Properties

Label 1183.2.e.c.170.1
Level $1183$
Weight $2$
Character 1183.170
Analytic conductor $9.446$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1183,2,Mod(170,1183)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1183, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1183.170");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44630255912\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 170.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1183.170
Dual form 1183.2.e.c.508.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(1.50000 + 2.59808i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.50000 - 2.59808i) q^{5} +3.00000 q^{6} +(-0.500000 + 2.59808i) q^{7} +3.00000 q^{8} +(-3.00000 + 5.19615i) q^{9} +(-1.50000 - 2.59808i) q^{10} +(-1.50000 - 2.59808i) q^{11} +(-1.50000 + 2.59808i) q^{12} +(2.00000 + 1.73205i) q^{14} +9.00000 q^{15} +(0.500000 - 0.866025i) q^{16} +(1.00000 + 1.73205i) q^{17} +(3.00000 + 5.19615i) q^{18} +(-0.500000 + 0.866025i) q^{19} +3.00000 q^{20} +(-7.50000 + 2.59808i) q^{21} -3.00000 q^{22} +(4.50000 + 7.79423i) q^{24} +(-2.00000 - 3.46410i) q^{25} -9.00000 q^{27} +(-2.50000 + 0.866025i) q^{28} +7.00000 q^{29} +(4.50000 - 7.79423i) q^{30} +(1.50000 + 2.59808i) q^{31} +(2.50000 + 4.33013i) q^{32} +(4.50000 - 7.79423i) q^{33} +2.00000 q^{34} +(6.00000 + 5.19615i) q^{35} -6.00000 q^{36} +(1.00000 - 1.73205i) q^{37} +(0.500000 + 0.866025i) q^{38} +(4.50000 - 7.79423i) q^{40} -3.00000 q^{41} +(-1.50000 + 7.79423i) q^{42} -7.00000 q^{43} +(1.50000 - 2.59808i) q^{44} +(9.00000 + 15.5885i) q^{45} +(0.500000 - 0.866025i) q^{47} +3.00000 q^{48} +(-6.50000 - 2.59808i) q^{49} -4.00000 q^{50} +(-3.00000 + 5.19615i) q^{51} +(-1.50000 - 2.59808i) q^{53} +(-4.50000 + 7.79423i) q^{54} -9.00000 q^{55} +(-1.50000 + 7.79423i) q^{56} -3.00000 q^{57} +(3.50000 - 6.06218i) q^{58} +(-2.00000 - 3.46410i) q^{59} +(4.50000 + 7.79423i) q^{60} +(6.50000 - 11.2583i) q^{61} +3.00000 q^{62} +(-12.0000 - 10.3923i) q^{63} +7.00000 q^{64} +(-4.50000 - 7.79423i) q^{66} +(-1.50000 - 2.59808i) q^{67} +(-1.00000 + 1.73205i) q^{68} +(7.50000 - 2.59808i) q^{70} -13.0000 q^{71} +(-9.00000 + 15.5885i) q^{72} +(-6.50000 - 11.2583i) q^{73} +(-1.00000 - 1.73205i) q^{74} +(6.00000 - 10.3923i) q^{75} -1.00000 q^{76} +(7.50000 - 2.59808i) q^{77} +(1.50000 - 2.59808i) q^{79} +(-1.50000 - 2.59808i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(-1.50000 + 2.59808i) q^{82} +(-6.00000 - 5.19615i) q^{84} +6.00000 q^{85} +(-3.50000 + 6.06218i) q^{86} +(10.5000 + 18.1865i) q^{87} +(-4.50000 - 7.79423i) q^{88} +(3.00000 - 5.19615i) q^{89} +18.0000 q^{90} +(-4.50000 + 7.79423i) q^{93} +(-0.500000 - 0.866025i) q^{94} +(1.50000 + 2.59808i) q^{95} +(-7.50000 + 12.9904i) q^{96} +5.00000 q^{97} +(-5.50000 + 4.33013i) q^{98} +18.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 3 q^{3} + q^{4} + 3 q^{5} + 6 q^{6} - q^{7} + 6 q^{8} - 6 q^{9} - 3 q^{10} - 3 q^{11} - 3 q^{12} + 4 q^{14} + 18 q^{15} + q^{16} + 2 q^{17} + 6 q^{18} - q^{19} + 6 q^{20} - 15 q^{21}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1183\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(1016\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i −0.633316 0.773893i \(-0.718307\pi\)
0.986869 + 0.161521i \(0.0516399\pi\)
\(3\) 1.50000 + 2.59808i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.50000 2.59808i 0.670820 1.16190i −0.306851 0.951757i \(-0.599275\pi\)
0.977672 0.210138i \(-0.0673912\pi\)
\(6\) 3.00000 1.22474
\(7\) −0.500000 + 2.59808i −0.188982 + 0.981981i
\(8\) 3.00000 1.06066
\(9\) −3.00000 + 5.19615i −1.00000 + 1.73205i
\(10\) −1.50000 2.59808i −0.474342 0.821584i
\(11\) −1.50000 2.59808i −0.452267 0.783349i 0.546259 0.837616i \(-0.316051\pi\)
−0.998526 + 0.0542666i \(0.982718\pi\)
\(12\) −1.50000 + 2.59808i −0.433013 + 0.750000i
\(13\) 0 0
\(14\) 2.00000 + 1.73205i 0.534522 + 0.462910i
\(15\) 9.00000 2.32379
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 1.00000 + 1.73205i 0.242536 + 0.420084i 0.961436 0.275029i \(-0.0886875\pi\)
−0.718900 + 0.695113i \(0.755354\pi\)
\(18\) 3.00000 + 5.19615i 0.707107 + 1.22474i
\(19\) −0.500000 + 0.866025i −0.114708 + 0.198680i −0.917663 0.397360i \(-0.869927\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 3.00000 0.670820
\(21\) −7.50000 + 2.59808i −1.63663 + 0.566947i
\(22\) −3.00000 −0.639602
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 4.50000 + 7.79423i 0.918559 + 1.59099i
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) 0 0
\(27\) −9.00000 −1.73205
\(28\) −2.50000 + 0.866025i −0.472456 + 0.163663i
\(29\) 7.00000 1.29987 0.649934 0.759991i \(-0.274797\pi\)
0.649934 + 0.759991i \(0.274797\pi\)
\(30\) 4.50000 7.79423i 0.821584 1.42302i
\(31\) 1.50000 + 2.59808i 0.269408 + 0.466628i 0.968709 0.248199i \(-0.0798387\pi\)
−0.699301 + 0.714827i \(0.746505\pi\)
\(32\) 2.50000 + 4.33013i 0.441942 + 0.765466i
\(33\) 4.50000 7.79423i 0.783349 1.35680i
\(34\) 2.00000 0.342997
\(35\) 6.00000 + 5.19615i 1.01419 + 0.878310i
\(36\) −6.00000 −1.00000
\(37\) 1.00000 1.73205i 0.164399 0.284747i −0.772043 0.635571i \(-0.780765\pi\)
0.936442 + 0.350823i \(0.114098\pi\)
\(38\) 0.500000 + 0.866025i 0.0811107 + 0.140488i
\(39\) 0 0
\(40\) 4.50000 7.79423i 0.711512 1.23238i
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) −1.50000 + 7.79423i −0.231455 + 1.20268i
\(43\) −7.00000 −1.06749 −0.533745 0.845645i \(-0.679216\pi\)
−0.533745 + 0.845645i \(0.679216\pi\)
\(44\) 1.50000 2.59808i 0.226134 0.391675i
\(45\) 9.00000 + 15.5885i 1.34164 + 2.32379i
\(46\) 0 0
\(47\) 0.500000 0.866025i 0.0729325 0.126323i −0.827253 0.561830i \(-0.810098\pi\)
0.900185 + 0.435507i \(0.143431\pi\)
\(48\) 3.00000 0.433013
\(49\) −6.50000 2.59808i −0.928571 0.371154i
\(50\) −4.00000 −0.565685
\(51\) −3.00000 + 5.19615i −0.420084 + 0.727607i
\(52\) 0 0
\(53\) −1.50000 2.59808i −0.206041 0.356873i 0.744423 0.667708i \(-0.232725\pi\)
−0.950464 + 0.310835i \(0.899391\pi\)
\(54\) −4.50000 + 7.79423i −0.612372 + 1.06066i
\(55\) −9.00000 −1.21356
\(56\) −1.50000 + 7.79423i −0.200446 + 1.04155i
\(57\) −3.00000 −0.397360
\(58\) 3.50000 6.06218i 0.459573 0.796003i
\(59\) −2.00000 3.46410i −0.260378 0.450988i 0.705965 0.708247i \(-0.250514\pi\)
−0.966342 + 0.257260i \(0.917180\pi\)
\(60\) 4.50000 + 7.79423i 0.580948 + 1.00623i
\(61\) 6.50000 11.2583i 0.832240 1.44148i −0.0640184 0.997949i \(-0.520392\pi\)
0.896258 0.443533i \(-0.146275\pi\)
\(62\) 3.00000 0.381000
\(63\) −12.0000 10.3923i −1.51186 1.30931i
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) −4.50000 7.79423i −0.553912 0.959403i
\(67\) −1.50000 2.59808i −0.183254 0.317406i 0.759733 0.650236i \(-0.225330\pi\)
−0.942987 + 0.332830i \(0.891996\pi\)
\(68\) −1.00000 + 1.73205i −0.121268 + 0.210042i
\(69\) 0 0
\(70\) 7.50000 2.59808i 0.896421 0.310530i
\(71\) −13.0000 −1.54282 −0.771408 0.636341i \(-0.780447\pi\)
−0.771408 + 0.636341i \(0.780447\pi\)
\(72\) −9.00000 + 15.5885i −1.06066 + 1.83712i
\(73\) −6.50000 11.2583i −0.760767 1.31769i −0.942455 0.334332i \(-0.891489\pi\)
0.181688 0.983356i \(-0.441844\pi\)
\(74\) −1.00000 1.73205i −0.116248 0.201347i
\(75\) 6.00000 10.3923i 0.692820 1.20000i
\(76\) −1.00000 −0.114708
\(77\) 7.50000 2.59808i 0.854704 0.296078i
\(78\) 0 0
\(79\) 1.50000 2.59808i 0.168763 0.292306i −0.769222 0.638982i \(-0.779356\pi\)
0.937985 + 0.346675i \(0.112689\pi\)
\(80\) −1.50000 2.59808i −0.167705 0.290474i
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) −1.50000 + 2.59808i −0.165647 + 0.286910i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) −6.00000 5.19615i −0.654654 0.566947i
\(85\) 6.00000 0.650791
\(86\) −3.50000 + 6.06218i −0.377415 + 0.653701i
\(87\) 10.5000 + 18.1865i 1.12572 + 1.94980i
\(88\) −4.50000 7.79423i −0.479702 0.830868i
\(89\) 3.00000 5.19615i 0.317999 0.550791i −0.662071 0.749441i \(-0.730322\pi\)
0.980071 + 0.198650i \(0.0636557\pi\)
\(90\) 18.0000 1.89737
\(91\) 0 0
\(92\) 0 0
\(93\) −4.50000 + 7.79423i −0.466628 + 0.808224i
\(94\) −0.500000 0.866025i −0.0515711 0.0893237i
\(95\) 1.50000 + 2.59808i 0.153897 + 0.266557i
\(96\) −7.50000 + 12.9904i −0.765466 + 1.32583i
\(97\) 5.00000 0.507673 0.253837 0.967247i \(-0.418307\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(98\) −5.50000 + 4.33013i −0.555584 + 0.437409i
\(99\) 18.0000 1.80907
\(100\) 2.00000 3.46410i 0.200000 0.346410i
\(101\) 2.50000 + 4.33013i 0.248759 + 0.430864i 0.963182 0.268851i \(-0.0866439\pi\)
−0.714423 + 0.699715i \(0.753311\pi\)
\(102\) 3.00000 + 5.19615i 0.297044 + 0.514496i
\(103\) −2.50000 + 4.33013i −0.246332 + 0.426660i −0.962505 0.271263i \(-0.912559\pi\)
0.716173 + 0.697923i \(0.245892\pi\)
\(104\) 0 0
\(105\) −4.50000 + 23.3827i −0.439155 + 2.28192i
\(106\) −3.00000 −0.291386
\(107\) −4.00000 + 6.92820i −0.386695 + 0.669775i −0.992003 0.126217i \(-0.959717\pi\)
0.605308 + 0.795991i \(0.293050\pi\)
\(108\) −4.50000 7.79423i −0.433013 0.750000i
\(109\) 3.50000 + 6.06218i 0.335239 + 0.580651i 0.983531 0.180741i \(-0.0578495\pi\)
−0.648292 + 0.761392i \(0.724516\pi\)
\(110\) −4.50000 + 7.79423i −0.429058 + 0.743151i
\(111\) 6.00000 0.569495
\(112\) 2.00000 + 1.73205i 0.188982 + 0.163663i
\(113\) 15.0000 1.41108 0.705541 0.708669i \(-0.250704\pi\)
0.705541 + 0.708669i \(0.250704\pi\)
\(114\) −1.50000 + 2.59808i −0.140488 + 0.243332i
\(115\) 0 0
\(116\) 3.50000 + 6.06218i 0.324967 + 0.562859i
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) −5.00000 + 1.73205i −0.458349 + 0.158777i
\(120\) 27.0000 2.46475
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) −6.50000 11.2583i −0.588482 1.01928i
\(123\) −4.50000 7.79423i −0.405751 0.702782i
\(124\) −1.50000 + 2.59808i −0.134704 + 0.233314i
\(125\) 3.00000 0.268328
\(126\) −15.0000 + 5.19615i −1.33631 + 0.462910i
\(127\) 11.0000 0.976092 0.488046 0.872818i \(-0.337710\pi\)
0.488046 + 0.872818i \(0.337710\pi\)
\(128\) −1.50000 + 2.59808i −0.132583 + 0.229640i
\(129\) −10.5000 18.1865i −0.924473 1.60123i
\(130\) 0 0
\(131\) −2.50000 + 4.33013i −0.218426 + 0.378325i −0.954327 0.298764i \(-0.903426\pi\)
0.735901 + 0.677089i \(0.236759\pi\)
\(132\) 9.00000 0.783349
\(133\) −2.00000 1.73205i −0.173422 0.150188i
\(134\) −3.00000 −0.259161
\(135\) −13.5000 + 23.3827i −1.16190 + 2.01246i
\(136\) 3.00000 + 5.19615i 0.257248 + 0.445566i
\(137\) 5.00000 + 8.66025i 0.427179 + 0.739895i 0.996621 0.0821359i \(-0.0261741\pi\)
−0.569442 + 0.822031i \(0.692841\pi\)
\(138\) 0 0
\(139\) −15.0000 −1.27228 −0.636142 0.771572i \(-0.719471\pi\)
−0.636142 + 0.771572i \(0.719471\pi\)
\(140\) −1.50000 + 7.79423i −0.126773 + 0.658733i
\(141\) 3.00000 0.252646
\(142\) −6.50000 + 11.2583i −0.545468 + 0.944778i
\(143\) 0 0
\(144\) 3.00000 + 5.19615i 0.250000 + 0.433013i
\(145\) 10.5000 18.1865i 0.871978 1.51031i
\(146\) −13.0000 −1.07589
\(147\) −3.00000 20.7846i −0.247436 1.71429i
\(148\) 2.00000 0.164399
\(149\) 7.50000 12.9904i 0.614424 1.06421i −0.376061 0.926595i \(-0.622722\pi\)
0.990485 0.137619i \(-0.0439449\pi\)
\(150\) −6.00000 10.3923i −0.489898 0.848528i
\(151\) −10.5000 18.1865i −0.854478 1.48000i −0.877129 0.480256i \(-0.840544\pi\)
0.0226507 0.999743i \(-0.492789\pi\)
\(152\) −1.50000 + 2.59808i −0.121666 + 0.210732i
\(153\) −12.0000 −0.970143
\(154\) 1.50000 7.79423i 0.120873 0.628077i
\(155\) 9.00000 0.722897
\(156\) 0 0
\(157\) −9.50000 16.4545i −0.758183 1.31321i −0.943777 0.330584i \(-0.892754\pi\)
0.185594 0.982627i \(-0.440579\pi\)
\(158\) −1.50000 2.59808i −0.119334 0.206692i
\(159\) 4.50000 7.79423i 0.356873 0.618123i
\(160\) 15.0000 1.18585
\(161\) 0 0
\(162\) −9.00000 −0.707107
\(163\) −0.500000 + 0.866025i −0.0391630 + 0.0678323i −0.884943 0.465700i \(-0.845802\pi\)
0.845780 + 0.533533i \(0.179136\pi\)
\(164\) −1.50000 2.59808i −0.117130 0.202876i
\(165\) −13.5000 23.3827i −1.05097 1.82034i
\(166\) 0 0
\(167\) 13.0000 1.00597 0.502985 0.864295i \(-0.332235\pi\)
0.502985 + 0.864295i \(0.332235\pi\)
\(168\) −22.5000 + 7.79423i −1.73591 + 0.601338i
\(169\) 0 0
\(170\) 3.00000 5.19615i 0.230089 0.398527i
\(171\) −3.00000 5.19615i −0.229416 0.397360i
\(172\) −3.50000 6.06218i −0.266872 0.462237i
\(173\) −9.50000 + 16.4545i −0.722272 + 1.25101i 0.237816 + 0.971310i \(0.423569\pi\)
−0.960087 + 0.279701i \(0.909765\pi\)
\(174\) 21.0000 1.59201
\(175\) 10.0000 3.46410i 0.755929 0.261861i
\(176\) −3.00000 −0.226134
\(177\) 6.00000 10.3923i 0.450988 0.781133i
\(178\) −3.00000 5.19615i −0.224860 0.389468i
\(179\) −8.50000 14.7224i −0.635320 1.10041i −0.986447 0.164079i \(-0.947535\pi\)
0.351127 0.936328i \(-0.385798\pi\)
\(180\) −9.00000 + 15.5885i −0.670820 + 1.16190i
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 0 0
\(183\) 39.0000 2.88296
\(184\) 0 0
\(185\) −3.00000 5.19615i −0.220564 0.382029i
\(186\) 4.50000 + 7.79423i 0.329956 + 0.571501i
\(187\) 3.00000 5.19615i 0.219382 0.379980i
\(188\) 1.00000 0.0729325
\(189\) 4.50000 23.3827i 0.327327 1.70084i
\(190\) 3.00000 0.217643
\(191\) 8.50000 14.7224i 0.615038 1.06528i −0.375339 0.926887i \(-0.622474\pi\)
0.990378 0.138390i \(-0.0441928\pi\)
\(192\) 10.5000 + 18.1865i 0.757772 + 1.31250i
\(193\) 3.50000 + 6.06218i 0.251936 + 0.436365i 0.964059 0.265689i \(-0.0855996\pi\)
−0.712123 + 0.702055i \(0.752266\pi\)
\(194\) 2.50000 4.33013i 0.179490 0.310885i
\(195\) 0 0
\(196\) −1.00000 6.92820i −0.0714286 0.494872i
\(197\) 1.00000 0.0712470 0.0356235 0.999365i \(-0.488658\pi\)
0.0356235 + 0.999365i \(0.488658\pi\)
\(198\) 9.00000 15.5885i 0.639602 1.10782i
\(199\) 10.0000 + 17.3205i 0.708881 + 1.22782i 0.965272 + 0.261245i \(0.0841331\pi\)
−0.256391 + 0.966573i \(0.582534\pi\)
\(200\) −6.00000 10.3923i −0.424264 0.734847i
\(201\) 4.50000 7.79423i 0.317406 0.549762i
\(202\) 5.00000 0.351799
\(203\) −3.50000 + 18.1865i −0.245652 + 1.27644i
\(204\) −6.00000 −0.420084
\(205\) −4.50000 + 7.79423i −0.314294 + 0.544373i
\(206\) 2.50000 + 4.33013i 0.174183 + 0.301694i
\(207\) 0 0
\(208\) 0 0
\(209\) 3.00000 0.207514
\(210\) 18.0000 + 15.5885i 1.24212 + 1.07571i
\(211\) 7.00000 0.481900 0.240950 0.970538i \(-0.422541\pi\)
0.240950 + 0.970538i \(0.422541\pi\)
\(212\) 1.50000 2.59808i 0.103020 0.178437i
\(213\) −19.5000 33.7750i −1.33612 2.31422i
\(214\) 4.00000 + 6.92820i 0.273434 + 0.473602i
\(215\) −10.5000 + 18.1865i −0.716094 + 1.24031i
\(216\) −27.0000 −1.83712
\(217\) −7.50000 + 2.59808i −0.509133 + 0.176369i
\(218\) 7.00000 0.474100
\(219\) 19.5000 33.7750i 1.31769 2.28230i
\(220\) −4.50000 7.79423i −0.303390 0.525487i
\(221\) 0 0
\(222\) 3.00000 5.19615i 0.201347 0.348743i
\(223\) 9.00000 0.602685 0.301342 0.953516i \(-0.402565\pi\)
0.301342 + 0.953516i \(0.402565\pi\)
\(224\) −12.5000 + 4.33013i −0.835191 + 0.289319i
\(225\) 24.0000 1.60000
\(226\) 7.50000 12.9904i 0.498893 0.864107i
\(227\) −2.00000 3.46410i −0.132745 0.229920i 0.791989 0.610535i \(-0.209046\pi\)
−0.924734 + 0.380615i \(0.875712\pi\)
\(228\) −1.50000 2.59808i −0.0993399 0.172062i
\(229\) −6.50000 + 11.2583i −0.429532 + 0.743971i −0.996832 0.0795401i \(-0.974655\pi\)
0.567300 + 0.823511i \(0.307988\pi\)
\(230\) 0 0
\(231\) 18.0000 + 15.5885i 1.18431 + 1.02565i
\(232\) 21.0000 1.37872
\(233\) 10.5000 18.1865i 0.687878 1.19144i −0.284645 0.958633i \(-0.591876\pi\)
0.972523 0.232806i \(-0.0747909\pi\)
\(234\) 0 0
\(235\) −1.50000 2.59808i −0.0978492 0.169480i
\(236\) 2.00000 3.46410i 0.130189 0.225494i
\(237\) 9.00000 0.584613
\(238\) −1.00000 + 5.19615i −0.0648204 + 0.336817i
\(239\) 4.00000 0.258738 0.129369 0.991596i \(-0.458705\pi\)
0.129369 + 0.991596i \(0.458705\pi\)
\(240\) 4.50000 7.79423i 0.290474 0.503115i
\(241\) −13.0000 22.5167i −0.837404 1.45043i −0.892058 0.451920i \(-0.850739\pi\)
0.0546547 0.998505i \(-0.482594\pi\)
\(242\) −1.00000 1.73205i −0.0642824 0.111340i
\(243\) 0 0
\(244\) 13.0000 0.832240
\(245\) −16.5000 + 12.9904i −1.05415 + 0.829925i
\(246\) −9.00000 −0.573819
\(247\) 0 0
\(248\) 4.50000 + 7.79423i 0.285750 + 0.494934i
\(249\) 0 0
\(250\) 1.50000 2.59808i 0.0948683 0.164317i
\(251\) −23.0000 −1.45175 −0.725874 0.687828i \(-0.758564\pi\)
−0.725874 + 0.687828i \(0.758564\pi\)
\(252\) 3.00000 15.5885i 0.188982 0.981981i
\(253\) 0 0
\(254\) 5.50000 9.52628i 0.345101 0.597732i
\(255\) 9.00000 + 15.5885i 0.563602 + 0.976187i
\(256\) 8.50000 + 14.7224i 0.531250 + 0.920152i
\(257\) 1.00000 1.73205i 0.0623783 0.108042i −0.833150 0.553047i \(-0.813465\pi\)
0.895528 + 0.445005i \(0.146798\pi\)
\(258\) −21.0000 −1.30740
\(259\) 4.00000 + 3.46410i 0.248548 + 0.215249i
\(260\) 0 0
\(261\) −21.0000 + 36.3731i −1.29987 + 2.25144i
\(262\) 2.50000 + 4.33013i 0.154451 + 0.267516i
\(263\) 13.5000 + 23.3827i 0.832446 + 1.44184i 0.896093 + 0.443866i \(0.146393\pi\)
−0.0636476 + 0.997972i \(0.520273\pi\)
\(264\) 13.5000 23.3827i 0.830868 1.43910i
\(265\) −9.00000 −0.552866
\(266\) −2.50000 + 0.866025i −0.153285 + 0.0530994i
\(267\) 18.0000 1.10158
\(268\) 1.50000 2.59808i 0.0916271 0.158703i
\(269\) −9.00000 15.5885i −0.548740 0.950445i −0.998361 0.0572259i \(-0.981774\pi\)
0.449622 0.893219i \(-0.351559\pi\)
\(270\) 13.5000 + 23.3827i 0.821584 + 1.42302i
\(271\) −8.00000 + 13.8564i −0.485965 + 0.841717i −0.999870 0.0161307i \(-0.994865\pi\)
0.513905 + 0.857847i \(0.328199\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) −6.00000 + 10.3923i −0.361814 + 0.626680i
\(276\) 0 0
\(277\) −11.0000 19.0526i −0.660926 1.14476i −0.980373 0.197153i \(-0.936830\pi\)
0.319447 0.947604i \(-0.396503\pi\)
\(278\) −7.50000 + 12.9904i −0.449820 + 0.779111i
\(279\) −18.0000 −1.07763
\(280\) 18.0000 + 15.5885i 1.07571 + 0.931589i
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 1.50000 2.59808i 0.0893237 0.154713i
\(283\) −0.500000 0.866025i −0.0297219 0.0514799i 0.850782 0.525519i \(-0.176129\pi\)
−0.880504 + 0.474039i \(0.842796\pi\)
\(284\) −6.50000 11.2583i −0.385704 0.668059i
\(285\) −4.50000 + 7.79423i −0.266557 + 0.461690i
\(286\) 0 0
\(287\) 1.50000 7.79423i 0.0885422 0.460079i
\(288\) −30.0000 −1.76777
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) −10.5000 18.1865i −0.616581 1.06795i
\(291\) 7.50000 + 12.9904i 0.439658 + 0.761510i
\(292\) 6.50000 11.2583i 0.380384 0.658844i
\(293\) −11.0000 −0.642627 −0.321313 0.946973i \(-0.604124\pi\)
−0.321313 + 0.946973i \(0.604124\pi\)
\(294\) −19.5000 7.79423i −1.13726 0.454569i
\(295\) −12.0000 −0.698667
\(296\) 3.00000 5.19615i 0.174371 0.302020i
\(297\) 13.5000 + 23.3827i 0.783349 + 1.35680i
\(298\) −7.50000 12.9904i −0.434463 0.752513i
\(299\) 0 0
\(300\) 12.0000 0.692820
\(301\) 3.50000 18.1865i 0.201737 1.04825i
\(302\) −21.0000 −1.20841
\(303\) −7.50000 + 12.9904i −0.430864 + 0.746278i
\(304\) 0.500000 + 0.866025i 0.0286770 + 0.0496700i
\(305\) −19.5000 33.7750i −1.11657 1.93395i
\(306\) −6.00000 + 10.3923i −0.342997 + 0.594089i
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 6.00000 + 5.19615i 0.341882 + 0.296078i
\(309\) −15.0000 −0.853320
\(310\) 4.50000 7.79423i 0.255583 0.442682i
\(311\) 4.50000 + 7.79423i 0.255172 + 0.441970i 0.964942 0.262463i \(-0.0845347\pi\)
−0.709771 + 0.704433i \(0.751201\pi\)
\(312\) 0 0
\(313\) −9.50000 + 16.4545i −0.536972 + 0.930062i 0.462093 + 0.886831i \(0.347098\pi\)
−0.999065 + 0.0432311i \(0.986235\pi\)
\(314\) −19.0000 −1.07223
\(315\) −45.0000 + 15.5885i −2.53546 + 0.878310i
\(316\) 3.00000 0.168763
\(317\) −4.50000 + 7.79423i −0.252745 + 0.437767i −0.964281 0.264883i \(-0.914667\pi\)
0.711535 + 0.702650i \(0.248000\pi\)
\(318\) −4.50000 7.79423i −0.252347 0.437079i
\(319\) −10.5000 18.1865i −0.587887 1.01825i
\(320\) 10.5000 18.1865i 0.586968 1.01666i
\(321\) −24.0000 −1.33955
\(322\) 0 0
\(323\) −2.00000 −0.111283
\(324\) 4.50000 7.79423i 0.250000 0.433013i
\(325\) 0 0
\(326\) 0.500000 + 0.866025i 0.0276924 + 0.0479647i
\(327\) −10.5000 + 18.1865i −0.580651 + 1.00572i
\(328\) −9.00000 −0.496942
\(329\) 2.00000 + 1.73205i 0.110264 + 0.0954911i
\(330\) −27.0000 −1.48630
\(331\) −14.5000 + 25.1147i −0.796992 + 1.38043i 0.124574 + 0.992210i \(0.460243\pi\)
−0.921567 + 0.388221i \(0.873090\pi\)
\(332\) 0 0
\(333\) 6.00000 + 10.3923i 0.328798 + 0.569495i
\(334\) 6.50000 11.2583i 0.355664 0.616028i
\(335\) −9.00000 −0.491723
\(336\) −1.50000 + 7.79423i −0.0818317 + 0.425210i
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) 22.5000 + 38.9711i 1.22203 + 2.11662i
\(340\) 3.00000 + 5.19615i 0.162698 + 0.281801i
\(341\) 4.50000 7.79423i 0.243689 0.422081i
\(342\) −6.00000 −0.324443
\(343\) 10.0000 15.5885i 0.539949 0.841698i
\(344\) −21.0000 −1.13224
\(345\) 0 0
\(346\) 9.50000 + 16.4545i 0.510723 + 0.884598i
\(347\) 4.00000 + 6.92820i 0.214731 + 0.371925i 0.953189 0.302374i \(-0.0977791\pi\)
−0.738458 + 0.674299i \(0.764446\pi\)
\(348\) −10.5000 + 18.1865i −0.562859 + 0.974901i
\(349\) −23.0000 −1.23116 −0.615581 0.788074i \(-0.711079\pi\)
−0.615581 + 0.788074i \(0.711079\pi\)
\(350\) 2.00000 10.3923i 0.106904 0.555492i
\(351\) 0 0
\(352\) 7.50000 12.9904i 0.399751 0.692390i
\(353\) −12.5000 21.6506i −0.665308 1.15235i −0.979202 0.202889i \(-0.934967\pi\)
0.313894 0.949458i \(-0.398366\pi\)
\(354\) −6.00000 10.3923i −0.318896 0.552345i
\(355\) −19.5000 + 33.7750i −1.03495 + 1.79259i
\(356\) 6.00000 0.317999
\(357\) −12.0000 10.3923i −0.635107 0.550019i
\(358\) −17.0000 −0.898478
\(359\) 8.50000 14.7224i 0.448613 0.777020i −0.549683 0.835373i \(-0.685252\pi\)
0.998296 + 0.0583530i \(0.0185849\pi\)
\(360\) 27.0000 + 46.7654i 1.42302 + 2.46475i
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) −11.0000 + 19.0526i −0.578147 + 1.00138i
\(363\) 6.00000 0.314918
\(364\) 0 0
\(365\) −39.0000 −2.04135
\(366\) 19.5000 33.7750i 1.01928 1.76545i
\(367\) 15.5000 + 26.8468i 0.809093 + 1.40139i 0.913493 + 0.406855i \(0.133375\pi\)
−0.104399 + 0.994535i \(0.533292\pi\)
\(368\) 0 0
\(369\) 9.00000 15.5885i 0.468521 0.811503i
\(370\) −6.00000 −0.311925
\(371\) 7.50000 2.59808i 0.389381 0.134885i
\(372\) −9.00000 −0.466628
\(373\) 4.50000 7.79423i 0.233001 0.403570i −0.725689 0.688023i \(-0.758479\pi\)
0.958690 + 0.284453i \(0.0918121\pi\)
\(374\) −3.00000 5.19615i −0.155126 0.268687i
\(375\) 4.50000 + 7.79423i 0.232379 + 0.402492i
\(376\) 1.50000 2.59808i 0.0773566 0.133986i
\(377\) 0 0
\(378\) −18.0000 15.5885i −0.925820 0.801784i
\(379\) 33.0000 1.69510 0.847548 0.530719i \(-0.178078\pi\)
0.847548 + 0.530719i \(0.178078\pi\)
\(380\) −1.50000 + 2.59808i −0.0769484 + 0.133278i
\(381\) 16.5000 + 28.5788i 0.845321 + 1.46414i
\(382\) −8.50000 14.7224i −0.434898 0.753265i
\(383\) −10.5000 + 18.1865i −0.536525 + 0.929288i 0.462563 + 0.886586i \(0.346930\pi\)
−0.999088 + 0.0427020i \(0.986403\pi\)
\(384\) −9.00000 −0.459279
\(385\) 4.50000 23.3827i 0.229341 1.19169i
\(386\) 7.00000 0.356291
\(387\) 21.0000 36.3731i 1.06749 1.84895i
\(388\) 2.50000 + 4.33013i 0.126918 + 0.219829i
\(389\) 16.5000 + 28.5788i 0.836583 + 1.44900i 0.892735 + 0.450582i \(0.148784\pi\)
−0.0561516 + 0.998422i \(0.517883\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −19.5000 7.79423i −0.984899 0.393668i
\(393\) −15.0000 −0.756650
\(394\) 0.500000 0.866025i 0.0251896 0.0436297i
\(395\) −4.50000 7.79423i −0.226420 0.392170i
\(396\) 9.00000 + 15.5885i 0.452267 + 0.783349i
\(397\) −0.500000 + 0.866025i −0.0250943 + 0.0434646i −0.878300 0.478110i \(-0.841322\pi\)
0.853206 + 0.521575i \(0.174655\pi\)
\(398\) 20.0000 1.00251
\(399\) 1.50000 7.79423i 0.0750939 0.390199i
\(400\) −4.00000 −0.200000
\(401\) −1.00000 + 1.73205i −0.0499376 + 0.0864945i −0.889914 0.456129i \(-0.849236\pi\)
0.839976 + 0.542623i \(0.182569\pi\)
\(402\) −4.50000 7.79423i −0.224440 0.388741i
\(403\) 0 0
\(404\) −2.50000 + 4.33013i −0.124380 + 0.215432i
\(405\) −27.0000 −1.34164
\(406\) 14.0000 + 12.1244i 0.694808 + 0.601722i
\(407\) −6.00000 −0.297409
\(408\) −9.00000 + 15.5885i −0.445566 + 0.771744i
\(409\) 7.00000 + 12.1244i 0.346128 + 0.599511i 0.985558 0.169338i \(-0.0541630\pi\)
−0.639430 + 0.768849i \(0.720830\pi\)
\(410\) 4.50000 + 7.79423i 0.222239 + 0.384930i
\(411\) −15.0000 + 25.9808i −0.739895 + 1.28154i
\(412\) −5.00000 −0.246332
\(413\) 10.0000 3.46410i 0.492068 0.170457i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −22.5000 38.9711i −1.10183 1.90843i
\(418\) 1.50000 2.59808i 0.0733674 0.127076i
\(419\) −25.0000 −1.22133 −0.610665 0.791889i \(-0.709098\pi\)
−0.610665 + 0.791889i \(0.709098\pi\)
\(420\) −22.5000 + 7.79423i −1.09789 + 0.380319i
\(421\) −18.0000 −0.877266 −0.438633 0.898666i \(-0.644537\pi\)
−0.438633 + 0.898666i \(0.644537\pi\)
\(422\) 3.50000 6.06218i 0.170377 0.295102i
\(423\) 3.00000 + 5.19615i 0.145865 + 0.252646i
\(424\) −4.50000 7.79423i −0.218539 0.378521i
\(425\) 4.00000 6.92820i 0.194029 0.336067i
\(426\) −39.0000 −1.88956
\(427\) 26.0000 + 22.5167i 1.25823 + 1.08966i
\(428\) −8.00000 −0.386695
\(429\) 0 0
\(430\) 10.5000 + 18.1865i 0.506355 + 0.877033i
\(431\) 4.50000 + 7.79423i 0.216757 + 0.375435i 0.953815 0.300395i \(-0.0971186\pi\)
−0.737057 + 0.675830i \(0.763785\pi\)
\(432\) −4.50000 + 7.79423i −0.216506 + 0.375000i
\(433\) 27.0000 1.29754 0.648769 0.760986i \(-0.275284\pi\)
0.648769 + 0.760986i \(0.275284\pi\)
\(434\) −1.50000 + 7.79423i −0.0720023 + 0.374135i
\(435\) 63.0000 3.02062
\(436\) −3.50000 + 6.06218i −0.167620 + 0.290326i
\(437\) 0 0
\(438\) −19.5000 33.7750i −0.931746 1.61383i
\(439\) 8.00000 13.8564i 0.381819 0.661330i −0.609503 0.792784i \(-0.708631\pi\)
0.991322 + 0.131453i \(0.0419644\pi\)
\(440\) −27.0000 −1.28717
\(441\) 33.0000 25.9808i 1.57143 1.23718i
\(442\) 0 0
\(443\) 5.50000 9.52628i 0.261313 0.452607i −0.705278 0.708931i \(-0.749178\pi\)
0.966591 + 0.256323i \(0.0825112\pi\)
\(444\) 3.00000 + 5.19615i 0.142374 + 0.246598i
\(445\) −9.00000 15.5885i −0.426641 0.738964i
\(446\) 4.50000 7.79423i 0.213081 0.369067i
\(447\) 45.0000 2.12843
\(448\) −3.50000 + 18.1865i −0.165359 + 0.859233i
\(449\) −15.0000 −0.707894 −0.353947 0.935266i \(-0.615161\pi\)
−0.353947 + 0.935266i \(0.615161\pi\)
\(450\) 12.0000 20.7846i 0.565685 0.979796i
\(451\) 4.50000 + 7.79423i 0.211897 + 0.367016i
\(452\) 7.50000 + 12.9904i 0.352770 + 0.611016i
\(453\) 31.5000 54.5596i 1.48000 2.56343i
\(454\) −4.00000 −0.187729
\(455\) 0 0
\(456\) −9.00000 −0.421464
\(457\) −9.00000 + 15.5885i −0.421002 + 0.729197i −0.996038 0.0889312i \(-0.971655\pi\)
0.575036 + 0.818128i \(0.304988\pi\)
\(458\) 6.50000 + 11.2583i 0.303725 + 0.526067i
\(459\) −9.00000 15.5885i −0.420084 0.727607i
\(460\) 0 0
\(461\) −35.0000 −1.63011 −0.815056 0.579382i \(-0.803294\pi\)
−0.815056 + 0.579382i \(0.803294\pi\)
\(462\) 22.5000 7.79423i 1.04679 0.362620i
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 3.50000 6.06218i 0.162483 0.281430i
\(465\) 13.5000 + 23.3827i 0.626048 + 1.08435i
\(466\) −10.5000 18.1865i −0.486403 0.842475i
\(467\) 3.50000 6.06218i 0.161961 0.280524i −0.773611 0.633661i \(-0.781552\pi\)
0.935572 + 0.353137i \(0.114885\pi\)
\(468\) 0 0
\(469\) 7.50000 2.59808i 0.346318 0.119968i
\(470\) −3.00000 −0.138380
\(471\) 28.5000 49.3634i 1.31321 2.27455i
\(472\) −6.00000 10.3923i −0.276172 0.478345i
\(473\) 10.5000 + 18.1865i 0.482791 + 0.836218i
\(474\) 4.50000 7.79423i 0.206692 0.358001i
\(475\) 4.00000 0.183533
\(476\) −4.00000 3.46410i −0.183340 0.158777i
\(477\) 18.0000 0.824163
\(478\) 2.00000 3.46410i 0.0914779 0.158444i
\(479\) −17.5000 30.3109i −0.799595 1.38494i −0.919880 0.392200i \(-0.871714\pi\)
0.120284 0.992739i \(-0.461619\pi\)
\(480\) 22.5000 + 38.9711i 1.02698 + 1.77878i
\(481\) 0 0
\(482\) −26.0000 −1.18427
\(483\) 0 0
\(484\) 2.00000 0.0909091
\(485\) 7.50000 12.9904i 0.340557 0.589863i
\(486\) 0 0
\(487\) 8.00000 + 13.8564i 0.362515 + 0.627894i 0.988374 0.152042i \(-0.0485850\pi\)
−0.625859 + 0.779936i \(0.715252\pi\)
\(488\) 19.5000 33.7750i 0.882724 1.52892i
\(489\) −3.00000 −0.135665
\(490\) 3.00000 + 20.7846i 0.135526 + 0.938953i
\(491\) 15.0000 0.676941 0.338470 0.940977i \(-0.390091\pi\)
0.338470 + 0.940977i \(0.390091\pi\)
\(492\) 4.50000 7.79423i 0.202876 0.351391i
\(493\) 7.00000 + 12.1244i 0.315264 + 0.546054i
\(494\) 0 0
\(495\) 27.0000 46.7654i 1.21356 2.10195i
\(496\) 3.00000 0.134704
\(497\) 6.50000 33.7750i 0.291565 1.51502i
\(498\) 0 0
\(499\) −15.5000 + 26.8468i −0.693875 + 1.20183i 0.276683 + 0.960961i \(0.410765\pi\)
−0.970558 + 0.240866i \(0.922569\pi\)
\(500\) 1.50000 + 2.59808i 0.0670820 + 0.116190i
\(501\) 19.5000 + 33.7750i 0.871196 + 1.50896i
\(502\) −11.5000 + 19.9186i −0.513270 + 0.889010i
\(503\) −31.0000 −1.38222 −0.691111 0.722749i \(-0.742878\pi\)
−0.691111 + 0.722749i \(0.742878\pi\)
\(504\) −36.0000 31.1769i −1.60357 1.38873i
\(505\) 15.0000 0.667491
\(506\) 0 0
\(507\) 0 0
\(508\) 5.50000 + 9.52628i 0.244023 + 0.422660i
\(509\) −17.0000 + 29.4449i −0.753512 + 1.30512i 0.192599 + 0.981278i \(0.438308\pi\)
−0.946111 + 0.323843i \(0.895025\pi\)
\(510\) 18.0000 0.797053
\(511\) 32.5000 11.2583i 1.43772 0.498039i
\(512\) 11.0000 0.486136
\(513\) 4.50000 7.79423i 0.198680 0.344124i
\(514\) −1.00000 1.73205i −0.0441081 0.0763975i
\(515\) 7.50000 + 12.9904i 0.330489 + 0.572425i
\(516\) 10.5000 18.1865i 0.462237 0.800617i
\(517\) −3.00000 −0.131940
\(518\) 5.00000 1.73205i 0.219687 0.0761019i
\(519\) −57.0000 −2.50202
\(520\) 0 0
\(521\) 8.50000 + 14.7224i 0.372392 + 0.645001i 0.989933 0.141537i \(-0.0452044\pi\)
−0.617541 + 0.786539i \(0.711871\pi\)
\(522\) 21.0000 + 36.3731i 0.919145 + 1.59201i
\(523\) −2.00000 + 3.46410i −0.0874539 + 0.151475i −0.906434 0.422347i \(-0.861206\pi\)
0.818980 + 0.573822i \(0.194540\pi\)
\(524\) −5.00000 −0.218426
\(525\) 24.0000 + 20.7846i 1.04745 + 0.907115i
\(526\) 27.0000 1.17726
\(527\) −3.00000 + 5.19615i −0.130682 + 0.226348i
\(528\) −4.50000 7.79423i −0.195837 0.339200i
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) −4.50000 + 7.79423i −0.195468 + 0.338560i
\(531\) 24.0000 1.04151
\(532\) 0.500000 2.59808i 0.0216777 0.112641i
\(533\) 0 0
\(534\) 9.00000 15.5885i 0.389468 0.674579i
\(535\) 12.0000 + 20.7846i 0.518805 + 0.898597i
\(536\) −4.50000 7.79423i −0.194370 0.336659i
\(537\) 25.5000 44.1673i 1.10041 1.90596i
\(538\) −18.0000 −0.776035
\(539\) 3.00000 + 20.7846i 0.129219 + 0.895257i
\(540\) −27.0000 −1.16190
\(541\) −18.5000 + 32.0429i −0.795377 + 1.37763i 0.127222 + 0.991874i \(0.459394\pi\)
−0.922599 + 0.385759i \(0.873939\pi\)
\(542\) 8.00000 + 13.8564i 0.343629 + 0.595184i
\(543\) −33.0000 57.1577i −1.41617 2.45287i
\(544\) −5.00000 + 8.66025i −0.214373 + 0.371305i
\(545\) 21.0000 0.899541
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) −5.00000 + 8.66025i −0.213589 + 0.369948i
\(549\) 39.0000 + 67.5500i 1.66448 + 2.88296i
\(550\) 6.00000 + 10.3923i 0.255841 + 0.443129i
\(551\) −3.50000 + 6.06218i −0.149105 + 0.258257i
\(552\) 0 0
\(553\) 6.00000 + 5.19615i 0.255146 + 0.220963i
\(554\) −22.0000 −0.934690
\(555\) 9.00000 15.5885i 0.382029 0.661693i
\(556\) −7.50000 12.9904i −0.318071 0.550915i
\(557\) 1.50000 + 2.59808i 0.0635570 + 0.110084i 0.896053 0.443947i \(-0.146422\pi\)
−0.832496 + 0.554031i \(0.813089\pi\)
\(558\) −9.00000 + 15.5885i −0.381000 + 0.659912i
\(559\) 0 0
\(560\) 7.50000 2.59808i 0.316933 0.109789i
\(561\) 18.0000 0.759961
\(562\) 9.00000 15.5885i 0.379642 0.657559i
\(563\) −2.00000 3.46410i −0.0842900 0.145994i 0.820798 0.571218i \(-0.193529\pi\)
−0.905088 + 0.425223i \(0.860196\pi\)
\(564\) 1.50000 + 2.59808i 0.0631614 + 0.109399i
\(565\) 22.5000 38.9711i 0.946582 1.63953i
\(566\) −1.00000 −0.0420331
\(567\) 22.5000 7.79423i 0.944911 0.327327i
\(568\) −39.0000 −1.63640
\(569\) −5.00000 + 8.66025i −0.209611 + 0.363057i −0.951592 0.307364i \(-0.900553\pi\)
0.741981 + 0.670421i \(0.233886\pi\)
\(570\) 4.50000 + 7.79423i 0.188484 + 0.326464i
\(571\) −21.5000 37.2391i −0.899747 1.55841i −0.827817 0.560998i \(-0.810418\pi\)
−0.0719297 0.997410i \(-0.522916\pi\)
\(572\) 0 0
\(573\) 51.0000 2.13056
\(574\) −6.00000 5.19615i −0.250435 0.216883i
\(575\) 0 0
\(576\) −21.0000 + 36.3731i −0.875000 + 1.51554i
\(577\) −0.500000 0.866025i −0.0208153 0.0360531i 0.855430 0.517918i \(-0.173293\pi\)
−0.876245 + 0.481865i \(0.839960\pi\)
\(578\) −6.50000 11.2583i −0.270364 0.468285i
\(579\) −10.5000 + 18.1865i −0.436365 + 0.755807i
\(580\) 21.0000 0.871978
\(581\) 0 0
\(582\) 15.0000 0.621770
\(583\) −4.50000 + 7.79423i −0.186371 + 0.322804i
\(584\) −19.5000 33.7750i −0.806916 1.39762i
\(585\) 0 0
\(586\) −5.50000 + 9.52628i −0.227203 + 0.393527i
\(587\) 33.0000 1.36206 0.681028 0.732257i \(-0.261533\pi\)
0.681028 + 0.732257i \(0.261533\pi\)
\(588\) 16.5000 12.9904i 0.680449 0.535714i
\(589\) −3.00000 −0.123613
\(590\) −6.00000 + 10.3923i −0.247016 + 0.427844i
\(591\) 1.50000 + 2.59808i 0.0617018 + 0.106871i
\(592\) −1.00000 1.73205i −0.0410997 0.0711868i
\(593\) 13.5000 23.3827i 0.554379 0.960212i −0.443573 0.896238i \(-0.646289\pi\)
0.997952 0.0639736i \(-0.0203773\pi\)
\(594\) 27.0000 1.10782
\(595\) −3.00000 + 15.5885i −0.122988 + 0.639064i
\(596\) 15.0000 0.614424
\(597\) −30.0000 + 51.9615i −1.22782 + 2.12664i
\(598\) 0 0
\(599\) 12.5000 + 21.6506i 0.510736 + 0.884621i 0.999923 + 0.0124417i \(0.00396043\pi\)
−0.489186 + 0.872179i \(0.662706\pi\)
\(600\) 18.0000 31.1769i 0.734847 1.27279i
\(601\) 35.0000 1.42768 0.713840 0.700309i \(-0.246954\pi\)
0.713840 + 0.700309i \(0.246954\pi\)
\(602\) −14.0000 12.1244i −0.570597 0.494152i
\(603\) 18.0000 0.733017
\(604\) 10.5000 18.1865i 0.427239 0.740000i
\(605\) −3.00000 5.19615i −0.121967 0.211254i
\(606\) 7.50000 + 12.9904i 0.304667 + 0.527698i
\(607\) −5.50000 + 9.52628i −0.223238 + 0.386660i −0.955789 0.294052i \(-0.904996\pi\)
0.732551 + 0.680712i \(0.238329\pi\)
\(608\) −5.00000 −0.202777
\(609\) −52.5000 + 18.1865i −2.12741 + 0.736956i
\(610\) −39.0000 −1.57906
\(611\) 0 0
\(612\) −6.00000 10.3923i −0.242536 0.420084i
\(613\) −12.5000 21.6506i −0.504870 0.874461i −0.999984 0.00563283i \(-0.998207\pi\)
0.495114 0.868828i \(-0.335126\pi\)
\(614\) −6.00000 + 10.3923i −0.242140 + 0.419399i
\(615\) −27.0000 −1.08875
\(616\) 22.5000 7.79423i 0.906551 0.314038i
\(617\) 33.0000 1.32853 0.664265 0.747497i \(-0.268745\pi\)
0.664265 + 0.747497i \(0.268745\pi\)
\(618\) −7.50000 + 12.9904i −0.301694 + 0.522550i
\(619\) 5.50000 + 9.52628i 0.221064 + 0.382893i 0.955131 0.296183i \(-0.0957138\pi\)
−0.734068 + 0.679076i \(0.762380\pi\)
\(620\) 4.50000 + 7.79423i 0.180724 + 0.313024i
\(621\) 0 0
\(622\) 9.00000 0.360867
\(623\) 12.0000 + 10.3923i 0.480770 + 0.416359i
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 9.50000 + 16.4545i 0.379696 + 0.657653i
\(627\) 4.50000 + 7.79423i 0.179713 + 0.311272i
\(628\) 9.50000 16.4545i 0.379091 0.656605i
\(629\) 4.00000 0.159490
\(630\) −9.00000 + 46.7654i −0.358569 + 1.86318i
\(631\) −25.0000 −0.995234 −0.497617 0.867397i \(-0.665792\pi\)
−0.497617 + 0.867397i \(0.665792\pi\)
\(632\) 4.50000 7.79423i 0.179000 0.310038i
\(633\) 10.5000 + 18.1865i 0.417338 + 0.722850i
\(634\) 4.50000 + 7.79423i 0.178718 + 0.309548i
\(635\) 16.5000 28.5788i 0.654783 1.13412i
\(636\) 9.00000 0.356873
\(637\) 0 0
\(638\) −21.0000 −0.831398
\(639\) 39.0000 67.5500i 1.54282 2.67224i
\(640\) 4.50000 + 7.79423i 0.177878 + 0.308094i
\(641\) 9.00000 + 15.5885i 0.355479 + 0.615707i 0.987200 0.159489i \(-0.0509845\pi\)
−0.631721 + 0.775196i \(0.717651\pi\)
\(642\) −12.0000 + 20.7846i −0.473602 + 0.820303i
\(643\) 19.0000 0.749287 0.374643 0.927169i \(-0.377765\pi\)
0.374643 + 0.927169i \(0.377765\pi\)
\(644\) 0 0
\(645\) −63.0000 −2.48062
\(646\) −1.00000 + 1.73205i −0.0393445 + 0.0681466i
\(647\) −4.50000 7.79423i −0.176913 0.306423i 0.763908 0.645325i \(-0.223278\pi\)
−0.940822 + 0.338902i \(0.889945\pi\)
\(648\) −13.5000 23.3827i −0.530330 0.918559i
\(649\) −6.00000 + 10.3923i −0.235521 + 0.407934i
\(650\) 0 0
\(651\) −18.0000 15.5885i −0.705476 0.610960i
\(652\) −1.00000 −0.0391630
\(653\) −9.00000 + 15.5885i −0.352197 + 0.610023i −0.986634 0.162951i \(-0.947899\pi\)
0.634437 + 0.772975i \(0.281232\pi\)
\(654\) 10.5000 + 18.1865i 0.410582 + 0.711150i
\(655\) 7.50000 + 12.9904i 0.293049 + 0.507576i
\(656\) −1.50000 + 2.59808i −0.0585652 + 0.101438i
\(657\) 78.0000 3.04307
\(658\) 2.50000 0.866025i 0.0974601 0.0337612i
\(659\) 29.0000 1.12968 0.564840 0.825201i \(-0.308938\pi\)
0.564840 + 0.825201i \(0.308938\pi\)
\(660\) 13.5000 23.3827i 0.525487 0.910170i
\(661\) −4.50000 7.79423i −0.175030 0.303160i 0.765142 0.643862i \(-0.222669\pi\)
−0.940172 + 0.340701i \(0.889335\pi\)
\(662\) 14.5000 + 25.1147i 0.563559 + 0.976112i
\(663\) 0 0
\(664\) 0 0
\(665\) −7.50000 + 2.59808i −0.290838 + 0.100749i
\(666\) 12.0000 0.464991
\(667\) 0 0
\(668\) 6.50000 + 11.2583i 0.251493 + 0.435598i
\(669\) 13.5000 + 23.3827i 0.521940 + 0.904027i
\(670\) −4.50000 + 7.79423i −0.173850 + 0.301117i
\(671\) −39.0000 −1.50558
\(672\) −30.0000 25.9808i −1.15728 1.00223i
\(673\) −41.0000 −1.58043 −0.790217 0.612827i \(-0.790032\pi\)
−0.790217 + 0.612827i \(0.790032\pi\)
\(674\) 7.00000 12.1244i 0.269630 0.467013i
\(675\) 18.0000 + 31.1769i 0.692820 + 1.20000i
\(676\) 0 0
\(677\) −3.50000 + 6.06218i −0.134516 + 0.232988i −0.925412 0.378962i \(-0.876281\pi\)
0.790897 + 0.611950i \(0.209615\pi\)
\(678\) 45.0000 1.72821
\(679\) −2.50000 + 12.9904i −0.0959412 + 0.498525i
\(680\) 18.0000 0.690268
\(681\) 6.00000 10.3923i 0.229920 0.398234i
\(682\) −4.50000 7.79423i −0.172314 0.298456i
\(683\) 6.00000 + 10.3923i 0.229584 + 0.397650i 0.957685 0.287819i \(-0.0929302\pi\)
−0.728101 + 0.685470i \(0.759597\pi\)
\(684\) 3.00000 5.19615i 0.114708 0.198680i
\(685\) 30.0000 1.14624
\(686\) −8.50000 16.4545i −0.324532 0.628235i
\(687\) −39.0000 −1.48794
\(688\) −3.50000 + 6.06218i −0.133436 + 0.231118i
\(689\) 0 0
\(690\) 0 0
\(691\) −2.00000 + 3.46410i −0.0760836 + 0.131781i −0.901557 0.432660i \(-0.857575\pi\)
0.825473 + 0.564441i \(0.190908\pi\)
\(692\) −19.0000 −0.722272
\(693\) −9.00000 + 46.7654i −0.341882 + 1.77647i
\(694\) 8.00000 0.303676
\(695\) −22.5000 + 38.9711i −0.853474 + 1.47826i
\(696\) 31.5000 + 54.5596i 1.19400 + 2.06808i
\(697\) −3.00000 5.19615i −0.113633 0.196818i
\(698\) −11.5000 + 19.9186i −0.435281 + 0.753930i
\(699\) 63.0000 2.38288
\(700\) 8.00000 + 6.92820i 0.302372 + 0.261861i
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) 1.00000 + 1.73205i 0.0377157 + 0.0653255i
\(704\) −10.5000 18.1865i −0.395734 0.685431i
\(705\) 4.50000 7.79423i 0.169480 0.293548i
\(706\) −25.0000 −0.940887
\(707\) −12.5000 + 4.33013i −0.470111 + 0.162851i
\(708\) 12.0000 0.450988
\(709\) 5.50000 9.52628i 0.206557 0.357767i −0.744071 0.668101i \(-0.767108\pi\)
0.950628 + 0.310334i \(0.100441\pi\)
\(710\) 19.5000 + 33.7750i 0.731822 + 1.26755i
\(711\) 9.00000 + 15.5885i 0.337526 + 0.584613i
\(712\) 9.00000 15.5885i 0.337289 0.584202i
\(713\) 0 0
\(714\) −15.0000 + 5.19615i −0.561361 + 0.194461i
\(715\) 0 0
\(716\) 8.50000 14.7224i 0.317660 0.550203i
\(717\) 6.00000 + 10.3923i 0.224074 + 0.388108i
\(718\) −8.50000 14.7224i −0.317217 0.549436i
\(719\) 4.50000 7.79423i 0.167822 0.290676i −0.769832 0.638247i \(-0.779660\pi\)
0.937654 + 0.347571i \(0.112993\pi\)
\(720\) 18.0000 0.670820
\(721\) −10.0000 8.66025i −0.372419 0.322525i
\(722\) 18.0000 0.669891
\(723\) 39.0000 67.5500i 1.45043 2.51221i
\(724\) −11.0000 19.0526i −0.408812 0.708083i
\(725\) −14.0000 24.2487i −0.519947 0.900575i
\(726\) 3.00000 5.19615i 0.111340 0.192847i
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) −19.5000 + 33.7750i −0.721727 + 1.25007i
\(731\) −7.00000 12.1244i −0.258904 0.448435i
\(732\) 19.5000 + 33.7750i 0.720741 + 1.24836i
\(733\) −4.50000 + 7.79423i −0.166211 + 0.287886i −0.937085 0.349102i \(-0.886487\pi\)
0.770873 + 0.636988i \(0.219820\pi\)
\(734\) 31.0000 1.14423
\(735\) −58.5000 23.3827i −2.15781 0.862483i
\(736\) 0 0
\(737\) −4.50000 + 7.79423i −0.165760 + 0.287104i
\(738\) −9.00000 15.5885i −0.331295 0.573819i
\(739\) 0.500000 + 0.866025i 0.0183928 + 0.0318573i 0.875075 0.483987i \(-0.160812\pi\)
−0.856683 + 0.515844i \(0.827478\pi\)
\(740\) 3.00000 5.19615i 0.110282 0.191014i
\(741\) 0 0
\(742\) 1.50000 7.79423i 0.0550667 0.286135i
\(743\) −51.0000 −1.87101 −0.935504 0.353315i \(-0.885054\pi\)
−0.935504 + 0.353315i \(0.885054\pi\)
\(744\) −13.5000 + 23.3827i −0.494934 + 0.857251i
\(745\) −22.5000 38.9711i −0.824336 1.42779i
\(746\) −4.50000 7.79423i −0.164757 0.285367i
\(747\) 0 0
\(748\) 6.00000 0.219382
\(749\) −16.0000 13.8564i −0.584627 0.506302i
\(750\) 9.00000 0.328634
\(751\) −14.0000 + 24.2487i −0.510867 + 0.884848i 0.489053 + 0.872254i \(0.337342\pi\)
−0.999921 + 0.0125942i \(0.995991\pi\)
\(752\) −0.500000 0.866025i −0.0182331 0.0315807i
\(753\) −34.5000 59.7558i −1.25725 2.17762i
\(754\) 0 0
\(755\) −63.0000 −2.29280
\(756\) 22.5000 7.79423i 0.818317 0.283473i
\(757\) 3.00000 0.109037 0.0545184 0.998513i \(-0.482638\pi\)
0.0545184 + 0.998513i \(0.482638\pi\)
\(758\) 16.5000 28.5788i 0.599307 1.03803i
\(759\) 0 0
\(760\) 4.50000 + 7.79423i 0.163232 + 0.282726i
\(761\) −4.50000 + 7.79423i −0.163125 + 0.282541i −0.935988 0.352032i \(-0.885491\pi\)
0.772863 + 0.634573i \(0.218824\pi\)
\(762\) 33.0000 1.19546
\(763\) −17.5000 + 6.06218i −0.633543 + 0.219466i
\(764\) 17.0000 0.615038
\(765\) −18.0000 + 31.1769i −0.650791 + 1.12720i
\(766\) 10.5000 + 18.1865i 0.379380 + 0.657106i
\(767\) 0 0
\(768\) −25.5000 + 44.1673i −0.920152 + 1.59375i
\(769\) −19.0000 −0.685158 −0.342579 0.939489i \(-0.611300\pi\)
−0.342579 + 0.939489i \(0.611300\pi\)
\(770\) −18.0000 15.5885i −0.648675 0.561769i
\(771\) 6.00000 0.216085
\(772\) −3.50000 + 6.06218i −0.125968 + 0.218183i
\(773\) −3.00000 5.19615i −0.107903 0.186893i 0.807018 0.590527i \(-0.201080\pi\)
−0.914920 + 0.403634i \(0.867747\pi\)
\(774\) −21.0000 36.3731i −0.754829 1.30740i
\(775\) 6.00000 10.3923i 0.215526 0.373303i
\(776\) 15.0000 0.538469
\(777\) −3.00000 + 15.5885i −0.107624 + 0.559233i
\(778\) 33.0000 1.18311
\(779\) 1.50000 2.59808i 0.0537431 0.0930857i
\(780\) 0 0
\(781\) 19.5000 + 33.7750i 0.697765 + 1.20856i
\(782\) 0 0
\(783\) −63.0000 −2.25144
\(784\) −5.50000 + 4.33013i −0.196429 + 0.154647i
\(785\) −57.0000 −2.03442
\(786\) −7.50000 + 12.9904i −0.267516 + 0.463352i
\(787\) −10.0000 17.3205i −0.356462 0.617409i 0.630905 0.775860i \(-0.282684\pi\)
−0.987367 + 0.158450i \(0.949350\pi\)
\(788\) 0.500000 + 0.866025i 0.0178118 + 0.0308509i
\(789\) −40.5000 + 70.1481i −1.44184 + 2.49734i
\(790\) −9.00000 −0.320206
\(791\) −7.50000 + 38.9711i −0.266669 + 1.38565i
\(792\) 54.0000 1.91881
\(793\) 0 0
\(794\) 0.500000 + 0.866025i 0.0177443 + 0.0307341i
\(795\) −13.5000 23.3827i −0.478796 0.829298i
\(796\) −10.0000 + 17.3205i −0.354441 + 0.613909i
\(797\) 3.00000 0.106265 0.0531327 0.998587i \(-0.483079\pi\)
0.0531327 + 0.998587i \(0.483079\pi\)
\(798\) −6.00000 5.19615i −0.212398 0.183942i
\(799\) 2.00000 0.0707549
\(800\) 10.0000 17.3205i 0.353553 0.612372i
\(801\) 18.0000 + 31.1769i 0.635999 + 1.10158i
\(802\) 1.00000 + 1.73205i 0.0353112 + 0.0611608i
\(803\) −19.5000 + 33.7750i −0.688140 + 1.19189i
\(804\) 9.00000 0.317406
\(805\) 0 0
\(806\) 0 0
\(807\) 27.0000 46.7654i 0.950445 1.64622i
\(808\) 7.50000 + 12.9904i 0.263849 + 0.457000i
\(809\) −5.50000 9.52628i −0.193370 0.334926i 0.752995 0.658026i \(-0.228608\pi\)
−0.946365 + 0.323100i \(0.895275\pi\)
\(810\) −13.5000 + 23.3827i −0.474342 + 0.821584i
\(811\) 4.00000 0.140459 0.0702295 0.997531i \(-0.477627\pi\)
0.0702295 + 0.997531i \(0.477627\pi\)
\(812\) −17.5000 + 6.06218i −0.614130 + 0.212741i
\(813\) −48.0000 −1.68343
\(814\) −3.00000 + 5.19615i −0.105150 + 0.182125i
\(815\) 1.50000 + 2.59808i 0.0525427 + 0.0910066i
\(816\) 3.00000 + 5.19615i 0.105021 + 0.181902i
\(817\) 3.50000 6.06218i 0.122449 0.212089i
\(818\) 14.0000 0.489499
\(819\) 0 0
\(820\) −9.00000 −0.314294
\(821\) −27.0000 + 46.7654i −0.942306 + 1.63212i −0.181250 + 0.983437i \(0.558014\pi\)
−0.761056 + 0.648686i \(0.775319\pi\)
\(822\) 15.0000 + 25.9808i 0.523185 + 0.906183i
\(823\) −20.0000 34.6410i −0.697156 1.20751i −0.969448 0.245295i \(-0.921115\pi\)
0.272292 0.962215i \(-0.412218\pi\)
\(824\) −7.50000 + 12.9904i −0.261275 + 0.452541i
\(825\) −36.0000 −1.25336
\(826\) 2.00000 10.3923i 0.0695889 0.361595i
\(827\) −4.00000 −0.139094 −0.0695468 0.997579i \(-0.522155\pi\)
−0.0695468 + 0.997579i \(0.522155\pi\)
\(828\) 0 0
\(829\) −5.50000 9.52628i −0.191023 0.330861i 0.754567 0.656223i \(-0.227847\pi\)
−0.945589 + 0.325362i \(0.894514\pi\)
\(830\) 0 0
\(831\) 33.0000 57.1577i 1.14476 1.98278i
\(832\) 0 0
\(833\) −2.00000 13.8564i −0.0692959 0.480096i
\(834\) −45.0000 −1.55822
\(835\) 19.5000 33.7750i 0.674825 1.16883i
\(836\) 1.50000 + 2.59808i 0.0518786 + 0.0898563i
\(837\) −13.5000 23.3827i −0.466628 0.808224i
\(838\) −12.5000 + 21.6506i −0.431805 + 0.747909i
\(839\) −37.0000 −1.27738 −0.638691 0.769463i \(-0.720524\pi\)
−0.638691 + 0.769463i \(0.720524\pi\)
\(840\) −13.5000 + 70.1481i −0.465794 + 2.42034i
\(841\) 20.0000 0.689655
\(842\) −9.00000 + 15.5885i −0.310160 + 0.537214i
\(843\) 27.0000 + 46.7654i 0.929929 + 1.61068i
\(844\) 3.50000 + 6.06218i 0.120475 + 0.208669i
\(845\) 0 0
\(846\) 6.00000 0.206284
\(847\) 4.00000 + 3.46410i 0.137442 + 0.119028i
\(848\) −3.00000 −0.103020
\(849\) 1.50000 2.59808i 0.0514799 0.0891657i
\(850\) −4.00000 6.92820i −0.137199 0.237635i
\(851\) 0 0
\(852\) 19.5000 33.7750i 0.668059 1.15711i
\(853\) 6.00000 0.205436 0.102718 0.994711i \(-0.467246\pi\)
0.102718 + 0.994711i \(0.467246\pi\)
\(854\) 32.5000 11.2583i 1.11213 0.385252i
\(855\) −18.0000 −0.615587
\(856\) −12.0000 + 20.7846i −0.410152 + 0.710403i
\(857\) 16.5000 + 28.5788i 0.563629 + 0.976235i 0.997176 + 0.0751033i \(0.0239287\pi\)
−0.433546 + 0.901131i \(0.642738\pi\)
\(858\) 0 0
\(859\) −12.5000 + 21.6506i −0.426494 + 0.738710i −0.996559 0.0828900i \(-0.973585\pi\)
0.570064 + 0.821600i \(0.306918\pi\)
\(860\) −21.0000 −0.716094
\(861\) 22.5000 7.79423i 0.766798 0.265627i
\(862\) 9.00000 0.306541
\(863\) 18.5000 32.0429i 0.629747 1.09075i −0.357855 0.933777i \(-0.616492\pi\)
0.987602 0.156977i \(-0.0501749\pi\)
\(864\) −22.5000 38.9711i −0.765466 1.32583i
\(865\) 28.5000 + 49.3634i 0.969029 + 1.67841i
\(866\) 13.5000 23.3827i 0.458749 0.794576i
\(867\) 39.0000 1.32451
\(868\) −6.00000 5.19615i −0.203653 0.176369i
\(869\) −9.00000 −0.305304
\(870\) 31.5000 54.5596i 1.06795 1.84974i
\(871\) 0 0
\(872\) 10.5000 + 18.1865i 0.355575 + 0.615874i
\(873\) −15.0000 + 25.9808i −0.507673 + 0.879316i
\(874\) 0 0
\(875\) −1.50000 + 7.79423i −0.0507093 + 0.263493i
\(876\) 39.0000 1.31769
\(877\) −22.5000 + 38.9711i −0.759771 + 1.31596i 0.183196 + 0.983076i \(0.441356\pi\)
−0.942967 + 0.332886i \(0.891978\pi\)
\(878\) −8.00000 13.8564i −0.269987 0.467631i
\(879\) −16.5000 28.5788i −0.556531 0.963940i
\(880\) −4.50000 + 7.79423i −0.151695 + 0.262743i
\(881\) 15.0000 0.505363 0.252681 0.967550i \(-0.418688\pi\)
0.252681 + 0.967550i \(0.418688\pi\)
\(882\) −6.00000 41.5692i −0.202031 1.39971i
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) −18.0000 31.1769i −0.605063 1.04800i
\(886\) −5.50000 9.52628i −0.184776 0.320042i
\(887\) −12.0000 + 20.7846i −0.402921 + 0.697879i −0.994077 0.108678i \(-0.965338\pi\)
0.591156 + 0.806557i \(0.298672\pi\)
\(888\) 18.0000 0.604040
\(889\) −5.50000 + 28.5788i −0.184464 + 0.958503i
\(890\) −18.0000 −0.603361
\(891\) −13.5000 + 23.3827i −0.452267 + 0.783349i
\(892\) 4.50000 + 7.79423i 0.150671 + 0.260970i
\(893\) 0.500000 + 0.866025i 0.0167319 + 0.0289804i
\(894\) 22.5000 38.9711i 0.752513 1.30339i
\(895\) −51.0000 −1.70474
\(896\) −6.00000 5.19615i −0.200446 0.173591i
\(897\) 0 0
\(898\) −7.50000 + 12.9904i −0.250278 + 0.433495i
\(899\) 10.5000 + 18.1865i 0.350195 + 0.606555i
\(900\) 12.0000 + 20.7846i 0.400000 + 0.692820i
\(901\) 3.00000 5.19615i 0.0999445 0.173109i
\(902\) 9.00000 0.299667
\(903\) 52.5000 18.1865i 1.74709 0.605210i
\(904\) 45.0000 1.49668
\(905\) −33.0000 + 57.1577i −1.09696 + 1.89999i
\(906\) −31.5000 54.5596i −1.04652 1.81262i
\(907\) 23.5000 + 40.7032i 0.780305 + 1.35153i 0.931764 + 0.363064i \(0.118269\pi\)
−0.151460 + 0.988463i \(0.548397\pi\)
\(908\) 2.00000 3.46410i 0.0663723 0.114960i
\(909\) −30.0000 −0.995037
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) −1.50000 + 2.59808i −0.0496700 + 0.0860309i
\(913\) 0 0
\(914\) 9.00000 + 15.5885i 0.297694 + 0.515620i
\(915\) 58.5000 101.325i 1.93395 3.34970i
\(916\) −13.0000 −0.429532
\(917\) −10.0000 8.66025i −0.330229 0.285987i
\(918\) −18.0000 −0.594089
\(919\) 12.5000 21.6506i 0.412337 0.714189i −0.582808 0.812610i \(-0.698046\pi\)
0.995145 + 0.0984214i \(0.0313793\pi\)
\(920\) 0 0
\(921\) −18.0000 31.1769i −0.593120 1.02731i
\(922\) −17.5000 + 30.3109i −0.576332 + 0.998236i
\(923\) 0 0
\(924\) −4.50000 + 23.3827i −0.148039 + 0.769234i
\(925\) −8.00000 −0.263038
\(926\) 4.00000 6.92820i 0.131448 0.227675i
\(927\) −15.0000 25.9808i −0.492665 0.853320i
\(928\) 17.5000 + 30.3109i 0.574466 + 0.995004i
\(929\) −6.50000 + 11.2583i −0.213258 + 0.369374i −0.952732 0.303811i \(-0.901741\pi\)
0.739474 + 0.673185i \(0.235074\pi\)
\(930\) 27.0000 0.885365
\(931\) 5.50000 4.33013i 0.180255 0.141914i
\(932\) 21.0000 0.687878
\(933\) −13.5000 + 23.3827i −0.441970 + 0.765515i
\(934\) −3.50000 6.06218i −0.114523 0.198361i
\(935\) −9.00000 15.5885i −0.294331 0.509797i
\(936\) 0 0
\(937\) 22.0000 0.718709 0.359354 0.933201i \(-0.382997\pi\)
0.359354 + 0.933201i \(0.382997\pi\)
\(938\) 1.50000 7.79423i 0.0489767 0.254491i
\(939\) −57.0000 −1.86012
\(940\) 1.50000 2.59808i 0.0489246 0.0847399i
\(941\) −8.50000 14.7224i −0.277092 0.479938i 0.693569 0.720390i \(-0.256037\pi\)
−0.970661 + 0.240453i \(0.922704\pi\)
\(942\) −28.5000 49.3634i −0.928580 1.60835i
\(943\) 0 0
\(944\) −4.00000 −0.130189
\(945\) −54.0000 46.7654i −1.75662 1.52128i
\(946\) 21.0000 0.682769
\(947\) −6.00000 + 10.3923i −0.194974 + 0.337705i −0.946892 0.321552i \(-0.895796\pi\)
0.751918 + 0.659256i \(0.229129\pi\)
\(948\) 4.50000 + 7.79423i 0.146153 + 0.253145i
\(949\) 0 0
\(950\) 2.00000 3.46410i 0.0648886 0.112390i
\(951\) −27.0000 −0.875535
\(952\) −15.0000 + 5.19615i −0.486153 + 0.168408i
\(953\) −33.0000 −1.06897 −0.534487 0.845176i \(-0.679495\pi\)
−0.534487 + 0.845176i \(0.679495\pi\)
\(954\) 9.00000 15.5885i 0.291386 0.504695i
\(955\) −25.5000 44.1673i −0.825161 1.42922i
\(956\) 2.00000 + 3.46410i 0.0646846 + 0.112037i
\(957\) 31.5000 54.5596i 1.01825 1.76366i
\(958\) −35.0000 −1.13080
\(959\) −25.0000 + 8.66025i −0.807292 + 0.279654i
\(960\) 63.0000 2.03332
\(961\) 11.0000 19.0526i 0.354839 0.614599i
\(962\) 0 0
\(963\) −24.0000 41.5692i −0.773389 1.33955i
\(964\) 13.0000 22.5167i 0.418702 0.725213i
\(965\) 21.0000 0.676014
\(966\) 0 0
\(967\) 8.00000 0.257263 0.128631 0.991692i \(-0.458942\pi\)
0.128631 + 0.991692i \(0.458942\pi\)
\(968\) 3.00000 5.19615i 0.0964237 0.167011i
\(969\) −3.00000 5.19615i −0.0963739 0.166924i
\(970\) −7.50000 12.9904i −0.240810 0.417096i
\(971\) 0.500000 0.866025i 0.0160458 0.0277921i −0.857891 0.513832i \(-0.828226\pi\)
0.873937 + 0.486040i \(0.161559\pi\)
\(972\) 0 0
\(973\) 7.50000 38.9711i 0.240439 1.24936i
\(974\) 16.0000 0.512673
\(975\) 0 0
\(976\) −6.50000 11.2583i −0.208060 0.360370i
\(977\) −2.50000 4.33013i −0.0799821 0.138533i 0.823260 0.567665i \(-0.192153\pi\)
−0.903242 + 0.429132i \(0.858820\pi\)
\(978\) −1.50000 + 2.59808i −0.0479647 + 0.0830773i
\(979\) −18.0000 −0.575282
\(980\) −19.5000 7.79423i −0.622905 0.248978i
\(981\) −42.0000 −1.34096
\(982\) 7.50000 12.9904i 0.239335 0.414540i
\(983\) 23.5000 + 40.7032i 0.749534 + 1.29823i 0.948046 + 0.318132i \(0.103056\pi\)
−0.198513 + 0.980098i \(0.563611\pi\)
\(984\) −13.5000 23.3827i −0.430364 0.745413i
\(985\) 1.50000 2.59808i 0.0477940 0.0827816i
\(986\) 14.0000 0.445851
\(987\) −1.50000 + 7.79423i −0.0477455 + 0.248093i
\(988\) 0 0
\(989\) 0 0
\(990\) −27.0000 46.7654i −0.858116 1.48630i
\(991\) −6.50000 11.2583i −0.206479 0.357633i 0.744124 0.668042i \(-0.232867\pi\)
−0.950603 + 0.310409i \(0.899534\pi\)
\(992\) −7.50000 + 12.9904i −0.238125 + 0.412445i
\(993\) −87.0000 −2.76086
\(994\) −26.0000 22.5167i −0.824670 0.714185i
\(995\) 60.0000 1.90213
\(996\) 0 0
\(997\) −1.00000 1.73205i −0.0316703 0.0548546i 0.849756 0.527176i \(-0.176749\pi\)
−0.881426 + 0.472322i \(0.843416\pi\)
\(998\) 15.5000 + 26.8468i 0.490644 + 0.849820i
\(999\) −9.00000 + 15.5885i −0.284747 + 0.493197i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1183.2.e.c.170.1 2
7.2 even 3 8281.2.a.c.1.1 1
7.4 even 3 inner 1183.2.e.c.508.1 2
7.5 odd 6 8281.2.a.g.1.1 1
13.4 even 6 91.2.h.a.16.1 yes 2
13.10 even 6 91.2.g.a.9.1 2
13.12 even 2 1183.2.e.a.170.1 2
39.17 odd 6 819.2.s.a.289.1 2
39.23 odd 6 819.2.n.c.100.1 2
91.4 even 6 91.2.g.a.81.1 yes 2
91.10 odd 6 637.2.h.a.165.1 2
91.12 odd 6 8281.2.a.j.1.1 1
91.17 odd 6 637.2.g.a.263.1 2
91.23 even 6 637.2.f.b.295.1 2
91.25 even 6 1183.2.e.a.508.1 2
91.30 even 6 637.2.f.b.393.1 2
91.51 even 6 8281.2.a.i.1.1 1
91.62 odd 6 637.2.g.a.373.1 2
91.69 odd 6 637.2.h.a.471.1 2
91.75 odd 6 637.2.f.a.295.1 2
91.82 odd 6 637.2.f.a.393.1 2
91.88 even 6 91.2.h.a.74.1 yes 2
273.95 odd 6 819.2.n.c.172.1 2
273.179 odd 6 819.2.s.a.802.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.a.9.1 2 13.10 even 6
91.2.g.a.81.1 yes 2 91.4 even 6
91.2.h.a.16.1 yes 2 13.4 even 6
91.2.h.a.74.1 yes 2 91.88 even 6
637.2.f.a.295.1 2 91.75 odd 6
637.2.f.a.393.1 2 91.82 odd 6
637.2.f.b.295.1 2 91.23 even 6
637.2.f.b.393.1 2 91.30 even 6
637.2.g.a.263.1 2 91.17 odd 6
637.2.g.a.373.1 2 91.62 odd 6
637.2.h.a.165.1 2 91.10 odd 6
637.2.h.a.471.1 2 91.69 odd 6
819.2.n.c.100.1 2 39.23 odd 6
819.2.n.c.172.1 2 273.95 odd 6
819.2.s.a.289.1 2 39.17 odd 6
819.2.s.a.802.1 2 273.179 odd 6
1183.2.e.a.170.1 2 13.12 even 2
1183.2.e.a.508.1 2 91.25 even 6
1183.2.e.c.170.1 2 1.1 even 1 trivial
1183.2.e.c.508.1 2 7.4 even 3 inner
8281.2.a.c.1.1 1 7.2 even 3
8281.2.a.g.1.1 1 7.5 odd 6
8281.2.a.i.1.1 1 91.51 even 6
8281.2.a.j.1.1 1 91.12 odd 6