\(983\) − 27.9789i − 0.892387i −0.894937 0.446193i \(-0.852779\pi\)
0.894937 0.446193i \(-0.147221\pi\)
\(984\) −4.19481 −0.133726
\(985\) 29.5463 0.941425
\(986\) 33.7562i 1.07502i
\(987\) −5.65497 −0.180000
\(988\) 0 0
\(989\) −26.7295 −0.849948
\(990\) 27.4044i 0.870971i
\(991\) −19.4925 −0.619199 −0.309600 0.950867i \(-0.600195\pi\)
−0.309600 + 0.950867i \(0.600195\pi\)
\(992\) 56.8593 1.80529
\(993\) − 43.1640i − 1.36977i
\(994\) 20.1384i 0.638751i
\(995\) − 10.4165i − 0.330225i
\(996\) − 26.1401i − 0.828281i
\(997\) 17.2637 0.546748 0.273374 0.961908i \(-0.411860\pi\)
0.273374 + 0.961908i \(0.411860\pi\)
\(998\) −11.0807 −0.350754
\(999\) 23.3103i 0.737506i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1183.2.c.j.337.6 24
13.5 odd 4 1183.2.a.q.1.4 12
13.8 odd 4 1183.2.a.r.1.9 yes 12
13.12 even 2 inner 1183.2.c.j.337.19 24
91.34 even 4 8281.2.a.cq.1.9 12
91.83 even 4 8281.2.a.cn.1.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1183.2.a.q.1.4 12 13.5 odd 4
1183.2.a.r.1.9 yes 12 13.8 odd 4
1183.2.c.j.337.6 24 1.1 even 1 trivial
1183.2.c.j.337.19 24 13.12 even 2 inner
8281.2.a.cn.1.4 12 91.83 even 4
8281.2.a.cq.1.9 12 91.34 even 4