Properties

Label 1183.2.c.j.337.7
Level $1183$
Weight $2$
Character 1183.337
Analytic conductor $9.446$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1183,2,Mod(337,1183)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1183, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1183.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44630255912\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.7
Character \(\chi\) \(=\) 1183.337
Dual form 1183.2.c.j.337.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.35819i q^{2} +3.39737 q^{3} +0.155322 q^{4} -0.772491i q^{5} -4.61428i q^{6} -1.00000i q^{7} -2.92733i q^{8} +8.54215 q^{9} -1.04919 q^{10} +2.11612i q^{11} +0.527686 q^{12} -1.35819 q^{14} -2.62444i q^{15} -3.66523 q^{16} -5.63627 q^{17} -11.6019i q^{18} +2.99988i q^{19} -0.119985i q^{20} -3.39737i q^{21} +2.87409 q^{22} -1.24177 q^{23} -9.94525i q^{24} +4.40326 q^{25} +18.8288 q^{27} -0.155322i q^{28} -7.96564 q^{29} -3.56449 q^{30} +1.26728i q^{31} -0.876591i q^{32} +7.18925i q^{33} +7.65512i q^{34} -0.772491 q^{35} +1.32678 q^{36} +4.54251i q^{37} +4.07440 q^{38} -2.26134 q^{40} +9.82390i q^{41} -4.61428 q^{42} -2.64573 q^{43} +0.328679i q^{44} -6.59873i q^{45} +1.68656i q^{46} -7.68703i q^{47} -12.4522 q^{48} -1.00000 q^{49} -5.98046i q^{50} -19.1485 q^{51} -0.350895 q^{53} -25.5730i q^{54} +1.63468 q^{55} -2.92733 q^{56} +10.1917i q^{57} +10.8188i q^{58} +5.00519i q^{59} -0.407633i q^{60} +4.24504 q^{61} +1.72120 q^{62} -8.54215i q^{63} -8.52104 q^{64} +9.76437 q^{66} -11.3053i q^{67} -0.875435 q^{68} -4.21876 q^{69} +1.04919i q^{70} +11.8975i q^{71} -25.0057i q^{72} -8.99347i q^{73} +6.16959 q^{74} +14.9595 q^{75} +0.465946i q^{76} +2.11612 q^{77} -6.30010 q^{79} +2.83136i q^{80} +38.3419 q^{81} +13.3427 q^{82} +2.92778i q^{83} -0.527686i q^{84} +4.35397i q^{85} +3.59340i q^{86} -27.0622 q^{87} +6.19459 q^{88} +1.97181i q^{89} -8.96233 q^{90} -0.192874 q^{92} +4.30541i q^{93} -10.4404 q^{94} +2.31738 q^{95} -2.97811i q^{96} +7.88255i q^{97} +1.35819i q^{98} +18.0762i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 16 q^{3} - 30 q^{4} + 52 q^{9} + 12 q^{10} - 26 q^{12} + 6 q^{14} + 26 q^{16} - 62 q^{17} - 8 q^{22} - 36 q^{23} - 64 q^{25} + 64 q^{27} + 30 q^{29} + 20 q^{30} - 8 q^{35} - 98 q^{36} - 90 q^{38}+ \cdots - 58 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1183\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(1016\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.35819i − 0.960385i −0.877163 0.480192i \(-0.840567\pi\)
0.877163 0.480192i \(-0.159433\pi\)
\(3\) 3.39737 1.96147 0.980737 0.195331i \(-0.0625782\pi\)
0.980737 + 0.195331i \(0.0625782\pi\)
\(4\) 0.155322 0.0776609
\(5\) − 0.772491i − 0.345468i −0.984968 0.172734i \(-0.944740\pi\)
0.984968 0.172734i \(-0.0552602\pi\)
\(6\) − 4.61428i − 1.88377i
\(7\) − 1.00000i − 0.377964i
\(8\) − 2.92733i − 1.03497i
\(9\) 8.54215 2.84738
\(10\) −1.04919 −0.331783
\(11\) 2.11612i 0.638034i 0.947749 + 0.319017i \(0.103353\pi\)
−0.947749 + 0.319017i \(0.896647\pi\)
\(12\) 0.527686 0.152330
\(13\) 0 0
\(14\) −1.35819 −0.362991
\(15\) − 2.62444i − 0.677627i
\(16\) −3.66523 −0.916308
\(17\) −5.63627 −1.36700 −0.683498 0.729952i \(-0.739542\pi\)
−0.683498 + 0.729952i \(0.739542\pi\)
\(18\) − 11.6019i − 2.73458i
\(19\) 2.99988i 0.688219i 0.938930 + 0.344110i \(0.111819\pi\)
−0.938930 + 0.344110i \(0.888181\pi\)
\(20\) − 0.119985i − 0.0268294i
\(21\) − 3.39737i − 0.741368i
\(22\) 2.87409 0.612759
\(23\) −1.24177 −0.258927 −0.129464 0.991584i \(-0.541326\pi\)
−0.129464 + 0.991584i \(0.541326\pi\)
\(24\) − 9.94525i − 2.03007i
\(25\) 4.40326 0.880652
\(26\) 0 0
\(27\) 18.8288 3.62359
\(28\) − 0.155322i − 0.0293530i
\(29\) −7.96564 −1.47918 −0.739591 0.673057i \(-0.764981\pi\)
−0.739591 + 0.673057i \(0.764981\pi\)
\(30\) −3.56449 −0.650783
\(31\) 1.26728i 0.227609i 0.993503 + 0.113805i \(0.0363038\pi\)
−0.993503 + 0.113805i \(0.963696\pi\)
\(32\) − 0.876591i − 0.154961i
\(33\) 7.18925i 1.25149i
\(34\) 7.65512i 1.31284i
\(35\) −0.772491 −0.130575
\(36\) 1.32678 0.221130
\(37\) 4.54251i 0.746784i 0.927674 + 0.373392i \(0.121805\pi\)
−0.927674 + 0.373392i \(0.878195\pi\)
\(38\) 4.07440 0.660955
\(39\) 0 0
\(40\) −2.26134 −0.357549
\(41\) 9.82390i 1.53424i 0.641506 + 0.767118i \(0.278310\pi\)
−0.641506 + 0.767118i \(0.721690\pi\)
\(42\) −4.61428 −0.711998
\(43\) −2.64573 −0.403470 −0.201735 0.979440i \(-0.564658\pi\)
−0.201735 + 0.979440i \(0.564658\pi\)
\(44\) 0.328679i 0.0495503i
\(45\) − 6.59873i − 0.983681i
\(46\) 1.68656i 0.248670i
\(47\) − 7.68703i − 1.12127i −0.828064 0.560634i \(-0.810557\pi\)
0.828064 0.560634i \(-0.189443\pi\)
\(48\) −12.4522 −1.79731
\(49\) −1.00000 −0.142857
\(50\) − 5.98046i − 0.845764i
\(51\) −19.1485 −2.68133
\(52\) 0 0
\(53\) −0.350895 −0.0481991 −0.0240995 0.999710i \(-0.507672\pi\)
−0.0240995 + 0.999710i \(0.507672\pi\)
\(54\) − 25.5730i − 3.48005i
\(55\) 1.63468 0.220421
\(56\) −2.92733 −0.391182
\(57\) 10.1917i 1.34992i
\(58\) 10.8188i 1.42058i
\(59\) 5.00519i 0.651621i 0.945435 + 0.325810i \(0.105637\pi\)
−0.945435 + 0.325810i \(0.894363\pi\)
\(60\) − 0.407633i − 0.0526251i
\(61\) 4.24504 0.543522 0.271761 0.962365i \(-0.412394\pi\)
0.271761 + 0.962365i \(0.412394\pi\)
\(62\) 1.72120 0.218593
\(63\) − 8.54215i − 1.07621i
\(64\) −8.52104 −1.06513
\(65\) 0 0
\(66\) 9.76437 1.20191
\(67\) − 11.3053i − 1.38117i −0.723253 0.690583i \(-0.757354\pi\)
0.723253 0.690583i \(-0.242646\pi\)
\(68\) −0.875435 −0.106162
\(69\) −4.21876 −0.507879
\(70\) 1.04919i 0.125402i
\(71\) 11.8975i 1.41198i 0.708223 + 0.705989i \(0.249497\pi\)
−0.708223 + 0.705989i \(0.750503\pi\)
\(72\) − 25.0057i − 2.94695i
\(73\) − 8.99347i − 1.05261i −0.850297 0.526303i \(-0.823578\pi\)
0.850297 0.526303i \(-0.176422\pi\)
\(74\) 6.16959 0.717200
\(75\) 14.9595 1.72738
\(76\) 0.465946i 0.0534477i
\(77\) 2.11612 0.241154
\(78\) 0 0
\(79\) −6.30010 −0.708817 −0.354408 0.935091i \(-0.615318\pi\)
−0.354408 + 0.935091i \(0.615318\pi\)
\(80\) 2.83136i 0.316555i
\(81\) 38.3419 4.26021
\(82\) 13.3427 1.47346
\(83\) 2.92778i 0.321366i 0.987006 + 0.160683i \(0.0513697\pi\)
−0.987006 + 0.160683i \(0.948630\pi\)
\(84\) − 0.527686i − 0.0575753i
\(85\) 4.35397i 0.472254i
\(86\) 3.59340i 0.387487i
\(87\) −27.0622 −2.90138
\(88\) 6.19459 0.660346
\(89\) 1.97181i 0.209012i 0.994524 + 0.104506i \(0.0333261\pi\)
−0.994524 + 0.104506i \(0.966674\pi\)
\(90\) −8.96233 −0.944712
\(91\) 0 0
\(92\) −0.192874 −0.0201085
\(93\) 4.30541i 0.446450i
\(94\) −10.4404 −1.07685
\(95\) 2.31738 0.237758
\(96\) − 2.97811i − 0.303952i
\(97\) 7.88255i 0.800352i 0.916438 + 0.400176i \(0.131051\pi\)
−0.916438 + 0.400176i \(0.868949\pi\)
\(98\) 1.35819i 0.137198i
\(99\) 18.0762i 1.81673i
\(100\) 0.683922 0.0683922
\(101\) −1.76856 −0.175978 −0.0879890 0.996121i \(-0.528044\pi\)
−0.0879890 + 0.996121i \(0.528044\pi\)
\(102\) 26.0073i 2.57511i
\(103\) 11.4598 1.12917 0.564586 0.825375i \(-0.309036\pi\)
0.564586 + 0.825375i \(0.309036\pi\)
\(104\) 0 0
\(105\) −2.62444 −0.256119
\(106\) 0.476581i 0.0462897i
\(107\) −3.29566 −0.318603 −0.159302 0.987230i \(-0.550924\pi\)
−0.159302 + 0.987230i \(0.550924\pi\)
\(108\) 2.92451 0.281412
\(109\) − 13.1559i − 1.26011i −0.776551 0.630055i \(-0.783032\pi\)
0.776551 0.630055i \(-0.216968\pi\)
\(110\) − 2.22021i − 0.211689i
\(111\) 15.4326i 1.46480i
\(112\) 3.66523i 0.346332i
\(113\) 1.44552 0.135984 0.0679918 0.997686i \(-0.478341\pi\)
0.0679918 + 0.997686i \(0.478341\pi\)
\(114\) 13.8423 1.29645
\(115\) 0.959257i 0.0894512i
\(116\) −1.23724 −0.114875
\(117\) 0 0
\(118\) 6.79800 0.625807
\(119\) 5.63627i 0.516676i
\(120\) −7.68261 −0.701324
\(121\) 6.52203 0.592912
\(122\) − 5.76557i − 0.521990i
\(123\) 33.3755i 3.00936i
\(124\) 0.196835i 0.0176763i
\(125\) − 7.26393i − 0.649706i
\(126\) −11.6019 −1.03358
\(127\) 10.9224 0.969209 0.484605 0.874733i \(-0.338963\pi\)
0.484605 + 0.874733i \(0.338963\pi\)
\(128\) 9.82000i 0.867974i
\(129\) −8.98854 −0.791397
\(130\) 0 0
\(131\) −2.24077 −0.195777 −0.0978886 0.995197i \(-0.531209\pi\)
−0.0978886 + 0.995197i \(0.531209\pi\)
\(132\) 1.11665i 0.0971917i
\(133\) 2.99988 0.260122
\(134\) −15.3548 −1.32645
\(135\) − 14.5450i − 1.25184i
\(136\) 16.4993i 1.41480i
\(137\) − 7.48827i − 0.639766i −0.947457 0.319883i \(-0.896356\pi\)
0.947457 0.319883i \(-0.103644\pi\)
\(138\) 5.72988i 0.487759i
\(139\) 3.17757 0.269518 0.134759 0.990878i \(-0.456974\pi\)
0.134759 + 0.990878i \(0.456974\pi\)
\(140\) −0.119985 −0.0101405
\(141\) − 26.1157i − 2.19934i
\(142\) 16.1591 1.35604
\(143\) 0 0
\(144\) −31.3090 −2.60908
\(145\) 6.15338i 0.511010i
\(146\) −12.2148 −1.01091
\(147\) −3.39737 −0.280211
\(148\) 0.705550i 0.0579959i
\(149\) − 15.6423i − 1.28147i −0.767762 0.640735i \(-0.778630\pi\)
0.767762 0.640735i \(-0.221370\pi\)
\(150\) − 20.3179i − 1.65895i
\(151\) − 15.2282i − 1.23925i −0.784897 0.619626i \(-0.787284\pi\)
0.784897 0.619626i \(-0.212716\pi\)
\(152\) 8.78165 0.712286
\(153\) −48.1459 −3.89236
\(154\) − 2.87409i − 0.231601i
\(155\) 0.978959 0.0786318
\(156\) 0 0
\(157\) −14.4128 −1.15027 −0.575134 0.818059i \(-0.695050\pi\)
−0.575134 + 0.818059i \(0.695050\pi\)
\(158\) 8.55673i 0.680737i
\(159\) −1.19212 −0.0945413
\(160\) −0.677159 −0.0535341
\(161\) 1.24177i 0.0978653i
\(162\) − 52.0755i − 4.09144i
\(163\) 10.6875i 0.837113i 0.908191 + 0.418556i \(0.137464\pi\)
−0.908191 + 0.418556i \(0.862536\pi\)
\(164\) 1.52587i 0.119150i
\(165\) 5.55363 0.432350
\(166\) 3.97648 0.308635
\(167\) − 5.89574i − 0.456226i −0.973635 0.228113i \(-0.926744\pi\)
0.973635 0.228113i \(-0.0732555\pi\)
\(168\) −9.94525 −0.767293
\(169\) 0 0
\(170\) 5.91351 0.453546
\(171\) 25.6254i 1.95962i
\(172\) −0.410940 −0.0313338
\(173\) −5.63112 −0.428126 −0.214063 0.976820i \(-0.568670\pi\)
−0.214063 + 0.976820i \(0.568670\pi\)
\(174\) 36.7557i 2.78644i
\(175\) − 4.40326i − 0.332855i
\(176\) − 7.75607i − 0.584636i
\(177\) 17.0045i 1.27814i
\(178\) 2.67810 0.200732
\(179\) −7.18084 −0.536721 −0.268361 0.963318i \(-0.586482\pi\)
−0.268361 + 0.963318i \(0.586482\pi\)
\(180\) − 1.02493i − 0.0763935i
\(181\) 0.567427 0.0421765 0.0210883 0.999778i \(-0.493287\pi\)
0.0210883 + 0.999778i \(0.493287\pi\)
\(182\) 0 0
\(183\) 14.4220 1.06611
\(184\) 3.63508i 0.267982i
\(185\) 3.50905 0.257990
\(186\) 5.84756 0.428764
\(187\) − 11.9270i − 0.872191i
\(188\) − 1.19396i − 0.0870787i
\(189\) − 18.8288i − 1.36959i
\(190\) − 3.14744i − 0.228339i
\(191\) −7.95163 −0.575360 −0.287680 0.957727i \(-0.592884\pi\)
−0.287680 + 0.957727i \(0.592884\pi\)
\(192\) −28.9492 −2.08923
\(193\) 20.5748i 1.48100i 0.672054 + 0.740502i \(0.265412\pi\)
−0.672054 + 0.740502i \(0.734588\pi\)
\(194\) 10.7060 0.768646
\(195\) 0 0
\(196\) −0.155322 −0.0110944
\(197\) 1.52219i 0.108451i 0.998529 + 0.0542256i \(0.0172690\pi\)
−0.998529 + 0.0542256i \(0.982731\pi\)
\(198\) 24.5509 1.74476
\(199\) −25.3123 −1.79434 −0.897172 0.441681i \(-0.854382\pi\)
−0.897172 + 0.441681i \(0.854382\pi\)
\(200\) − 12.8898i − 0.911447i
\(201\) − 38.4084i − 2.70912i
\(202\) 2.40204i 0.169007i
\(203\) 7.96564i 0.559078i
\(204\) −2.97418 −0.208234
\(205\) 7.58887 0.530030
\(206\) − 15.5646i − 1.08444i
\(207\) −10.6074 −0.737265
\(208\) 0 0
\(209\) −6.34810 −0.439107
\(210\) 3.56449i 0.245973i
\(211\) 5.54406 0.381669 0.190834 0.981622i \(-0.438881\pi\)
0.190834 + 0.981622i \(0.438881\pi\)
\(212\) −0.0545016 −0.00374318
\(213\) 40.4204i 2.76956i
\(214\) 4.47612i 0.305982i
\(215\) 2.04380i 0.139386i
\(216\) − 55.1181i − 3.75031i
\(217\) 1.26728 0.0860283
\(218\) −17.8682 −1.21019
\(219\) − 30.5542i − 2.06466i
\(220\) 0.253902 0.0171181
\(221\) 0 0
\(222\) 20.9604 1.40677
\(223\) − 6.89711i − 0.461865i −0.972970 0.230932i \(-0.925822\pi\)
0.972970 0.230932i \(-0.0741776\pi\)
\(224\) −0.876591 −0.0585697
\(225\) 37.6133 2.50755
\(226\) − 1.96330i − 0.130597i
\(227\) − 3.16626i − 0.210152i −0.994464 0.105076i \(-0.966491\pi\)
0.994464 0.105076i \(-0.0335086\pi\)
\(228\) 1.58299i 0.104836i
\(229\) 23.3695i 1.54430i 0.635442 + 0.772148i \(0.280818\pi\)
−0.635442 + 0.772148i \(0.719182\pi\)
\(230\) 1.30285 0.0859075
\(231\) 7.18925 0.473018
\(232\) 23.3181i 1.53091i
\(233\) 9.65245 0.632353 0.316177 0.948700i \(-0.397601\pi\)
0.316177 + 0.948700i \(0.397601\pi\)
\(234\) 0 0
\(235\) −5.93816 −0.387363
\(236\) 0.777415i 0.0506054i
\(237\) −21.4038 −1.39033
\(238\) 7.65512 0.496208
\(239\) − 6.98215i − 0.451638i −0.974169 0.225819i \(-0.927494\pi\)
0.974169 0.225819i \(-0.0725058\pi\)
\(240\) 9.61918i 0.620915i
\(241\) 18.5592i 1.19550i 0.801681 + 0.597751i \(0.203939\pi\)
−0.801681 + 0.597751i \(0.796061\pi\)
\(242\) − 8.85816i − 0.569424i
\(243\) 73.7754 4.73269
\(244\) 0.659348 0.0422104
\(245\) 0.772491i 0.0493526i
\(246\) 45.3302 2.89015
\(247\) 0 0
\(248\) 3.70974 0.235569
\(249\) 9.94677i 0.630351i
\(250\) −9.86579 −0.623967
\(251\) −16.6573 −1.05140 −0.525699 0.850671i \(-0.676196\pi\)
−0.525699 + 0.850671i \(0.676196\pi\)
\(252\) − 1.32678i − 0.0835794i
\(253\) − 2.62774i − 0.165204i
\(254\) − 14.8347i − 0.930814i
\(255\) 14.7921i 0.926314i
\(256\) −3.70466 −0.231541
\(257\) −7.63652 −0.476353 −0.238177 0.971222i \(-0.576550\pi\)
−0.238177 + 0.971222i \(0.576550\pi\)
\(258\) 12.2081i 0.760045i
\(259\) 4.54251 0.282258
\(260\) 0 0
\(261\) −68.0436 −4.21180
\(262\) 3.04339i 0.188022i
\(263\) −18.6358 −1.14913 −0.574567 0.818458i \(-0.694830\pi\)
−0.574567 + 0.818458i \(0.694830\pi\)
\(264\) 21.0453 1.29525
\(265\) 0.271063i 0.0166513i
\(266\) − 4.07440i − 0.249818i
\(267\) 6.69899i 0.409971i
\(268\) − 1.75596i − 0.107263i
\(269\) 24.8582 1.51563 0.757817 0.652467i \(-0.226266\pi\)
0.757817 + 0.652467i \(0.226266\pi\)
\(270\) −19.7549 −1.20225
\(271\) 22.0518i 1.33955i 0.742562 + 0.669777i \(0.233610\pi\)
−0.742562 + 0.669777i \(0.766390\pi\)
\(272\) 20.6582 1.25259
\(273\) 0 0
\(274\) −10.1705 −0.614421
\(275\) 9.31782i 0.561886i
\(276\) −0.655265 −0.0394423
\(277\) 19.7139 1.18449 0.592245 0.805758i \(-0.298242\pi\)
0.592245 + 0.805758i \(0.298242\pi\)
\(278\) − 4.31574i − 0.258841i
\(279\) 10.8253i 0.648091i
\(280\) 2.26134i 0.135141i
\(281\) − 4.42005i − 0.263678i −0.991271 0.131839i \(-0.957912\pi\)
0.991271 0.131839i \(-0.0420882\pi\)
\(282\) −35.4701 −2.11221
\(283\) 31.9312 1.89811 0.949057 0.315106i \(-0.102040\pi\)
0.949057 + 0.315106i \(0.102040\pi\)
\(284\) 1.84795i 0.109655i
\(285\) 7.87300 0.466356
\(286\) 0 0
\(287\) 9.82390 0.579887
\(288\) − 7.48797i − 0.441233i
\(289\) 14.7675 0.868679
\(290\) 8.35746 0.490767
\(291\) 26.7800i 1.56987i
\(292\) − 1.39688i − 0.0817463i
\(293\) 16.2471i 0.949169i 0.880210 + 0.474584i \(0.157402\pi\)
−0.880210 + 0.474584i \(0.842598\pi\)
\(294\) 4.61428i 0.269110i
\(295\) 3.86647 0.225114
\(296\) 13.2974 0.772898
\(297\) 39.8439i 2.31198i
\(298\) −21.2453 −1.23071
\(299\) 0 0
\(300\) 2.32354 0.134150
\(301\) 2.64573i 0.152497i
\(302\) −20.6828 −1.19016
\(303\) −6.00845 −0.345176
\(304\) − 10.9952i − 0.630621i
\(305\) − 3.27926i − 0.187770i
\(306\) 65.3912i 3.73817i
\(307\) 13.5052i 0.770782i 0.922753 + 0.385391i \(0.125933\pi\)
−0.922753 + 0.385391i \(0.874067\pi\)
\(308\) 0.328679 0.0187283
\(309\) 38.9333 2.21484
\(310\) − 1.32961i − 0.0755168i
\(311\) −2.26442 −0.128404 −0.0642018 0.997937i \(-0.520450\pi\)
−0.0642018 + 0.997937i \(0.520450\pi\)
\(312\) 0 0
\(313\) 20.1386 1.13830 0.569151 0.822233i \(-0.307272\pi\)
0.569151 + 0.822233i \(0.307272\pi\)
\(314\) 19.5753i 1.10470i
\(315\) −6.59873 −0.371796
\(316\) −0.978543 −0.0550473
\(317\) − 31.3079i − 1.75843i −0.476429 0.879213i \(-0.658069\pi\)
0.476429 0.879213i \(-0.341931\pi\)
\(318\) 1.61913i 0.0907960i
\(319\) − 16.8562i − 0.943769i
\(320\) 6.58243i 0.367969i
\(321\) −11.1966 −0.624932
\(322\) 1.68656 0.0939883
\(323\) − 16.9081i − 0.940793i
\(324\) 5.95532 0.330851
\(325\) 0 0
\(326\) 14.5157 0.803950
\(327\) − 44.6956i − 2.47167i
\(328\) 28.7578 1.58789
\(329\) −7.68703 −0.423800
\(330\) − 7.54288i − 0.415222i
\(331\) − 5.86072i − 0.322134i −0.986943 0.161067i \(-0.948506\pi\)
0.986943 0.161067i \(-0.0514936\pi\)
\(332\) 0.454748i 0.0249576i
\(333\) 38.8028i 2.12638i
\(334\) −8.00753 −0.438152
\(335\) −8.73327 −0.477149
\(336\) 12.4522i 0.679321i
\(337\) −14.0167 −0.763539 −0.381769 0.924258i \(-0.624685\pi\)
−0.381769 + 0.924258i \(0.624685\pi\)
\(338\) 0 0
\(339\) 4.91099 0.266728
\(340\) 0.676266i 0.0366757i
\(341\) −2.68171 −0.145223
\(342\) 34.8041 1.88199
\(343\) 1.00000i 0.0539949i
\(344\) 7.74494i 0.417579i
\(345\) 3.25895i 0.175456i
\(346\) 7.64813i 0.411166i
\(347\) −18.4346 −0.989622 −0.494811 0.869001i \(-0.664763\pi\)
−0.494811 + 0.869001i \(0.664763\pi\)
\(348\) −4.20335 −0.225323
\(349\) − 0.841480i − 0.0450434i −0.999746 0.0225217i \(-0.992831\pi\)
0.999746 0.0225217i \(-0.00716948\pi\)
\(350\) −5.98046 −0.319669
\(351\) 0 0
\(352\) 1.85497 0.0988704
\(353\) − 4.32366i − 0.230125i −0.993358 0.115063i \(-0.963293\pi\)
0.993358 0.115063i \(-0.0367069\pi\)
\(354\) 23.0953 1.22750
\(355\) 9.19074 0.487794
\(356\) 0.306265i 0.0162320i
\(357\) 19.1485i 1.01345i
\(358\) 9.75295i 0.515459i
\(359\) − 12.0924i − 0.638213i −0.947719 0.319107i \(-0.896617\pi\)
0.947719 0.319107i \(-0.103383\pi\)
\(360\) −19.3167 −1.01808
\(361\) 10.0007 0.526355
\(362\) − 0.770673i − 0.0405057i
\(363\) 22.1578 1.16298
\(364\) 0 0
\(365\) −6.94737 −0.363642
\(366\) − 19.5878i − 1.02387i
\(367\) −9.05715 −0.472779 −0.236390 0.971658i \(-0.575964\pi\)
−0.236390 + 0.971658i \(0.575964\pi\)
\(368\) 4.55138 0.237257
\(369\) 83.9172i 4.36856i
\(370\) − 4.76595i − 0.247770i
\(371\) 0.350895i 0.0182175i
\(372\) 0.668724i 0.0346717i
\(373\) −23.0254 −1.19221 −0.596104 0.802907i \(-0.703285\pi\)
−0.596104 + 0.802907i \(0.703285\pi\)
\(374\) −16.1992 −0.837639
\(375\) − 24.6783i − 1.27438i
\(376\) −22.5025 −1.16048
\(377\) 0 0
\(378\) −25.5730 −1.31533
\(379\) − 29.5778i − 1.51931i −0.650326 0.759655i \(-0.725368\pi\)
0.650326 0.759655i \(-0.274632\pi\)
\(380\) 0.359939 0.0184645
\(381\) 37.1076 1.90108
\(382\) 10.7998i 0.552567i
\(383\) − 19.0793i − 0.974906i −0.873149 0.487453i \(-0.837926\pi\)
0.873149 0.487453i \(-0.162074\pi\)
\(384\) 33.3622i 1.70251i
\(385\) − 1.63468i − 0.0833112i
\(386\) 27.9444 1.42233
\(387\) −22.6002 −1.14883
\(388\) 1.22433i 0.0621560i
\(389\) 11.3977 0.577885 0.288942 0.957347i \(-0.406696\pi\)
0.288942 + 0.957347i \(0.406696\pi\)
\(390\) 0 0
\(391\) 6.99896 0.353953
\(392\) 2.92733i 0.147853i
\(393\) −7.61274 −0.384012
\(394\) 2.06742 0.104155
\(395\) 4.86677i 0.244874i
\(396\) 2.80763i 0.141089i
\(397\) − 29.1687i − 1.46394i −0.681339 0.731968i \(-0.738602\pi\)
0.681339 0.731968i \(-0.261398\pi\)
\(398\) 34.3790i 1.72326i
\(399\) 10.1917 0.510223
\(400\) −16.1390 −0.806948
\(401\) − 17.0352i − 0.850697i −0.905030 0.425349i \(-0.860151\pi\)
0.905030 0.425349i \(-0.139849\pi\)
\(402\) −52.1659 −2.60180
\(403\) 0 0
\(404\) −0.274695 −0.0136666
\(405\) − 29.6187i − 1.47177i
\(406\) 10.8188 0.536930
\(407\) −9.61250 −0.476474
\(408\) 56.0541i 2.77509i
\(409\) 7.21000i 0.356511i 0.983984 + 0.178256i \(0.0570454\pi\)
−0.983984 + 0.178256i \(0.942955\pi\)
\(410\) − 10.3071i − 0.509033i
\(411\) − 25.4404i − 1.25488i
\(412\) 1.77996 0.0876924
\(413\) 5.00519 0.246289
\(414\) 14.4069i 0.708058i
\(415\) 2.26169 0.111022
\(416\) 0 0
\(417\) 10.7954 0.528653
\(418\) 8.62192i 0.421712i
\(419\) 34.1903 1.67030 0.835152 0.550019i \(-0.185379\pi\)
0.835152 + 0.550019i \(0.185379\pi\)
\(420\) −0.407633 −0.0198904
\(421\) 33.3533i 1.62554i 0.582585 + 0.812770i \(0.302041\pi\)
−0.582585 + 0.812770i \(0.697959\pi\)
\(422\) − 7.52989i − 0.366549i
\(423\) − 65.6638i − 3.19268i
\(424\) 1.02719i 0.0498846i
\(425\) −24.8180 −1.20385
\(426\) 54.8985 2.65984
\(427\) − 4.24504i − 0.205432i
\(428\) −0.511887 −0.0247430
\(429\) 0 0
\(430\) 2.77587 0.133864
\(431\) 31.8622i 1.53475i 0.641200 + 0.767374i \(0.278437\pi\)
−0.641200 + 0.767374i \(0.721563\pi\)
\(432\) −69.0117 −3.32033
\(433\) −2.69773 −0.129645 −0.0648223 0.997897i \(-0.520648\pi\)
−0.0648223 + 0.997897i \(0.520648\pi\)
\(434\) − 1.72120i − 0.0826202i
\(435\) 20.9053i 1.00233i
\(436\) − 2.04340i − 0.0978612i
\(437\) − 3.72516i − 0.178199i
\(438\) −41.4983 −1.98287
\(439\) 21.5226 1.02722 0.513609 0.858024i \(-0.328308\pi\)
0.513609 + 0.858024i \(0.328308\pi\)
\(440\) − 4.78527i − 0.228129i
\(441\) −8.54215 −0.406769
\(442\) 0 0
\(443\) 6.74835 0.320624 0.160312 0.987066i \(-0.448750\pi\)
0.160312 + 0.987066i \(0.448750\pi\)
\(444\) 2.39702i 0.113757i
\(445\) 1.52321 0.0722069
\(446\) −9.36759 −0.443568
\(447\) − 53.1429i − 2.51357i
\(448\) 8.52104i 0.402581i
\(449\) 32.3984i 1.52898i 0.644638 + 0.764488i \(0.277008\pi\)
−0.644638 + 0.764488i \(0.722992\pi\)
\(450\) − 51.0860i − 2.40822i
\(451\) −20.7886 −0.978895
\(452\) 0.224521 0.0105606
\(453\) − 51.7359i − 2.43076i
\(454\) −4.30038 −0.201827
\(455\) 0 0
\(456\) 29.8345 1.39713
\(457\) 5.27900i 0.246941i 0.992348 + 0.123471i \(0.0394025\pi\)
−0.992348 + 0.123471i \(0.960598\pi\)
\(458\) 31.7401 1.48312
\(459\) −106.124 −4.95344
\(460\) 0.148993i 0.00694685i
\(461\) − 39.9387i − 1.86013i −0.367396 0.930065i \(-0.619750\pi\)
0.367396 0.930065i \(-0.380250\pi\)
\(462\) − 9.76437i − 0.454279i
\(463\) − 7.02805i − 0.326621i −0.986575 0.163311i \(-0.947783\pi\)
0.986575 0.163311i \(-0.0522173\pi\)
\(464\) 29.1959 1.35539
\(465\) 3.32589 0.154234
\(466\) − 13.1099i − 0.607302i
\(467\) 12.7122 0.588252 0.294126 0.955767i \(-0.404971\pi\)
0.294126 + 0.955767i \(0.404971\pi\)
\(468\) 0 0
\(469\) −11.3053 −0.522032
\(470\) 8.06515i 0.372017i
\(471\) −48.9657 −2.25622
\(472\) 14.6519 0.674407
\(473\) − 5.59869i − 0.257428i
\(474\) 29.0704i 1.33525i
\(475\) 13.2092i 0.606081i
\(476\) 0.875435i 0.0401255i
\(477\) −2.99739 −0.137241
\(478\) −9.48309 −0.433746
\(479\) 23.9405i 1.09387i 0.837175 + 0.546935i \(0.184206\pi\)
−0.837175 + 0.546935i \(0.815794\pi\)
\(480\) −2.30056 −0.105006
\(481\) 0 0
\(482\) 25.2069 1.14814
\(483\) 4.21876i 0.191960i
\(484\) 1.01301 0.0460461
\(485\) 6.08920 0.276496
\(486\) − 100.201i − 4.54521i
\(487\) − 10.6960i − 0.484683i −0.970191 0.242342i \(-0.922084\pi\)
0.970191 0.242342i \(-0.0779155\pi\)
\(488\) − 12.4267i − 0.562529i
\(489\) 36.3096i 1.64198i
\(490\) 1.04919 0.0473975
\(491\) −13.8352 −0.624373 −0.312187 0.950021i \(-0.601061\pi\)
−0.312187 + 0.950021i \(0.601061\pi\)
\(492\) 5.18393i 0.233710i
\(493\) 44.8965 2.02204
\(494\) 0 0
\(495\) 13.9637 0.627622
\(496\) − 4.64486i − 0.208560i
\(497\) 11.8975 0.533677
\(498\) 13.5096 0.605380
\(499\) − 14.6054i − 0.653827i −0.945054 0.326913i \(-0.893991\pi\)
0.945054 0.326913i \(-0.106009\pi\)
\(500\) − 1.12825i − 0.0504567i
\(501\) − 20.0300i − 0.894875i
\(502\) 22.6237i 1.00975i
\(503\) 9.63765 0.429721 0.214861 0.976645i \(-0.431070\pi\)
0.214861 + 0.976645i \(0.431070\pi\)
\(504\) −25.0057 −1.11384
\(505\) 1.36619i 0.0607948i
\(506\) −3.56897 −0.158660
\(507\) 0 0
\(508\) 1.69649 0.0752696
\(509\) 6.16582i 0.273295i 0.990620 + 0.136648i \(0.0436328\pi\)
−0.990620 + 0.136648i \(0.956367\pi\)
\(510\) 20.0904 0.889618
\(511\) −8.99347 −0.397848
\(512\) 24.6716i 1.09034i
\(513\) 56.4839i 2.49383i
\(514\) 10.3718i 0.457482i
\(515\) − 8.85262i − 0.390093i
\(516\) −1.39612 −0.0614606
\(517\) 16.2667 0.715408
\(518\) − 6.16959i − 0.271076i
\(519\) −19.1310 −0.839759
\(520\) 0 0
\(521\) −30.1162 −1.31942 −0.659708 0.751522i \(-0.729320\pi\)
−0.659708 + 0.751522i \(0.729320\pi\)
\(522\) 92.4162i 4.04495i
\(523\) 6.30225 0.275578 0.137789 0.990462i \(-0.456000\pi\)
0.137789 + 0.990462i \(0.456000\pi\)
\(524\) −0.348041 −0.0152042
\(525\) − 14.9595i − 0.652887i
\(526\) 25.3110i 1.10361i
\(527\) − 7.14271i − 0.311141i
\(528\) − 26.3503i − 1.14675i
\(529\) −21.4580 −0.932957
\(530\) 0.368155 0.0159916
\(531\) 42.7551i 1.85541i
\(532\) 0.465946 0.0202013
\(533\) 0 0
\(534\) 9.09849 0.393730
\(535\) 2.54586i 0.110067i
\(536\) −33.0945 −1.42946
\(537\) −24.3960 −1.05277
\(538\) − 33.7622i − 1.45559i
\(539\) − 2.11612i − 0.0911478i
\(540\) − 2.25916i − 0.0972188i
\(541\) 1.95419i 0.0840171i 0.999117 + 0.0420086i \(0.0133757\pi\)
−0.999117 + 0.0420086i \(0.986624\pi\)
\(542\) 29.9506 1.28649
\(543\) 1.92776 0.0827282
\(544\) 4.94071i 0.211831i
\(545\) −10.1628 −0.435328
\(546\) 0 0
\(547\) −45.2888 −1.93641 −0.968204 0.250162i \(-0.919516\pi\)
−0.968204 + 0.250162i \(0.919516\pi\)
\(548\) − 1.16309i − 0.0496848i
\(549\) 36.2618 1.54762
\(550\) 12.6554 0.539627
\(551\) − 23.8959i − 1.01800i
\(552\) 12.3497i 0.525639i
\(553\) 6.30010i 0.267908i
\(554\) − 26.7751i − 1.13757i
\(555\) 11.9215 0.506041
\(556\) 0.493546 0.0209310
\(557\) − 4.02083i − 0.170368i −0.996365 0.0851841i \(-0.972852\pi\)
0.996365 0.0851841i \(-0.0271478\pi\)
\(558\) 14.7027 0.622417
\(559\) 0 0
\(560\) 2.83136 0.119647
\(561\) − 40.5206i − 1.71078i
\(562\) −6.00326 −0.253232
\(563\) −14.4667 −0.609700 −0.304850 0.952400i \(-0.598606\pi\)
−0.304850 + 0.952400i \(0.598606\pi\)
\(564\) − 4.05634i − 0.170803i
\(565\) − 1.11665i − 0.0469780i
\(566\) − 43.3686i − 1.82292i
\(567\) − 38.3419i − 1.61021i
\(568\) 34.8281 1.46135
\(569\) −39.0095 −1.63536 −0.817682 0.575670i \(-0.804741\pi\)
−0.817682 + 0.575670i \(0.804741\pi\)
\(570\) − 10.6930i − 0.447881i
\(571\) 13.5719 0.567966 0.283983 0.958829i \(-0.408344\pi\)
0.283983 + 0.958829i \(0.408344\pi\)
\(572\) 0 0
\(573\) −27.0147 −1.12855
\(574\) − 13.3427i − 0.556914i
\(575\) −5.46784 −0.228025
\(576\) −72.7880 −3.03283
\(577\) 8.39100i 0.349322i 0.984629 + 0.174661i \(0.0558829\pi\)
−0.984629 + 0.174661i \(0.944117\pi\)
\(578\) − 20.0571i − 0.834266i
\(579\) 69.9002i 2.90495i
\(580\) 0.955754i 0.0396855i
\(581\) 2.92778 0.121465
\(582\) 36.3723 1.50768
\(583\) − 0.742535i − 0.0307527i
\(584\) −26.3269 −1.08941
\(585\) 0 0
\(586\) 22.0667 0.911567
\(587\) − 22.1640i − 0.914808i −0.889259 0.457404i \(-0.848779\pi\)
0.889259 0.457404i \(-0.151221\pi\)
\(588\) −0.527686 −0.0217614
\(589\) −3.80167 −0.156645
\(590\) − 5.25139i − 0.216196i
\(591\) 5.17143i 0.212724i
\(592\) − 16.6494i − 0.684284i
\(593\) − 39.0195i − 1.60234i −0.598437 0.801170i \(-0.704211\pi\)
0.598437 0.801170i \(-0.295789\pi\)
\(594\) 54.1156 2.22039
\(595\) 4.35397 0.178495
\(596\) − 2.42960i − 0.0995201i
\(597\) −85.9955 −3.51956
\(598\) 0 0
\(599\) 31.3114 1.27935 0.639674 0.768646i \(-0.279069\pi\)
0.639674 + 0.768646i \(0.279069\pi\)
\(600\) − 43.7915i − 1.78778i
\(601\) 24.7669 1.01026 0.505132 0.863042i \(-0.331444\pi\)
0.505132 + 0.863042i \(0.331444\pi\)
\(602\) 3.59340 0.146456
\(603\) − 96.5718i − 3.93271i
\(604\) − 2.36527i − 0.0962415i
\(605\) − 5.03821i − 0.204832i
\(606\) 8.16061i 0.331502i
\(607\) 4.33301 0.175871 0.0879357 0.996126i \(-0.471973\pi\)
0.0879357 + 0.996126i \(0.471973\pi\)
\(608\) 2.62967 0.106647
\(609\) 27.0622i 1.09662i
\(610\) −4.45385 −0.180331
\(611\) 0 0
\(612\) −7.47810 −0.302284
\(613\) − 45.9015i − 1.85394i −0.375131 0.926972i \(-0.622402\pi\)
0.375131 0.926972i \(-0.377598\pi\)
\(614\) 18.3426 0.740247
\(615\) 25.7822 1.03964
\(616\) − 6.19459i − 0.249587i
\(617\) − 29.0145i − 1.16808i −0.811725 0.584040i \(-0.801471\pi\)
0.811725 0.584040i \(-0.198529\pi\)
\(618\) − 52.8789i − 2.12710i
\(619\) 8.57642i 0.344715i 0.985034 + 0.172358i \(0.0551385\pi\)
−0.985034 + 0.172358i \(0.944861\pi\)
\(620\) 0.152054 0.00610662
\(621\) −23.3810 −0.938247
\(622\) 3.07551i 0.123317i
\(623\) 1.97181 0.0789990
\(624\) 0 0
\(625\) 16.4050 0.656199
\(626\) − 27.3521i − 1.09321i
\(627\) −21.5669 −0.861298
\(628\) −2.23862 −0.0893308
\(629\) − 25.6028i − 1.02085i
\(630\) 8.96233i 0.357068i
\(631\) − 31.4081i − 1.25034i −0.780490 0.625168i \(-0.785030\pi\)
0.780490 0.625168i \(-0.214970\pi\)
\(632\) 18.4425i 0.733604i
\(633\) 18.8353 0.748634
\(634\) −42.5220 −1.68877
\(635\) − 8.43748i − 0.334831i
\(636\) −0.185162 −0.00734216
\(637\) 0 0
\(638\) −22.8940 −0.906381
\(639\) 101.631i 4.02044i
\(640\) 7.58586 0.299858
\(641\) −7.67208 −0.303029 −0.151514 0.988455i \(-0.548415\pi\)
−0.151514 + 0.988455i \(0.548415\pi\)
\(642\) 15.2071i 0.600175i
\(643\) 7.48239i 0.295076i 0.989056 + 0.147538i \(0.0471350\pi\)
−0.989056 + 0.147538i \(0.952865\pi\)
\(644\) 0.192874i 0.00760030i
\(645\) 6.94356i 0.273403i
\(646\) −22.9644 −0.903523
\(647\) −23.9406 −0.941201 −0.470600 0.882346i \(-0.655963\pi\)
−0.470600 + 0.882346i \(0.655963\pi\)
\(648\) − 112.239i − 4.40918i
\(649\) −10.5916 −0.415756
\(650\) 0 0
\(651\) 4.30541 0.168742
\(652\) 1.66001i 0.0650109i
\(653\) 34.2885 1.34181 0.670907 0.741541i \(-0.265905\pi\)
0.670907 + 0.741541i \(0.265905\pi\)
\(654\) −60.7051 −2.37376
\(655\) 1.73098i 0.0676349i
\(656\) − 36.0069i − 1.40583i
\(657\) − 76.8235i − 2.99717i
\(658\) 10.4404i 0.407011i
\(659\) −8.82716 −0.343857 −0.171929 0.985109i \(-0.555000\pi\)
−0.171929 + 0.985109i \(0.555000\pi\)
\(660\) 0.862600 0.0335766
\(661\) − 33.3881i − 1.29865i −0.760512 0.649324i \(-0.775052\pi\)
0.760512 0.649324i \(-0.224948\pi\)
\(662\) −7.95997 −0.309373
\(663\) 0 0
\(664\) 8.57060 0.332604
\(665\) − 2.31738i − 0.0898640i
\(666\) 52.7015 2.04214
\(667\) 9.89150 0.383000
\(668\) − 0.915736i − 0.0354309i
\(669\) − 23.4321i − 0.905936i
\(670\) 11.8614i 0.458247i
\(671\) 8.98302i 0.346786i
\(672\) −2.97811 −0.114883
\(673\) −33.1395 −1.27743 −0.638717 0.769442i \(-0.720534\pi\)
−0.638717 + 0.769442i \(0.720534\pi\)
\(674\) 19.0373i 0.733291i
\(675\) 82.9079 3.19112
\(676\) 0 0
\(677\) 28.8217 1.10771 0.553854 0.832614i \(-0.313157\pi\)
0.553854 + 0.832614i \(0.313157\pi\)
\(678\) − 6.67005i − 0.256162i
\(679\) 7.88255 0.302505
\(680\) 12.7455 0.488768
\(681\) − 10.7570i − 0.412207i
\(682\) 3.64227i 0.139470i
\(683\) − 17.0467i − 0.652274i −0.945323 0.326137i \(-0.894253\pi\)
0.945323 0.326137i \(-0.105747\pi\)
\(684\) 3.98018i 0.152186i
\(685\) −5.78462 −0.221019
\(686\) 1.35819 0.0518559
\(687\) 79.3948i 3.02910i
\(688\) 9.69722 0.369703
\(689\) 0 0
\(690\) 4.42628 0.168505
\(691\) 3.56418i 0.135588i 0.997699 + 0.0677939i \(0.0215960\pi\)
−0.997699 + 0.0677939i \(0.978404\pi\)
\(692\) −0.874636 −0.0332487
\(693\) 18.0762 0.686659
\(694\) 25.0377i 0.950418i
\(695\) − 2.45464i − 0.0931099i
\(696\) 79.2203i 3.00284i
\(697\) − 55.3702i − 2.09729i
\(698\) −1.14289 −0.0432590
\(699\) 32.7930 1.24034
\(700\) − 0.683922i − 0.0258498i
\(701\) −5.75672 −0.217428 −0.108714 0.994073i \(-0.534673\pi\)
−0.108714 + 0.994073i \(0.534673\pi\)
\(702\) 0 0
\(703\) −13.6270 −0.513951
\(704\) − 18.0315i − 0.679590i
\(705\) −20.1741 −0.759802
\(706\) −5.87235 −0.221009
\(707\) 1.76856i 0.0665134i
\(708\) 2.64117i 0.0992613i
\(709\) 5.47541i 0.205633i 0.994700 + 0.102817i \(0.0327855\pi\)
−0.994700 + 0.102817i \(0.967214\pi\)
\(710\) − 12.4828i − 0.468470i
\(711\) −53.8164 −2.01827
\(712\) 5.77216 0.216321
\(713\) − 1.57367i − 0.0589343i
\(714\) 26.0073 0.973299
\(715\) 0 0
\(716\) −1.11534 −0.0416823
\(717\) − 23.7210i − 0.885876i
\(718\) −16.4238 −0.612930
\(719\) 45.1042 1.68210 0.841051 0.540955i \(-0.181937\pi\)
0.841051 + 0.540955i \(0.181937\pi\)
\(720\) 24.1859i 0.901354i
\(721\) − 11.4598i − 0.426787i
\(722\) − 13.5829i − 0.505503i
\(723\) 63.0525i 2.34495i
\(724\) 0.0881337 0.00327546
\(725\) −35.0748 −1.30264
\(726\) − 30.0945i − 1.11691i
\(727\) −35.7464 −1.32576 −0.662880 0.748725i \(-0.730666\pi\)
−0.662880 + 0.748725i \(0.730666\pi\)
\(728\) 0 0
\(729\) 135.617 5.02285
\(730\) 9.43584i 0.349236i
\(731\) 14.9121 0.551542
\(732\) 2.24005 0.0827946
\(733\) 30.7972i 1.13752i 0.822503 + 0.568761i \(0.192577\pi\)
−0.822503 + 0.568761i \(0.807423\pi\)
\(734\) 12.3013i 0.454050i
\(735\) 2.62444i 0.0968039i
\(736\) 1.08853i 0.0401236i
\(737\) 23.9234 0.881231
\(738\) 113.975 4.19550
\(739\) − 38.1399i − 1.40300i −0.712670 0.701499i \(-0.752514\pi\)
0.712670 0.701499i \(-0.247486\pi\)
\(740\) 0.545031 0.0200357
\(741\) 0 0
\(742\) 0.476581 0.0174959
\(743\) 19.8187i 0.727079i 0.931579 + 0.363539i \(0.118432\pi\)
−0.931579 + 0.363539i \(0.881568\pi\)
\(744\) 12.6034 0.462062
\(745\) −12.0836 −0.442708
\(746\) 31.2728i 1.14498i
\(747\) 25.0096i 0.915052i
\(748\) − 1.85253i − 0.0677351i
\(749\) 3.29566i 0.120421i
\(750\) −33.5178 −1.22390
\(751\) −11.0353 −0.402683 −0.201341 0.979521i \(-0.564530\pi\)
−0.201341 + 0.979521i \(0.564530\pi\)
\(752\) 28.1747i 1.02743i
\(753\) −56.5910 −2.06229
\(754\) 0 0
\(755\) −11.7636 −0.428123
\(756\) − 2.92451i − 0.106364i
\(757\) −5.63273 −0.204725 −0.102363 0.994747i \(-0.532640\pi\)
−0.102363 + 0.994747i \(0.532640\pi\)
\(758\) −40.1723 −1.45912
\(759\) − 8.92741i − 0.324044i
\(760\) − 6.78374i − 0.246072i
\(761\) 6.45648i 0.234047i 0.993129 + 0.117024i \(0.0373353\pi\)
−0.993129 + 0.117024i \(0.962665\pi\)
\(762\) − 50.3991i − 1.82577i
\(763\) −13.1559 −0.476277
\(764\) −1.23506 −0.0446830
\(765\) 37.1922i 1.34469i
\(766\) −25.9133 −0.936285
\(767\) 0 0
\(768\) −12.5861 −0.454162
\(769\) − 8.81720i − 0.317956i −0.987282 0.158978i \(-0.949180\pi\)
0.987282 0.158978i \(-0.0508199\pi\)
\(770\) −2.22021 −0.0800108
\(771\) −25.9441 −0.934355
\(772\) 3.19571i 0.115016i
\(773\) 46.0758i 1.65723i 0.559818 + 0.828616i \(0.310871\pi\)
−0.559818 + 0.828616i \(0.689129\pi\)
\(774\) 30.6954i 1.10332i
\(775\) 5.58014i 0.200445i
\(776\) 23.0749 0.828340
\(777\) 15.4326 0.553642
\(778\) − 15.4802i − 0.554992i
\(779\) −29.4705 −1.05589
\(780\) 0 0
\(781\) −25.1766 −0.900890
\(782\) − 9.50591i − 0.339931i
\(783\) −149.983 −5.35995
\(784\) 3.66523 0.130901
\(785\) 11.1338i 0.397381i
\(786\) 10.3395i 0.368799i
\(787\) − 2.92457i − 0.104250i −0.998641 0.0521248i \(-0.983401\pi\)
0.998641 0.0521248i \(-0.0165994\pi\)
\(788\) 0.236429i 0.00842242i
\(789\) −63.3129 −2.25400
\(790\) 6.61000 0.235173
\(791\) − 1.44552i − 0.0513970i
\(792\) 52.9151 1.88026
\(793\) 0 0
\(794\) −39.6166 −1.40594
\(795\) 0.920902i 0.0326610i
\(796\) −3.93156 −0.139350
\(797\) −34.7197 −1.22984 −0.614918 0.788591i \(-0.710811\pi\)
−0.614918 + 0.788591i \(0.710811\pi\)
\(798\) − 13.8423i − 0.490011i
\(799\) 43.3262i 1.53277i
\(800\) − 3.85986i − 0.136467i
\(801\) 16.8435i 0.595136i
\(802\) −23.1370 −0.816997
\(803\) 19.0313 0.671599
\(804\) − 5.96567i − 0.210393i
\(805\) 0.959257 0.0338094
\(806\) 0 0
\(807\) 84.4528 2.97288
\(808\) 5.17716i 0.182132i
\(809\) −36.7435 −1.29183 −0.645917 0.763407i \(-0.723525\pi\)
−0.645917 + 0.763407i \(0.723525\pi\)
\(810\) −40.2278 −1.41346
\(811\) 49.5717i 1.74070i 0.492437 + 0.870348i \(0.336106\pi\)
−0.492437 + 0.870348i \(0.663894\pi\)
\(812\) 1.23724i 0.0434185i
\(813\) 74.9183i 2.62750i
\(814\) 13.0556i 0.457598i
\(815\) 8.25603 0.289196
\(816\) 70.1838 2.45692
\(817\) − 7.93687i − 0.277676i
\(818\) 9.79254 0.342388
\(819\) 0 0
\(820\) 1.17872 0.0411626
\(821\) − 31.7074i − 1.10660i −0.832983 0.553299i \(-0.813369\pi\)
0.832983 0.553299i \(-0.186631\pi\)
\(822\) −34.5529 −1.20517
\(823\) 28.7128 1.00086 0.500432 0.865776i \(-0.333174\pi\)
0.500432 + 0.865776i \(0.333174\pi\)
\(824\) − 33.5468i − 1.16866i
\(825\) 31.6561i 1.10213i
\(826\) − 6.79800i − 0.236533i
\(827\) − 30.8034i − 1.07114i −0.844491 0.535569i \(-0.820097\pi\)
0.844491 0.535569i \(-0.179903\pi\)
\(828\) −1.64756 −0.0572566
\(829\) −30.9789 −1.07594 −0.537970 0.842964i \(-0.680809\pi\)
−0.537970 + 0.842964i \(0.680809\pi\)
\(830\) − 3.07180i − 0.106624i
\(831\) 66.9753 2.32335
\(832\) 0 0
\(833\) 5.63627 0.195285
\(834\) − 14.6622i − 0.507710i
\(835\) −4.55440 −0.157612
\(836\) −0.985998 −0.0341015
\(837\) 23.8612i 0.824764i
\(838\) − 46.4369i − 1.60414i
\(839\) 48.0432i 1.65863i 0.558778 + 0.829317i \(0.311270\pi\)
−0.558778 + 0.829317i \(0.688730\pi\)
\(840\) 7.68261i 0.265075i
\(841\) 34.4514 1.18798
\(842\) 45.3001 1.56114
\(843\) − 15.0166i − 0.517198i
\(844\) 0.861113 0.0296407
\(845\) 0 0
\(846\) −89.1838 −3.06620
\(847\) − 6.52203i − 0.224100i
\(848\) 1.28611 0.0441652
\(849\) 108.482 3.72310
\(850\) 33.7075i 1.15616i
\(851\) − 5.64076i − 0.193363i
\(852\) 6.27816i 0.215086i
\(853\) 10.1693i 0.348189i 0.984729 + 0.174095i \(0.0556998\pi\)
−0.984729 + 0.174095i \(0.944300\pi\)
\(854\) −5.76557 −0.197294
\(855\) 19.7954 0.676988
\(856\) 9.64749i 0.329744i
\(857\) 4.52581 0.154599 0.0772993 0.997008i \(-0.475370\pi\)
0.0772993 + 0.997008i \(0.475370\pi\)
\(858\) 0 0
\(859\) 29.8293 1.01776 0.508881 0.860837i \(-0.330059\pi\)
0.508881 + 0.860837i \(0.330059\pi\)
\(860\) 0.317447i 0.0108249i
\(861\) 33.3755 1.13743
\(862\) 43.2749 1.47395
\(863\) 34.3352i 1.16879i 0.811471 + 0.584393i \(0.198667\pi\)
−0.811471 + 0.584393i \(0.801333\pi\)
\(864\) − 16.5051i − 0.561516i
\(865\) 4.34999i 0.147904i
\(866\) 3.66403i 0.124509i
\(867\) 50.1709 1.70389
\(868\) 0.196835 0.00668103
\(869\) − 13.3318i − 0.452249i
\(870\) 28.3934 0.962626
\(871\) 0 0
\(872\) −38.5118 −1.30417
\(873\) 67.3340i 2.27891i
\(874\) −5.05947 −0.171139
\(875\) −7.26393 −0.245566
\(876\) − 4.74573i − 0.160343i
\(877\) − 29.0504i − 0.980963i −0.871452 0.490481i \(-0.836821\pi\)
0.871452 0.490481i \(-0.163179\pi\)
\(878\) − 29.2318i − 0.986524i
\(879\) 55.1976i 1.86177i
\(880\) −5.99149 −0.201973
\(881\) −18.4225 −0.620669 −0.310335 0.950627i \(-0.600441\pi\)
−0.310335 + 0.950627i \(0.600441\pi\)
\(882\) 11.6019i 0.390655i
\(883\) −33.6175 −1.13132 −0.565659 0.824639i \(-0.691378\pi\)
−0.565659 + 0.824639i \(0.691378\pi\)
\(884\) 0 0
\(885\) 13.1358 0.441556
\(886\) − 9.16554i − 0.307922i
\(887\) 35.9829 1.20819 0.604094 0.796913i \(-0.293535\pi\)
0.604094 + 0.796913i \(0.293535\pi\)
\(888\) 45.1764 1.51602
\(889\) − 10.9224i − 0.366327i
\(890\) − 2.06880i − 0.0693465i
\(891\) 81.1360i 2.71816i
\(892\) − 1.07127i − 0.0358688i
\(893\) 23.0601 0.771678
\(894\) −72.1781 −2.41400
\(895\) 5.54714i 0.185420i
\(896\) 9.82000 0.328063
\(897\) 0 0
\(898\) 44.0032 1.46841
\(899\) − 10.0947i − 0.336676i
\(900\) 5.84216 0.194739
\(901\) 1.97774 0.0658880
\(902\) 28.2348i 0.940116i
\(903\) 8.98854i 0.299120i
\(904\) − 4.23154i − 0.140739i
\(905\) − 0.438332i − 0.0145706i
\(906\) −70.2671 −2.33447
\(907\) 26.2877 0.872868 0.436434 0.899736i \(-0.356241\pi\)
0.436434 + 0.899736i \(0.356241\pi\)
\(908\) − 0.491788i − 0.0163206i
\(909\) −15.1073 −0.501077
\(910\) 0 0
\(911\) −39.8689 −1.32092 −0.660458 0.750863i \(-0.729638\pi\)
−0.660458 + 0.750863i \(0.729638\pi\)
\(912\) − 37.3550i − 1.23695i
\(913\) −6.19554 −0.205043
\(914\) 7.16989 0.237159
\(915\) − 11.1409i − 0.368306i
\(916\) 3.62978i 0.119931i
\(917\) 2.24077i 0.0739969i
\(918\) 144.136i 4.75721i
\(919\) −27.5349 −0.908292 −0.454146 0.890927i \(-0.650056\pi\)
−0.454146 + 0.890927i \(0.650056\pi\)
\(920\) 2.80807 0.0925792
\(921\) 45.8822i 1.51187i
\(922\) −54.2443 −1.78644
\(923\) 0 0
\(924\) 1.11665 0.0367350
\(925\) 20.0018i 0.657657i
\(926\) −9.54542 −0.313682
\(927\) 97.8916 3.21518
\(928\) 6.98261i 0.229215i
\(929\) 14.5572i 0.477607i 0.971068 + 0.238804i \(0.0767552\pi\)
−0.971068 + 0.238804i \(0.923245\pi\)
\(930\) − 4.51719i − 0.148124i
\(931\) − 2.99988i − 0.0983170i
\(932\) 1.49924 0.0491091
\(933\) −7.69308 −0.251860
\(934\) − 17.2656i − 0.564949i
\(935\) −9.21352 −0.301314
\(936\) 0 0
\(937\) −1.11811 −0.0365270 −0.0182635 0.999833i \(-0.505814\pi\)
−0.0182635 + 0.999833i \(0.505814\pi\)
\(938\) 15.3548i 0.501351i
\(939\) 68.4184 2.23275
\(940\) −0.922325 −0.0300829
\(941\) − 30.8810i − 1.00669i −0.864085 0.503346i \(-0.832102\pi\)
0.864085 0.503346i \(-0.167898\pi\)
\(942\) 66.5047i 2.16684i
\(943\) − 12.1990i − 0.397255i
\(944\) − 18.3452i − 0.597085i
\(945\) −14.5450 −0.473150
\(946\) −7.60408 −0.247230
\(947\) 20.2675i 0.658604i 0.944225 + 0.329302i \(0.106813\pi\)
−0.944225 + 0.329302i \(0.893187\pi\)
\(948\) −3.32448 −0.107974
\(949\) 0 0
\(950\) 17.9406 0.582071
\(951\) − 106.365i − 3.44911i
\(952\) 16.4993 0.534744
\(953\) −30.7177 −0.995043 −0.497522 0.867452i \(-0.665757\pi\)
−0.497522 + 0.867452i \(0.665757\pi\)
\(954\) 4.07103i 0.131804i
\(955\) 6.14256i 0.198769i
\(956\) − 1.08448i − 0.0350746i
\(957\) − 57.2670i − 1.85118i
\(958\) 32.5158 1.05054
\(959\) −7.48827 −0.241809
\(960\) 22.3630i 0.721761i
\(961\) 29.3940 0.948194
\(962\) 0 0
\(963\) −28.1520 −0.907185
\(964\) 2.88265i 0.0928438i
\(965\) 15.8938 0.511640
\(966\) 5.72988 0.184356
\(967\) 20.0281i 0.644060i 0.946729 + 0.322030i \(0.104365\pi\)
−0.946729 + 0.322030i \(0.895635\pi\)
\(968\) − 19.0922i − 0.613646i
\(969\) − 57.4432i − 1.84534i
\(970\) − 8.27029i − 0.265543i
\(971\) −9.01006 −0.289146 −0.144573 0.989494i \(-0.546181\pi\)
−0.144573 + 0.989494i \(0.546181\pi\)
\(972\) 11.4589 0.367545
\(973\) − 3.17757i − 0.101868i
\(974\) −14.5272 −0.465483
\(975\) 0 0
\(976\) −15.5591 −0.498034
\(977\) − 15.4962i − 0.495766i −0.968790 0.247883i \(-0.920265\pi\)
0.968790 0.247883i \(-0.0797349\pi\)
\(978\) 49.3153 1.57693
\(979\) −4.17259 −0.133357
\(980\) 0.119985i 0.00383277i
\(981\) − 112.380i − 3.58801i
\(982\) 18.7908i 0.599639i
\(983\) − 45.8307i − 1.46177i −0.682499 0.730886i \(-0.739107\pi\)
0.682499 0.730886i \(-0.260893\pi\)
\(984\) 97.7012 3.11460
\(985\) 1.17587 0.0374665
\(986\) − 60.9779i − 1.94193i
\(987\) −26.1157 −0.831272
\(988\) 0 0
\(989\) 3.28539 0.104469
\(990\) − 18.9654i − 0.602759i
\(991\) 5.91658 0.187946 0.0939731 0.995575i \(-0.470043\pi\)
0.0939731 + 0.995575i \(0.470043\pi\)
\(992\) 1.11088 0.0352706
\(993\) − 19.9111i − 0.631858i
\(994\) − 16.1591i − 0.512536i
\(995\) 19.5536i 0.619889i
\(996\) 1.54495i 0.0489536i
\(997\) 27.0852 0.857798 0.428899 0.903352i \(-0.358902\pi\)
0.428899 + 0.903352i \(0.358902\pi\)
\(998\) −19.8369 −0.627925
\(999\) 85.5298i 2.70604i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1183.2.c.j.337.7 24
13.5 odd 4 1183.2.a.r.1.3 yes 12
13.8 odd 4 1183.2.a.q.1.10 12
13.12 even 2 inner 1183.2.c.j.337.18 24
91.34 even 4 8281.2.a.cn.1.10 12
91.83 even 4 8281.2.a.cq.1.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1183.2.a.q.1.10 12 13.8 odd 4
1183.2.a.r.1.3 yes 12 13.5 odd 4
1183.2.c.j.337.7 24 1.1 even 1 trivial
1183.2.c.j.337.18 24 13.12 even 2 inner
8281.2.a.cn.1.10 12 91.34 even 4
8281.2.a.cq.1.3 12 91.83 even 4