Properties

Label 1183.2.e.e.170.1
Level $1183$
Weight $2$
Character 1183.170
Analytic conductor $9.446$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1183,2,Mod(170,1183)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1183, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1183.170");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44630255912\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 170.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1183.170
Dual form 1183.2.e.e.508.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 1.50000i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.866025 - 1.50000i) q^{5} -1.73205 q^{6} +(-2.59808 - 0.500000i) q^{7} -1.73205 q^{8} +(1.00000 - 1.73205i) q^{9} +(1.50000 + 2.59808i) q^{10} +(2.59808 + 4.50000i) q^{11} +(0.500000 - 0.866025i) q^{12} +(3.00000 - 3.46410i) q^{14} +1.73205 q^{15} +(2.50000 - 4.33013i) q^{16} +(3.00000 + 5.19615i) q^{17} +(1.73205 + 3.00000i) q^{18} +(0.866025 - 1.50000i) q^{19} -1.73205 q^{20} +(-0.866025 - 2.50000i) q^{21} -9.00000 q^{22} +(-0.866025 - 1.50000i) q^{24} +(1.00000 + 1.73205i) q^{25} +5.00000 q^{27} +(0.866025 + 2.50000i) q^{28} +3.00000 q^{29} +(-1.50000 + 2.59808i) q^{30} +(0.866025 + 1.50000i) q^{31} +(2.59808 + 4.50000i) q^{32} +(-2.59808 + 4.50000i) q^{33} -10.3923 q^{34} +(-3.00000 + 3.46410i) q^{35} -2.00000 q^{36} +(1.50000 + 2.59808i) q^{38} +(-1.50000 + 2.59808i) q^{40} -5.19615 q^{41} +(4.50000 + 0.866025i) q^{42} -11.0000 q^{43} +(2.59808 - 4.50000i) q^{44} +(-1.73205 - 3.00000i) q^{45} +(-4.33013 + 7.50000i) q^{47} +5.00000 q^{48} +(6.50000 + 2.59808i) q^{49} -3.46410 q^{50} +(-3.00000 + 5.19615i) q^{51} +(4.50000 + 7.79423i) q^{53} +(-4.33013 + 7.50000i) q^{54} +9.00000 q^{55} +(4.50000 + 0.866025i) q^{56} +1.73205 q^{57} +(-2.59808 + 4.50000i) q^{58} +(-1.73205 - 3.00000i) q^{59} +(-0.866025 - 1.50000i) q^{60} +(-3.50000 + 6.06218i) q^{61} -3.00000 q^{62} +(-3.46410 + 4.00000i) q^{63} +1.00000 q^{64} +(-4.50000 - 7.79423i) q^{66} +(4.33013 + 7.50000i) q^{67} +(3.00000 - 5.19615i) q^{68} +(-2.59808 - 7.50000i) q^{70} -1.73205 q^{71} +(-1.73205 + 3.00000i) q^{72} +(4.33013 + 7.50000i) q^{73} +(-1.00000 + 1.73205i) q^{75} -1.73205 q^{76} +(-4.50000 - 12.9904i) q^{77} +(2.50000 - 4.33013i) q^{79} +(-4.33013 - 7.50000i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(4.50000 - 7.79423i) q^{82} +3.46410 q^{83} +(-1.73205 + 2.00000i) q^{84} +10.3923 q^{85} +(9.52628 - 16.5000i) q^{86} +(1.50000 + 2.59808i) q^{87} +(-4.50000 - 7.79423i) q^{88} +(3.46410 - 6.00000i) q^{89} +6.00000 q^{90} +(-0.866025 + 1.50000i) q^{93} +(-7.50000 - 12.9904i) q^{94} +(-1.50000 - 2.59808i) q^{95} +(-2.59808 + 4.50000i) q^{96} +5.19615 q^{97} +(-9.52628 + 7.50000i) q^{98} +10.3923 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 2 q^{4} + 4 q^{9} + 6 q^{10} + 2 q^{12} + 12 q^{14} + 10 q^{16} + 12 q^{17} - 36 q^{22} + 4 q^{25} + 20 q^{27} + 12 q^{29} - 6 q^{30} - 12 q^{35} - 8 q^{36} + 6 q^{38} - 6 q^{40} + 18 q^{42}+ \cdots - 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1183\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(1016\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 1.50000i −0.612372 + 1.06066i 0.378467 + 0.925615i \(0.376451\pi\)
−0.990839 + 0.135045i \(0.956882\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i 0.973494 0.228714i \(-0.0734519\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.866025 1.50000i 0.387298 0.670820i −0.604787 0.796387i \(-0.706742\pi\)
0.992085 + 0.125567i \(0.0400750\pi\)
\(6\) −1.73205 −0.707107
\(7\) −2.59808 0.500000i −0.981981 0.188982i
\(8\) −1.73205 −0.612372
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) 1.50000 + 2.59808i 0.474342 + 0.821584i
\(11\) 2.59808 + 4.50000i 0.783349 + 1.35680i 0.929980 + 0.367610i \(0.119824\pi\)
−0.146631 + 0.989191i \(0.546843\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) 0 0
\(14\) 3.00000 3.46410i 0.801784 0.925820i
\(15\) 1.73205 0.447214
\(16\) 2.50000 4.33013i 0.625000 1.08253i
\(17\) 3.00000 + 5.19615i 0.727607 + 1.26025i 0.957892 + 0.287129i \(0.0927008\pi\)
−0.230285 + 0.973123i \(0.573966\pi\)
\(18\) 1.73205 + 3.00000i 0.408248 + 0.707107i
\(19\) 0.866025 1.50000i 0.198680 0.344124i −0.749421 0.662094i \(-0.769668\pi\)
0.948101 + 0.317970i \(0.103001\pi\)
\(20\) −1.73205 −0.387298
\(21\) −0.866025 2.50000i −0.188982 0.545545i
\(22\) −9.00000 −1.91881
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) −0.866025 1.50000i −0.176777 0.306186i
\(25\) 1.00000 + 1.73205i 0.200000 + 0.346410i
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0.866025 + 2.50000i 0.163663 + 0.472456i
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) −1.50000 + 2.59808i −0.273861 + 0.474342i
\(31\) 0.866025 + 1.50000i 0.155543 + 0.269408i 0.933257 0.359211i \(-0.116954\pi\)
−0.777714 + 0.628619i \(0.783621\pi\)
\(32\) 2.59808 + 4.50000i 0.459279 + 0.795495i
\(33\) −2.59808 + 4.50000i −0.452267 + 0.783349i
\(34\) −10.3923 −1.78227
\(35\) −3.00000 + 3.46410i −0.507093 + 0.585540i
\(36\) −2.00000 −0.333333
\(37\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(38\) 1.50000 + 2.59808i 0.243332 + 0.421464i
\(39\) 0 0
\(40\) −1.50000 + 2.59808i −0.237171 + 0.410792i
\(41\) −5.19615 −0.811503 −0.405751 0.913984i \(-0.632990\pi\)
−0.405751 + 0.913984i \(0.632990\pi\)
\(42\) 4.50000 + 0.866025i 0.694365 + 0.133631i
\(43\) −11.0000 −1.67748 −0.838742 0.544529i \(-0.816708\pi\)
−0.838742 + 0.544529i \(0.816708\pi\)
\(44\) 2.59808 4.50000i 0.391675 0.678401i
\(45\) −1.73205 3.00000i −0.258199 0.447214i
\(46\) 0 0
\(47\) −4.33013 + 7.50000i −0.631614 + 1.09399i 0.355608 + 0.934635i \(0.384274\pi\)
−0.987222 + 0.159352i \(0.949059\pi\)
\(48\) 5.00000 0.721688
\(49\) 6.50000 + 2.59808i 0.928571 + 0.371154i
\(50\) −3.46410 −0.489898
\(51\) −3.00000 + 5.19615i −0.420084 + 0.727607i
\(52\) 0 0
\(53\) 4.50000 + 7.79423i 0.618123 + 1.07062i 0.989828 + 0.142269i \(0.0454398\pi\)
−0.371706 + 0.928351i \(0.621227\pi\)
\(54\) −4.33013 + 7.50000i −0.589256 + 1.02062i
\(55\) 9.00000 1.21356
\(56\) 4.50000 + 0.866025i 0.601338 + 0.115728i
\(57\) 1.73205 0.229416
\(58\) −2.59808 + 4.50000i −0.341144 + 0.590879i
\(59\) −1.73205 3.00000i −0.225494 0.390567i 0.730974 0.682406i \(-0.239066\pi\)
−0.956467 + 0.291839i \(0.905733\pi\)
\(60\) −0.866025 1.50000i −0.111803 0.193649i
\(61\) −3.50000 + 6.06218i −0.448129 + 0.776182i −0.998264 0.0588933i \(-0.981243\pi\)
0.550135 + 0.835076i \(0.314576\pi\)
\(62\) −3.00000 −0.381000
\(63\) −3.46410 + 4.00000i −0.436436 + 0.503953i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −4.50000 7.79423i −0.553912 0.959403i
\(67\) 4.33013 + 7.50000i 0.529009 + 0.916271i 0.999428 + 0.0338274i \(0.0107696\pi\)
−0.470418 + 0.882443i \(0.655897\pi\)
\(68\) 3.00000 5.19615i 0.363803 0.630126i
\(69\) 0 0
\(70\) −2.59808 7.50000i −0.310530 0.896421i
\(71\) −1.73205 −0.205557 −0.102778 0.994704i \(-0.532773\pi\)
−0.102778 + 0.994704i \(0.532773\pi\)
\(72\) −1.73205 + 3.00000i −0.204124 + 0.353553i
\(73\) 4.33013 + 7.50000i 0.506803 + 0.877809i 0.999969 + 0.00787336i \(0.00250619\pi\)
−0.493166 + 0.869935i \(0.664160\pi\)
\(74\) 0 0
\(75\) −1.00000 + 1.73205i −0.115470 + 0.200000i
\(76\) −1.73205 −0.198680
\(77\) −4.50000 12.9904i −0.512823 1.48039i
\(78\) 0 0
\(79\) 2.50000 4.33013i 0.281272 0.487177i −0.690426 0.723403i \(-0.742577\pi\)
0.971698 + 0.236225i \(0.0759104\pi\)
\(80\) −4.33013 7.50000i −0.484123 0.838525i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 4.50000 7.79423i 0.496942 0.860729i
\(83\) 3.46410 0.380235 0.190117 0.981761i \(-0.439113\pi\)
0.190117 + 0.981761i \(0.439113\pi\)
\(84\) −1.73205 + 2.00000i −0.188982 + 0.218218i
\(85\) 10.3923 1.12720
\(86\) 9.52628 16.5000i 1.02725 1.77924i
\(87\) 1.50000 + 2.59808i 0.160817 + 0.278543i
\(88\) −4.50000 7.79423i −0.479702 0.830868i
\(89\) 3.46410 6.00000i 0.367194 0.635999i −0.621932 0.783072i \(-0.713652\pi\)
0.989126 + 0.147073i \(0.0469852\pi\)
\(90\) 6.00000 0.632456
\(91\) 0 0
\(92\) 0 0
\(93\) −0.866025 + 1.50000i −0.0898027 + 0.155543i
\(94\) −7.50000 12.9904i −0.773566 1.33986i
\(95\) −1.50000 2.59808i −0.153897 0.266557i
\(96\) −2.59808 + 4.50000i −0.265165 + 0.459279i
\(97\) 5.19615 0.527589 0.263795 0.964579i \(-0.415026\pi\)
0.263795 + 0.964579i \(0.415026\pi\)
\(98\) −9.52628 + 7.50000i −0.962300 + 0.757614i
\(99\) 10.3923 1.04447
\(100\) 1.00000 1.73205i 0.100000 0.173205i
\(101\) −4.50000 7.79423i −0.447767 0.775555i 0.550474 0.834853i \(-0.314447\pi\)
−0.998240 + 0.0592978i \(0.981114\pi\)
\(102\) −5.19615 9.00000i −0.514496 0.891133i
\(103\) −6.50000 + 11.2583i −0.640464 + 1.10932i 0.344865 + 0.938652i \(0.387925\pi\)
−0.985329 + 0.170664i \(0.945409\pi\)
\(104\) 0 0
\(105\) −4.50000 0.866025i −0.439155 0.0845154i
\(106\) −15.5885 −1.51408
\(107\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(108\) −2.50000 4.33013i −0.240563 0.416667i
\(109\) 2.59808 + 4.50000i 0.248851 + 0.431022i 0.963207 0.268760i \(-0.0866139\pi\)
−0.714357 + 0.699782i \(0.753281\pi\)
\(110\) −7.79423 + 13.5000i −0.743151 + 1.28717i
\(111\) 0 0
\(112\) −8.66025 + 10.0000i −0.818317 + 0.944911i
\(113\) 15.0000 1.41108 0.705541 0.708669i \(-0.250704\pi\)
0.705541 + 0.708669i \(0.250704\pi\)
\(114\) −1.50000 + 2.59808i −0.140488 + 0.243332i
\(115\) 0 0
\(116\) −1.50000 2.59808i −0.139272 0.241225i
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) −5.19615 15.0000i −0.476331 1.37505i
\(120\) −3.00000 −0.273861
\(121\) −8.00000 + 13.8564i −0.727273 + 1.25967i
\(122\) −6.06218 10.5000i −0.548844 0.950625i
\(123\) −2.59808 4.50000i −0.234261 0.405751i
\(124\) 0.866025 1.50000i 0.0777714 0.134704i
\(125\) 12.1244 1.08444
\(126\) −3.00000 8.66025i −0.267261 0.771517i
\(127\) −13.0000 −1.15356 −0.576782 0.816898i \(-0.695692\pi\)
−0.576782 + 0.816898i \(0.695692\pi\)
\(128\) −6.06218 + 10.5000i −0.535826 + 0.928078i
\(129\) −5.50000 9.52628i −0.484248 0.838742i
\(130\) 0 0
\(131\) −7.50000 + 12.9904i −0.655278 + 1.13497i 0.326546 + 0.945181i \(0.394115\pi\)
−0.981824 + 0.189794i \(0.939218\pi\)
\(132\) 5.19615 0.452267
\(133\) −3.00000 + 3.46410i −0.260133 + 0.300376i
\(134\) −15.0000 −1.29580
\(135\) 4.33013 7.50000i 0.372678 0.645497i
\(136\) −5.19615 9.00000i −0.445566 0.771744i
\(137\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(138\) 0 0
\(139\) −13.0000 −1.10265 −0.551323 0.834292i \(-0.685877\pi\)
−0.551323 + 0.834292i \(0.685877\pi\)
\(140\) 4.50000 + 0.866025i 0.380319 + 0.0731925i
\(141\) −8.66025 −0.729325
\(142\) 1.50000 2.59808i 0.125877 0.218026i
\(143\) 0 0
\(144\) −5.00000 8.66025i −0.416667 0.721688i
\(145\) 2.59808 4.50000i 0.215758 0.373705i
\(146\) −15.0000 −1.24141
\(147\) 1.00000 + 6.92820i 0.0824786 + 0.571429i
\(148\) 0 0
\(149\) 9.52628 16.5000i 0.780423 1.35173i −0.151272 0.988492i \(-0.548337\pi\)
0.931695 0.363241i \(-0.118330\pi\)
\(150\) −1.73205 3.00000i −0.141421 0.244949i
\(151\) 6.06218 + 10.5000i 0.493333 + 0.854478i 0.999970 0.00768132i \(-0.00244506\pi\)
−0.506637 + 0.862159i \(0.669112\pi\)
\(152\) −1.50000 + 2.59808i −0.121666 + 0.210732i
\(153\) 12.0000 0.970143
\(154\) 23.3827 + 4.50000i 1.88423 + 0.362620i
\(155\) 3.00000 0.240966
\(156\) 0 0
\(157\) −11.5000 19.9186i −0.917800 1.58968i −0.802749 0.596316i \(-0.796630\pi\)
−0.115050 0.993360i \(-0.536703\pi\)
\(158\) 4.33013 + 7.50000i 0.344486 + 0.596668i
\(159\) −4.50000 + 7.79423i −0.356873 + 0.618123i
\(160\) 9.00000 0.711512
\(161\) 0 0
\(162\) 1.73205 0.136083
\(163\) 6.06218 10.5000i 0.474826 0.822423i −0.524758 0.851251i \(-0.675844\pi\)
0.999584 + 0.0288280i \(0.00917751\pi\)
\(164\) 2.59808 + 4.50000i 0.202876 + 0.351391i
\(165\) 4.50000 + 7.79423i 0.350325 + 0.606780i
\(166\) −3.00000 + 5.19615i −0.232845 + 0.403300i
\(167\) 1.73205 0.134030 0.0670151 0.997752i \(-0.478652\pi\)
0.0670151 + 0.997752i \(0.478652\pi\)
\(168\) 1.50000 + 4.33013i 0.115728 + 0.334077i
\(169\) 0 0
\(170\) −9.00000 + 15.5885i −0.690268 + 1.19558i
\(171\) −1.73205 3.00000i −0.132453 0.229416i
\(172\) 5.50000 + 9.52628i 0.419371 + 0.726372i
\(173\) 7.50000 12.9904i 0.570214 0.987640i −0.426329 0.904568i \(-0.640193\pi\)
0.996544 0.0830722i \(-0.0264732\pi\)
\(174\) −5.19615 −0.393919
\(175\) −1.73205 5.00000i −0.130931 0.377964i
\(176\) 25.9808 1.95837
\(177\) 1.73205 3.00000i 0.130189 0.225494i
\(178\) 6.00000 + 10.3923i 0.449719 + 0.778936i
\(179\) 1.50000 + 2.59808i 0.112115 + 0.194189i 0.916623 0.399753i \(-0.130904\pi\)
−0.804508 + 0.593942i \(0.797571\pi\)
\(180\) −1.73205 + 3.00000i −0.129099 + 0.223607i
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) −7.00000 −0.517455
\(184\) 0 0
\(185\) 0 0
\(186\) −1.50000 2.59808i −0.109985 0.190500i
\(187\) −15.5885 + 27.0000i −1.13994 + 1.97444i
\(188\) 8.66025 0.631614
\(189\) −12.9904 2.50000i −0.944911 0.181848i
\(190\) 5.19615 0.376969
\(191\) 7.50000 12.9904i 0.542681 0.939951i −0.456068 0.889945i \(-0.650743\pi\)
0.998749 0.0500060i \(-0.0159241\pi\)
\(192\) 0.500000 + 0.866025i 0.0360844 + 0.0625000i
\(193\) −0.866025 1.50000i −0.0623379 0.107972i 0.833172 0.553014i \(-0.186522\pi\)
−0.895510 + 0.445041i \(0.853189\pi\)
\(194\) −4.50000 + 7.79423i −0.323081 + 0.559593i
\(195\) 0 0
\(196\) −1.00000 6.92820i −0.0714286 0.494872i
\(197\) 22.5167 1.60425 0.802123 0.597159i \(-0.203704\pi\)
0.802123 + 0.597159i \(0.203704\pi\)
\(198\) −9.00000 + 15.5885i −0.639602 + 1.10782i
\(199\) 2.00000 + 3.46410i 0.141776 + 0.245564i 0.928166 0.372168i \(-0.121385\pi\)
−0.786389 + 0.617731i \(0.788052\pi\)
\(200\) −1.73205 3.00000i −0.122474 0.212132i
\(201\) −4.33013 + 7.50000i −0.305424 + 0.529009i
\(202\) 15.5885 1.09680
\(203\) −7.79423 1.50000i −0.547048 0.105279i
\(204\) 6.00000 0.420084
\(205\) −4.50000 + 7.79423i −0.314294 + 0.544373i
\(206\) −11.2583 19.5000i −0.784405 1.35863i
\(207\) 0 0
\(208\) 0 0
\(209\) 9.00000 0.622543
\(210\) 5.19615 6.00000i 0.358569 0.414039i
\(211\) 13.0000 0.894957 0.447478 0.894295i \(-0.352322\pi\)
0.447478 + 0.894295i \(0.352322\pi\)
\(212\) 4.50000 7.79423i 0.309061 0.535310i
\(213\) −0.866025 1.50000i −0.0593391 0.102778i
\(214\) 0 0
\(215\) −9.52628 + 16.5000i −0.649687 + 1.12529i
\(216\) −8.66025 −0.589256
\(217\) −1.50000 4.33013i −0.101827 0.293948i
\(218\) −9.00000 −0.609557
\(219\) −4.33013 + 7.50000i −0.292603 + 0.506803i
\(220\) −4.50000 7.79423i −0.303390 0.525487i
\(221\) 0 0
\(222\) 0 0
\(223\) 5.19615 0.347960 0.173980 0.984749i \(-0.444337\pi\)
0.173980 + 0.984749i \(0.444337\pi\)
\(224\) −4.50000 12.9904i −0.300669 0.867956i
\(225\) 4.00000 0.266667
\(226\) −12.9904 + 22.5000i −0.864107 + 1.49668i
\(227\) 8.66025 + 15.0000i 0.574801 + 0.995585i 0.996063 + 0.0886460i \(0.0282540\pi\)
−0.421262 + 0.906939i \(0.638413\pi\)
\(228\) −0.866025 1.50000i −0.0573539 0.0993399i
\(229\) 6.06218 10.5000i 0.400600 0.693860i −0.593198 0.805056i \(-0.702135\pi\)
0.993798 + 0.111197i \(0.0354684\pi\)
\(230\) 0 0
\(231\) 9.00000 10.3923i 0.592157 0.683763i
\(232\) −5.19615 −0.341144
\(233\) 1.50000 2.59808i 0.0982683 0.170206i −0.812700 0.582683i \(-0.802003\pi\)
0.910968 + 0.412477i \(0.135336\pi\)
\(234\) 0 0
\(235\) 7.50000 + 12.9904i 0.489246 + 0.847399i
\(236\) −1.73205 + 3.00000i −0.112747 + 0.195283i
\(237\) 5.00000 0.324785
\(238\) 27.0000 + 5.19615i 1.75015 + 0.336817i
\(239\) 10.3923 0.672222 0.336111 0.941822i \(-0.390888\pi\)
0.336111 + 0.941822i \(0.390888\pi\)
\(240\) 4.33013 7.50000i 0.279508 0.484123i
\(241\) −3.46410 6.00000i −0.223142 0.386494i 0.732618 0.680640i \(-0.238298\pi\)
−0.955761 + 0.294146i \(0.904965\pi\)
\(242\) −13.8564 24.0000i −0.890724 1.54278i
\(243\) 8.00000 13.8564i 0.513200 0.888889i
\(244\) 7.00000 0.448129
\(245\) 9.52628 7.50000i 0.608612 0.479157i
\(246\) 9.00000 0.573819
\(247\) 0 0
\(248\) −1.50000 2.59808i −0.0952501 0.164978i
\(249\) 1.73205 + 3.00000i 0.109764 + 0.190117i
\(250\) −10.5000 + 18.1865i −0.664078 + 1.15022i
\(251\) −3.00000 −0.189358 −0.0946792 0.995508i \(-0.530183\pi\)
−0.0946792 + 0.995508i \(0.530183\pi\)
\(252\) 5.19615 + 1.00000i 0.327327 + 0.0629941i
\(253\) 0 0
\(254\) 11.2583 19.5000i 0.706410 1.22354i
\(255\) 5.19615 + 9.00000i 0.325396 + 0.563602i
\(256\) −9.50000 16.4545i −0.593750 1.02841i
\(257\) 15.0000 25.9808i 0.935674 1.62064i 0.162247 0.986750i \(-0.448126\pi\)
0.773427 0.633885i \(-0.218541\pi\)
\(258\) 19.0526 1.18616
\(259\) 0 0
\(260\) 0 0
\(261\) 3.00000 5.19615i 0.185695 0.321634i
\(262\) −12.9904 22.5000i −0.802548 1.39005i
\(263\) −1.50000 2.59808i −0.0924940 0.160204i 0.816066 0.577959i \(-0.196151\pi\)
−0.908560 + 0.417755i \(0.862817\pi\)
\(264\) 4.50000 7.79423i 0.276956 0.479702i
\(265\) 15.5885 0.957591
\(266\) −2.59808 7.50000i −0.159298 0.459855i
\(267\) 6.92820 0.423999
\(268\) 4.33013 7.50000i 0.264505 0.458135i
\(269\) 3.00000 + 5.19615i 0.182913 + 0.316815i 0.942871 0.333157i \(-0.108114\pi\)
−0.759958 + 0.649972i \(0.774781\pi\)
\(270\) 7.50000 + 12.9904i 0.456435 + 0.790569i
\(271\) 8.66025 15.0000i 0.526073 0.911185i −0.473466 0.880812i \(-0.656997\pi\)
0.999539 0.0303728i \(-0.00966946\pi\)
\(272\) 30.0000 1.81902
\(273\) 0 0
\(274\) 0 0
\(275\) −5.19615 + 9.00000i −0.313340 + 0.542720i
\(276\) 0 0
\(277\) −5.00000 8.66025i −0.300421 0.520344i 0.675810 0.737075i \(-0.263794\pi\)
−0.976231 + 0.216731i \(0.930460\pi\)
\(278\) 11.2583 19.5000i 0.675230 1.16953i
\(279\) 3.46410 0.207390
\(280\) 5.19615 6.00000i 0.310530 0.358569i
\(281\) 6.92820 0.413302 0.206651 0.978415i \(-0.433744\pi\)
0.206651 + 0.978415i \(0.433744\pi\)
\(282\) 7.50000 12.9904i 0.446619 0.773566i
\(283\) 9.50000 + 16.4545i 0.564716 + 0.978117i 0.997076 + 0.0764162i \(0.0243478\pi\)
−0.432360 + 0.901701i \(0.642319\pi\)
\(284\) 0.866025 + 1.50000i 0.0513892 + 0.0890086i
\(285\) 1.50000 2.59808i 0.0888523 0.153897i
\(286\) 0 0
\(287\) 13.5000 + 2.59808i 0.796880 + 0.153360i
\(288\) 10.3923 0.612372
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) 4.50000 + 7.79423i 0.264249 + 0.457693i
\(291\) 2.59808 + 4.50000i 0.152302 + 0.263795i
\(292\) 4.33013 7.50000i 0.253402 0.438904i
\(293\) −25.9808 −1.51781 −0.758906 0.651200i \(-0.774266\pi\)
−0.758906 + 0.651200i \(0.774266\pi\)
\(294\) −11.2583 4.50000i −0.656599 0.262445i
\(295\) −6.00000 −0.349334
\(296\) 0 0
\(297\) 12.9904 + 22.5000i 0.753778 + 1.30558i
\(298\) 16.5000 + 28.5788i 0.955819 + 1.65553i
\(299\) 0 0
\(300\) 2.00000 0.115470
\(301\) 28.5788 + 5.50000i 1.64726 + 0.317015i
\(302\) −21.0000 −1.20841
\(303\) 4.50000 7.79423i 0.258518 0.447767i
\(304\) −4.33013 7.50000i −0.248350 0.430155i
\(305\) 6.06218 + 10.5000i 0.347119 + 0.601228i
\(306\) −10.3923 + 18.0000i −0.594089 + 1.02899i
\(307\) −24.2487 −1.38395 −0.691974 0.721923i \(-0.743259\pi\)
−0.691974 + 0.721923i \(0.743259\pi\)
\(308\) −9.00000 + 10.3923i −0.512823 + 0.592157i
\(309\) −13.0000 −0.739544
\(310\) −2.59808 + 4.50000i −0.147561 + 0.255583i
\(311\) −7.50000 12.9904i −0.425286 0.736617i 0.571161 0.820838i \(-0.306493\pi\)
−0.996447 + 0.0842210i \(0.973160\pi\)
\(312\) 0 0
\(313\) −9.50000 + 16.4545i −0.536972 + 0.930062i 0.462093 + 0.886831i \(0.347098\pi\)
−0.999065 + 0.0432311i \(0.986235\pi\)
\(314\) 39.8372 2.24814
\(315\) 3.00000 + 8.66025i 0.169031 + 0.487950i
\(316\) −5.00000 −0.281272
\(317\) −2.59808 + 4.50000i −0.145922 + 0.252745i −0.929717 0.368275i \(-0.879948\pi\)
0.783794 + 0.621021i \(0.213282\pi\)
\(318\) −7.79423 13.5000i −0.437079 0.757042i
\(319\) 7.79423 + 13.5000i 0.436393 + 0.755855i
\(320\) 0.866025 1.50000i 0.0484123 0.0838525i
\(321\) 0 0
\(322\) 0 0
\(323\) 10.3923 0.578243
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) 0 0
\(326\) 10.5000 + 18.1865i 0.581541 + 1.00726i
\(327\) −2.59808 + 4.50000i −0.143674 + 0.248851i
\(328\) 9.00000 0.496942
\(329\) 15.0000 17.3205i 0.826977 0.954911i
\(330\) −15.5885 −0.858116
\(331\) −16.4545 + 28.5000i −0.904420 + 1.56650i −0.0827265 + 0.996572i \(0.526363\pi\)
−0.821694 + 0.569929i \(0.806971\pi\)
\(332\) −1.73205 3.00000i −0.0950586 0.164646i
\(333\) 0 0
\(334\) −1.50000 + 2.59808i −0.0820763 + 0.142160i
\(335\) 15.0000 0.819538
\(336\) −12.9904 2.50000i −0.708683 0.136386i
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 0 0
\(339\) 7.50000 + 12.9904i 0.407344 + 0.705541i
\(340\) −5.19615 9.00000i −0.281801 0.488094i
\(341\) −4.50000 + 7.79423i −0.243689 + 0.422081i
\(342\) 6.00000 0.324443
\(343\) −15.5885 10.0000i −0.841698 0.539949i
\(344\) 19.0526 1.02725
\(345\) 0 0
\(346\) 12.9904 + 22.5000i 0.698367 + 1.20961i
\(347\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) 1.50000 2.59808i 0.0804084 0.139272i
\(349\) 5.19615 0.278144 0.139072 0.990282i \(-0.455588\pi\)
0.139072 + 0.990282i \(0.455588\pi\)
\(350\) 9.00000 + 1.73205i 0.481070 + 0.0925820i
\(351\) 0 0
\(352\) −13.5000 + 23.3827i −0.719552 + 1.24630i
\(353\) 0.866025 + 1.50000i 0.0460939 + 0.0798369i 0.888152 0.459550i \(-0.151989\pi\)
−0.842058 + 0.539387i \(0.818656\pi\)
\(354\) 3.00000 + 5.19615i 0.159448 + 0.276172i
\(355\) −1.50000 + 2.59808i −0.0796117 + 0.137892i
\(356\) −6.92820 −0.367194
\(357\) 10.3923 12.0000i 0.550019 0.635107i
\(358\) −5.19615 −0.274625
\(359\) 9.52628 16.5000i 0.502778 0.870837i −0.497217 0.867626i \(-0.665645\pi\)
0.999995 0.00321050i \(-0.00102194\pi\)
\(360\) 3.00000 + 5.19615i 0.158114 + 0.273861i
\(361\) 8.00000 + 13.8564i 0.421053 + 0.729285i
\(362\) 1.73205 3.00000i 0.0910346 0.157676i
\(363\) −16.0000 −0.839782
\(364\) 0 0
\(365\) 15.0000 0.785136
\(366\) 6.06218 10.5000i 0.316875 0.548844i
\(367\) −11.5000 19.9186i −0.600295 1.03974i −0.992776 0.119982i \(-0.961716\pi\)
0.392481 0.919760i \(-0.371617\pi\)
\(368\) 0 0
\(369\) −5.19615 + 9.00000i −0.270501 + 0.468521i
\(370\) 0 0
\(371\) −7.79423 22.5000i −0.404656 1.16814i
\(372\) 1.73205 0.0898027
\(373\) −9.50000 + 16.4545i −0.491891 + 0.851981i −0.999956 0.00933789i \(-0.997028\pi\)
0.508065 + 0.861319i \(0.330361\pi\)
\(374\) −27.0000 46.7654i −1.39614 2.41818i
\(375\) 6.06218 + 10.5000i 0.313050 + 0.542218i
\(376\) 7.50000 12.9904i 0.386783 0.669928i
\(377\) 0 0
\(378\) 15.0000 17.3205i 0.771517 0.890871i
\(379\) −1.73205 −0.0889695 −0.0444847 0.999010i \(-0.514165\pi\)
−0.0444847 + 0.999010i \(0.514165\pi\)
\(380\) −1.50000 + 2.59808i −0.0769484 + 0.133278i
\(381\) −6.50000 11.2583i −0.333005 0.576782i
\(382\) 12.9904 + 22.5000i 0.664646 + 1.15120i
\(383\) 7.79423 13.5000i 0.398266 0.689818i −0.595246 0.803544i \(-0.702945\pi\)
0.993512 + 0.113726i \(0.0362786\pi\)
\(384\) −12.1244 −0.618718
\(385\) −23.3827 4.50000i −1.19169 0.229341i
\(386\) 3.00000 0.152696
\(387\) −11.0000 + 19.0526i −0.559161 + 0.968496i
\(388\) −2.59808 4.50000i −0.131897 0.228453i
\(389\) 1.50000 + 2.59808i 0.0760530 + 0.131728i 0.901544 0.432688i \(-0.142435\pi\)
−0.825491 + 0.564416i \(0.809102\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −11.2583 4.50000i −0.568632 0.227284i
\(393\) −15.0000 −0.756650
\(394\) −19.5000 + 33.7750i −0.982396 + 1.70156i
\(395\) −4.33013 7.50000i −0.217872 0.377366i
\(396\) −5.19615 9.00000i −0.261116 0.452267i
\(397\) 18.1865 31.5000i 0.912756 1.58094i 0.102602 0.994722i \(-0.467283\pi\)
0.810154 0.586217i \(-0.199383\pi\)
\(398\) −6.92820 −0.347279
\(399\) −4.50000 0.866025i −0.225282 0.0433555i
\(400\) 10.0000 0.500000
\(401\) 3.46410 6.00000i 0.172989 0.299626i −0.766475 0.642275i \(-0.777991\pi\)
0.939463 + 0.342649i \(0.111324\pi\)
\(402\) −7.50000 12.9904i −0.374066 0.647901i
\(403\) 0 0
\(404\) −4.50000 + 7.79423i −0.223883 + 0.387777i
\(405\) −1.73205 −0.0860663
\(406\) 9.00000 10.3923i 0.446663 0.515761i
\(407\) 0 0
\(408\) 5.19615 9.00000i 0.257248 0.445566i
\(409\) −3.46410 6.00000i −0.171289 0.296681i 0.767582 0.640951i \(-0.221460\pi\)
−0.938871 + 0.344270i \(0.888126\pi\)
\(410\) −7.79423 13.5000i −0.384930 0.666717i
\(411\) 0 0
\(412\) 13.0000 0.640464
\(413\) 3.00000 + 8.66025i 0.147620 + 0.426143i
\(414\) 0 0
\(415\) 3.00000 5.19615i 0.147264 0.255069i
\(416\) 0 0
\(417\) −6.50000 11.2583i −0.318306 0.551323i
\(418\) −7.79423 + 13.5000i −0.381228 + 0.660307i
\(419\) 21.0000 1.02592 0.512959 0.858413i \(-0.328549\pi\)
0.512959 + 0.858413i \(0.328549\pi\)
\(420\) 1.50000 + 4.33013i 0.0731925 + 0.211289i
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) −11.2583 + 19.5000i −0.548047 + 0.949245i
\(423\) 8.66025 + 15.0000i 0.421076 + 0.729325i
\(424\) −7.79423 13.5000i −0.378521 0.655618i
\(425\) −6.00000 + 10.3923i −0.291043 + 0.504101i
\(426\) 3.00000 0.145350
\(427\) 12.1244 14.0000i 0.586739 0.677507i
\(428\) 0 0
\(429\) 0 0
\(430\) −16.5000 28.5788i −0.795701 1.37819i
\(431\) −16.4545 28.5000i −0.792585 1.37280i −0.924362 0.381517i \(-0.875402\pi\)
0.131777 0.991279i \(-0.457932\pi\)
\(432\) 12.5000 21.6506i 0.601407 1.04167i
\(433\) −19.0000 −0.913082 −0.456541 0.889702i \(-0.650912\pi\)
−0.456541 + 0.889702i \(0.650912\pi\)
\(434\) 7.79423 + 1.50000i 0.374135 + 0.0720023i
\(435\) 5.19615 0.249136
\(436\) 2.59808 4.50000i 0.124425 0.215511i
\(437\) 0 0
\(438\) −7.50000 12.9904i −0.358364 0.620704i
\(439\) 4.00000 6.92820i 0.190910 0.330665i −0.754642 0.656136i \(-0.772190\pi\)
0.945552 + 0.325471i \(0.105523\pi\)
\(440\) −15.5885 −0.743151
\(441\) 11.0000 8.66025i 0.523810 0.412393i
\(442\) 0 0
\(443\) −7.50000 + 12.9904i −0.356336 + 0.617192i −0.987346 0.158583i \(-0.949307\pi\)
0.631010 + 0.775775i \(0.282641\pi\)
\(444\) 0 0
\(445\) −6.00000 10.3923i −0.284427 0.492642i
\(446\) −4.50000 + 7.79423i −0.213081 + 0.369067i
\(447\) 19.0526 0.901155
\(448\) −2.59808 0.500000i −0.122748 0.0236228i
\(449\) 1.73205 0.0817405 0.0408703 0.999164i \(-0.486987\pi\)
0.0408703 + 0.999164i \(0.486987\pi\)
\(450\) −3.46410 + 6.00000i −0.163299 + 0.282843i
\(451\) −13.5000 23.3827i −0.635690 1.10105i
\(452\) −7.50000 12.9904i −0.352770 0.611016i
\(453\) −6.06218 + 10.5000i −0.284826 + 0.493333i
\(454\) −30.0000 −1.40797
\(455\) 0 0
\(456\) −3.00000 −0.140488
\(457\) −17.3205 + 30.0000i −0.810219 + 1.40334i 0.102491 + 0.994734i \(0.467319\pi\)
−0.912710 + 0.408607i \(0.866015\pi\)
\(458\) 10.5000 + 18.1865i 0.490633 + 0.849801i
\(459\) 15.0000 + 25.9808i 0.700140 + 1.21268i
\(460\) 0 0
\(461\) −29.4449 −1.37138 −0.685692 0.727892i \(-0.740500\pi\)
−0.685692 + 0.727892i \(0.740500\pi\)
\(462\) 7.79423 + 22.5000i 0.362620 + 1.04679i
\(463\) 24.2487 1.12693 0.563467 0.826139i \(-0.309467\pi\)
0.563467 + 0.826139i \(0.309467\pi\)
\(464\) 7.50000 12.9904i 0.348179 0.603063i
\(465\) 1.50000 + 2.59808i 0.0695608 + 0.120483i
\(466\) 2.59808 + 4.50000i 0.120354 + 0.208458i
\(467\) −10.5000 + 18.1865i −0.485882 + 0.841572i −0.999868 0.0162260i \(-0.994835\pi\)
0.513986 + 0.857798i \(0.328168\pi\)
\(468\) 0 0
\(469\) −7.50000 21.6506i −0.346318 0.999733i
\(470\) −25.9808 −1.19840
\(471\) 11.5000 19.9186i 0.529892 0.917800i
\(472\) 3.00000 + 5.19615i 0.138086 + 0.239172i
\(473\) −28.5788 49.5000i −1.31406 2.27601i
\(474\) −4.33013 + 7.50000i −0.198889 + 0.344486i
\(475\) 3.46410 0.158944
\(476\) −10.3923 + 12.0000i −0.476331 + 0.550019i
\(477\) 18.0000 0.824163
\(478\) −9.00000 + 15.5885i −0.411650 + 0.712999i
\(479\) −14.7224 25.5000i −0.672685 1.16512i −0.977140 0.212598i \(-0.931808\pi\)
0.304455 0.952527i \(-0.401526\pi\)
\(480\) 4.50000 + 7.79423i 0.205396 + 0.355756i
\(481\) 0 0
\(482\) 12.0000 0.546585
\(483\) 0 0
\(484\) 16.0000 0.727273
\(485\) 4.50000 7.79423i 0.204334 0.353918i
\(486\) 13.8564 + 24.0000i 0.628539 + 1.08866i
\(487\) 12.1244 + 21.0000i 0.549407 + 0.951601i 0.998315 + 0.0580230i \(0.0184797\pi\)
−0.448908 + 0.893578i \(0.648187\pi\)
\(488\) 6.06218 10.5000i 0.274422 0.475313i
\(489\) 12.1244 0.548282
\(490\) 3.00000 + 20.7846i 0.135526 + 0.938953i
\(491\) 27.0000 1.21849 0.609246 0.792981i \(-0.291472\pi\)
0.609246 + 0.792981i \(0.291472\pi\)
\(492\) −2.59808 + 4.50000i −0.117130 + 0.202876i
\(493\) 9.00000 + 15.5885i 0.405340 + 0.702069i
\(494\) 0 0
\(495\) 9.00000 15.5885i 0.404520 0.700649i
\(496\) 8.66025 0.388857
\(497\) 4.50000 + 0.866025i 0.201853 + 0.0388465i
\(498\) −6.00000 −0.268866
\(499\) 0.866025 1.50000i 0.0387686 0.0671492i −0.845990 0.533199i \(-0.820990\pi\)
0.884759 + 0.466049i \(0.154323\pi\)
\(500\) −6.06218 10.5000i −0.271109 0.469574i
\(501\) 0.866025 + 1.50000i 0.0386912 + 0.0670151i
\(502\) 2.59808 4.50000i 0.115958 0.200845i
\(503\) −9.00000 −0.401290 −0.200645 0.979664i \(-0.564304\pi\)
−0.200645 + 0.979664i \(0.564304\pi\)
\(504\) 6.00000 6.92820i 0.267261 0.308607i
\(505\) −15.5885 −0.693677
\(506\) 0 0
\(507\) 0 0
\(508\) 6.50000 + 11.2583i 0.288391 + 0.499508i
\(509\) −3.46410 + 6.00000i −0.153544 + 0.265945i −0.932528 0.361098i \(-0.882402\pi\)
0.778984 + 0.627044i \(0.215735\pi\)
\(510\) −18.0000 −0.797053
\(511\) −7.50000 21.6506i −0.331780 0.957768i
\(512\) 8.66025 0.382733
\(513\) 4.33013 7.50000i 0.191180 0.331133i
\(514\) 25.9808 + 45.0000i 1.14596 + 1.98486i
\(515\) 11.2583 + 19.5000i 0.496101 + 0.859273i
\(516\) −5.50000 + 9.52628i −0.242124 + 0.419371i
\(517\) −45.0000 −1.97910
\(518\) 0 0
\(519\) 15.0000 0.658427
\(520\) 0 0
\(521\) −19.5000 33.7750i −0.854311 1.47971i −0.877283 0.479973i \(-0.840646\pi\)
0.0229727 0.999736i \(-0.492687\pi\)
\(522\) 5.19615 + 9.00000i 0.227429 + 0.393919i
\(523\) 2.00000 3.46410i 0.0874539 0.151475i −0.818980 0.573822i \(-0.805460\pi\)
0.906434 + 0.422347i \(0.138794\pi\)
\(524\) 15.0000 0.655278
\(525\) 3.46410 4.00000i 0.151186 0.174574i
\(526\) 5.19615 0.226563
\(527\) −5.19615 + 9.00000i −0.226348 + 0.392046i
\(528\) 12.9904 + 22.5000i 0.565334 + 0.979187i
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) −13.5000 + 23.3827i −0.586403 + 1.01568i
\(531\) −6.92820 −0.300658
\(532\) 4.50000 + 0.866025i 0.195100 + 0.0375470i
\(533\) 0 0
\(534\) −6.00000 + 10.3923i −0.259645 + 0.449719i
\(535\) 0 0
\(536\) −7.50000 12.9904i −0.323951 0.561099i
\(537\) −1.50000 + 2.59808i −0.0647298 + 0.112115i
\(538\) −10.3923 −0.448044
\(539\) 5.19615 + 36.0000i 0.223814 + 1.55063i
\(540\) −8.66025 −0.372678
\(541\) 6.06218 10.5000i 0.260633 0.451430i −0.705777 0.708434i \(-0.749402\pi\)
0.966410 + 0.257004i \(0.0827353\pi\)
\(542\) 15.0000 + 25.9808i 0.644305 + 1.11597i
\(543\) −1.00000 1.73205i −0.0429141 0.0743294i
\(544\) −15.5885 + 27.0000i −0.668350 + 1.15762i
\(545\) 9.00000 0.385518
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 0 0
\(549\) 7.00000 + 12.1244i 0.298753 + 0.517455i
\(550\) −9.00000 15.5885i −0.383761 0.664694i
\(551\) 2.59808 4.50000i 0.110682 0.191706i
\(552\) 0 0
\(553\) −8.66025 + 10.0000i −0.368271 + 0.425243i
\(554\) 17.3205 0.735878
\(555\) 0 0
\(556\) 6.50000 + 11.2583i 0.275661 + 0.477460i
\(557\) −7.79423 13.5000i −0.330252 0.572013i 0.652309 0.757953i \(-0.273800\pi\)
−0.982561 + 0.185940i \(0.940467\pi\)
\(558\) −3.00000 + 5.19615i −0.127000 + 0.219971i
\(559\) 0 0
\(560\) 7.50000 + 21.6506i 0.316933 + 0.914906i
\(561\) −31.1769 −1.31629
\(562\) −6.00000 + 10.3923i −0.253095 + 0.438373i
\(563\) −18.0000 31.1769i −0.758610 1.31395i −0.943560 0.331202i \(-0.892546\pi\)
0.184950 0.982748i \(-0.440788\pi\)
\(564\) 4.33013 + 7.50000i 0.182331 + 0.315807i
\(565\) 12.9904 22.5000i 0.546509 0.946582i
\(566\) −32.9090 −1.38327
\(567\) 0.866025 + 2.50000i 0.0363696 + 0.104990i
\(568\) 3.00000 0.125877
\(569\) −3.00000 + 5.19615i −0.125767 + 0.217834i −0.922032 0.387113i \(-0.873472\pi\)
0.796266 + 0.604947i \(0.206806\pi\)
\(570\) 2.59808 + 4.50000i 0.108821 + 0.188484i
\(571\) −11.5000 19.9186i −0.481260 0.833567i 0.518509 0.855072i \(-0.326487\pi\)
−0.999769 + 0.0215055i \(0.993154\pi\)
\(572\) 0 0
\(573\) 15.0000 0.626634
\(574\) −15.5885 + 18.0000i −0.650650 + 0.751305i
\(575\) 0 0
\(576\) 1.00000 1.73205i 0.0416667 0.0721688i
\(577\) −7.79423 13.5000i −0.324478 0.562012i 0.656929 0.753953i \(-0.271855\pi\)
−0.981407 + 0.191940i \(0.938522\pi\)
\(578\) −16.4545 28.5000i −0.684416 1.18544i
\(579\) 0.866025 1.50000i 0.0359908 0.0623379i
\(580\) −5.19615 −0.215758
\(581\) −9.00000 1.73205i −0.373383 0.0718576i
\(582\) −9.00000 −0.373062
\(583\) −23.3827 + 40.5000i −0.968412 + 1.67734i
\(584\) −7.50000 12.9904i −0.310352 0.537546i
\(585\) 0 0
\(586\) 22.5000 38.9711i 0.929466 1.60988i
\(587\) −15.5885 −0.643404 −0.321702 0.946841i \(-0.604255\pi\)
−0.321702 + 0.946841i \(0.604255\pi\)
\(588\) 5.50000 4.33013i 0.226816 0.178571i
\(589\) 3.00000 0.123613
\(590\) 5.19615 9.00000i 0.213922 0.370524i
\(591\) 11.2583 + 19.5000i 0.463106 + 0.802123i
\(592\) 0 0
\(593\) 2.59808 4.50000i 0.106690 0.184793i −0.807737 0.589543i \(-0.799308\pi\)
0.914428 + 0.404750i \(0.132641\pi\)
\(594\) −45.0000 −1.84637
\(595\) −27.0000 5.19615i −1.10689 0.213021i
\(596\) −19.0526 −0.780423
\(597\) −2.00000 + 3.46410i −0.0818546 + 0.141776i
\(598\) 0 0
\(599\) −4.50000 7.79423i −0.183865 0.318464i 0.759328 0.650708i \(-0.225528\pi\)
−0.943193 + 0.332244i \(0.892194\pi\)
\(600\) 1.73205 3.00000i 0.0707107 0.122474i
\(601\) 19.0000 0.775026 0.387513 0.921864i \(-0.373334\pi\)
0.387513 + 0.921864i \(0.373334\pi\)
\(602\) −33.0000 + 38.1051i −1.34498 + 1.55305i
\(603\) 17.3205 0.705346
\(604\) 6.06218 10.5000i 0.246667 0.427239i
\(605\) 13.8564 + 24.0000i 0.563343 + 0.975739i
\(606\) 7.79423 + 13.5000i 0.316619 + 0.548400i
\(607\) 21.5000 37.2391i 0.872658 1.51149i 0.0134214 0.999910i \(-0.495728\pi\)
0.859237 0.511578i \(-0.170939\pi\)
\(608\) 9.00000 0.364998
\(609\) −2.59808 7.50000i −0.105279 0.303915i
\(610\) −21.0000 −0.850265
\(611\) 0 0
\(612\) −6.00000 10.3923i −0.242536 0.420084i
\(613\) 18.1865 + 31.5000i 0.734547 + 1.27227i 0.954922 + 0.296858i \(0.0959387\pi\)
−0.220375 + 0.975415i \(0.570728\pi\)
\(614\) 21.0000 36.3731i 0.847491 1.46790i
\(615\) −9.00000 −0.362915
\(616\) 7.79423 + 22.5000i 0.314038 + 0.906551i
\(617\) −43.3013 −1.74324 −0.871622 0.490179i \(-0.836931\pi\)
−0.871622 + 0.490179i \(0.836931\pi\)
\(618\) 11.2583 19.5000i 0.452876 0.784405i
\(619\) 9.52628 + 16.5000i 0.382893 + 0.663191i 0.991475 0.130301i \(-0.0415943\pi\)
−0.608581 + 0.793492i \(0.708261\pi\)
\(620\) −1.50000 2.59808i −0.0602414 0.104341i
\(621\) 0 0
\(622\) 25.9808 1.04173
\(623\) −12.0000 + 13.8564i −0.480770 + 0.555145i
\(624\) 0 0
\(625\) 5.50000 9.52628i 0.220000 0.381051i
\(626\) −16.4545 28.5000i −0.657653 1.13909i
\(627\) 4.50000 + 7.79423i 0.179713 + 0.311272i
\(628\) −11.5000 + 19.9186i −0.458900 + 0.794838i
\(629\) 0 0
\(630\) −15.5885 3.00000i −0.621059 0.119523i
\(631\) −46.7654 −1.86170 −0.930850 0.365401i \(-0.880932\pi\)
−0.930850 + 0.365401i \(0.880932\pi\)
\(632\) −4.33013 + 7.50000i −0.172243 + 0.298334i
\(633\) 6.50000 + 11.2583i 0.258352 + 0.447478i
\(634\) −4.50000 7.79423i −0.178718 0.309548i
\(635\) −11.2583 + 19.5000i −0.446773 + 0.773834i
\(636\) 9.00000 0.356873
\(637\) 0 0
\(638\) −27.0000 −1.06894
\(639\) −1.73205 + 3.00000i −0.0685189 + 0.118678i
\(640\) 10.5000 + 18.1865i 0.415049 + 0.718886i
\(641\) 15.0000 + 25.9808i 0.592464 + 1.02618i 0.993899 + 0.110291i \(0.0351782\pi\)
−0.401435 + 0.915888i \(0.631488\pi\)
\(642\) 0 0
\(643\) 5.19615 0.204916 0.102458 0.994737i \(-0.467329\pi\)
0.102458 + 0.994737i \(0.467329\pi\)
\(644\) 0 0
\(645\) −19.0526 −0.750194
\(646\) −9.00000 + 15.5885i −0.354100 + 0.613320i
\(647\) −4.50000 7.79423i −0.176913 0.306423i 0.763908 0.645325i \(-0.223278\pi\)
−0.940822 + 0.338902i \(0.889945\pi\)
\(648\) 0.866025 + 1.50000i 0.0340207 + 0.0589256i
\(649\) 9.00000 15.5885i 0.353281 0.611900i
\(650\) 0 0
\(651\) 3.00000 3.46410i 0.117579 0.135769i
\(652\) −12.1244 −0.474826
\(653\) 15.0000 25.9808i 0.586995 1.01671i −0.407628 0.913148i \(-0.633644\pi\)
0.994623 0.103558i \(-0.0330227\pi\)
\(654\) −4.50000 7.79423i −0.175964 0.304778i
\(655\) 12.9904 + 22.5000i 0.507576 + 0.879148i
\(656\) −12.9904 + 22.5000i −0.507189 + 0.878477i
\(657\) 17.3205 0.675737
\(658\) 12.9904 + 37.5000i 0.506418 + 1.46190i
\(659\) 15.0000 0.584317 0.292159 0.956370i \(-0.405627\pi\)
0.292159 + 0.956370i \(0.405627\pi\)
\(660\) 4.50000 7.79423i 0.175162 0.303390i
\(661\) −18.1865 31.5000i −0.707374 1.22521i −0.965828 0.259184i \(-0.916546\pi\)
0.258454 0.966024i \(-0.416787\pi\)
\(662\) −28.5000 49.3634i −1.10768 1.91856i
\(663\) 0 0
\(664\) −6.00000 −0.232845
\(665\) 2.59808 + 7.50000i 0.100749 + 0.290838i
\(666\) 0 0
\(667\) 0 0
\(668\) −0.866025 1.50000i −0.0335075 0.0580367i
\(669\) 2.59808 + 4.50000i 0.100447 + 0.173980i
\(670\) −12.9904 + 22.5000i −0.501862 + 0.869251i
\(671\) −36.3731 −1.40417
\(672\) 9.00000 10.3923i 0.347183 0.400892i
\(673\) 1.00000 0.0385472 0.0192736 0.999814i \(-0.493865\pi\)
0.0192736 + 0.999814i \(0.493865\pi\)
\(674\) 19.0526 33.0000i 0.733877 1.27111i
\(675\) 5.00000 + 8.66025i 0.192450 + 0.333333i
\(676\) 0 0
\(677\) −13.5000 + 23.3827i −0.518847 + 0.898670i 0.480913 + 0.876768i \(0.340305\pi\)
−0.999760 + 0.0219013i \(0.993028\pi\)
\(678\) −25.9808 −0.997785
\(679\) −13.5000 2.59808i −0.518082 0.0997050i
\(680\) −18.0000 −0.690268
\(681\) −8.66025 + 15.0000i −0.331862 + 0.574801i
\(682\) −7.79423 13.5000i −0.298456 0.516942i
\(683\) 12.1244 + 21.0000i 0.463926 + 0.803543i 0.999152 0.0411658i \(-0.0131072\pi\)
−0.535227 + 0.844708i \(0.679774\pi\)
\(684\) −1.73205 + 3.00000i −0.0662266 + 0.114708i
\(685\) 0 0
\(686\) 28.5000 14.7224i 1.08814 0.562105i
\(687\) 12.1244 0.462573
\(688\) −27.5000 + 47.6314i −1.04843 + 1.81593i
\(689\) 0 0
\(690\) 0 0
\(691\) 15.5885 27.0000i 0.593013 1.02713i −0.400811 0.916161i \(-0.631272\pi\)
0.993824 0.110968i \(-0.0353950\pi\)
\(692\) −15.0000 −0.570214
\(693\) −27.0000 5.19615i −1.02565 0.197386i
\(694\) 0 0
\(695\) −11.2583 + 19.5000i −0.427053 + 0.739677i
\(696\) −2.59808 4.50000i −0.0984798 0.170572i
\(697\) −15.5885 27.0000i −0.590455 1.02270i
\(698\) −4.50000 + 7.79423i −0.170328 + 0.295016i
\(699\) 3.00000 0.113470
\(700\) −3.46410 + 4.00000i −0.130931 + 0.151186i
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 2.59808 + 4.50000i 0.0979187 + 0.169600i
\(705\) −7.50000 + 12.9904i −0.282466 + 0.489246i
\(706\) −3.00000 −0.112906
\(707\) 7.79423 + 22.5000i 0.293132 + 0.846200i
\(708\) −3.46410 −0.130189
\(709\) −6.06218 + 10.5000i −0.227670 + 0.394336i −0.957117 0.289701i \(-0.906444\pi\)
0.729447 + 0.684037i \(0.239777\pi\)
\(710\) −2.59808 4.50000i −0.0975041 0.168882i
\(711\) −5.00000 8.66025i −0.187515 0.324785i
\(712\) −6.00000 + 10.3923i −0.224860 + 0.389468i
\(713\) 0 0
\(714\) 9.00000 + 25.9808i 0.336817 + 0.972306i
\(715\) 0 0
\(716\) 1.50000 2.59808i 0.0560576 0.0970947i
\(717\) 5.19615 + 9.00000i 0.194054 + 0.336111i
\(718\) 16.5000 + 28.5788i 0.615775 + 1.06655i
\(719\) −7.50000 + 12.9904i −0.279703 + 0.484459i −0.971311 0.237814i \(-0.923569\pi\)
0.691608 + 0.722273i \(0.256903\pi\)
\(720\) −17.3205 −0.645497
\(721\) 22.5167 26.0000i 0.838564 0.968291i
\(722\) −27.7128 −1.03136
\(723\) 3.46410 6.00000i 0.128831 0.223142i
\(724\) 1.00000 + 1.73205i 0.0371647 + 0.0643712i
\(725\) 3.00000 + 5.19615i 0.111417 + 0.192980i
\(726\) 13.8564 24.0000i 0.514259 0.890724i
\(727\) 32.0000 1.18681 0.593407 0.804902i \(-0.297782\pi\)
0.593407 + 0.804902i \(0.297782\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) −12.9904 + 22.5000i −0.480796 + 0.832762i
\(731\) −33.0000 57.1577i −1.22055 2.11405i
\(732\) 3.50000 + 6.06218i 0.129364 + 0.224065i
\(733\) 25.1147 43.5000i 0.927634 1.60671i 0.140365 0.990100i \(-0.455173\pi\)
0.787269 0.616609i \(-0.211494\pi\)
\(734\) 39.8372 1.47042
\(735\) 11.2583 + 4.50000i 0.415270 + 0.165985i
\(736\) 0 0
\(737\) −22.5000 + 38.9711i −0.828798 + 1.43552i
\(738\) −9.00000 15.5885i −0.331295 0.573819i
\(739\) 19.9186 + 34.5000i 0.732717 + 1.26910i 0.955718 + 0.294285i \(0.0950814\pi\)
−0.223001 + 0.974818i \(0.571585\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 40.5000 + 7.79423i 1.48680 + 0.286135i
\(743\) −1.73205 −0.0635428 −0.0317714 0.999495i \(-0.510115\pi\)
−0.0317714 + 0.999495i \(0.510115\pi\)
\(744\) 1.50000 2.59808i 0.0549927 0.0952501i
\(745\) −16.5000 28.5788i −0.604513 1.04705i
\(746\) −16.4545 28.5000i −0.602441 1.04346i
\(747\) 3.46410 6.00000i 0.126745 0.219529i
\(748\) 31.1769 1.13994
\(749\) 0 0
\(750\) −21.0000 −0.766812
\(751\) 10.0000 17.3205i 0.364905 0.632034i −0.623856 0.781540i \(-0.714435\pi\)
0.988761 + 0.149505i \(0.0477681\pi\)
\(752\) 21.6506 + 37.5000i 0.789517 + 1.36748i
\(753\) −1.50000 2.59808i −0.0546630 0.0946792i
\(754\) 0 0
\(755\) 21.0000 0.764268
\(756\) 4.33013 + 12.5000i 0.157485 + 0.454621i
\(757\) −17.0000 −0.617876 −0.308938 0.951082i \(-0.599973\pi\)
−0.308938 + 0.951082i \(0.599973\pi\)
\(758\) 1.50000 2.59808i 0.0544825 0.0943664i
\(759\) 0 0
\(760\) 2.59808 + 4.50000i 0.0942421 + 0.163232i
\(761\) 14.7224 25.5000i 0.533688 0.924374i −0.465538 0.885028i \(-0.654139\pi\)
0.999226 0.0393463i \(-0.0125276\pi\)
\(762\) 22.5167 0.815693
\(763\) −4.50000 12.9904i −0.162911 0.470283i
\(764\) −15.0000 −0.542681
\(765\) 10.3923 18.0000i 0.375735 0.650791i
\(766\) 13.5000 + 23.3827i 0.487775 + 0.844851i
\(767\) 0 0
\(768\) 9.50000 16.4545i 0.342802 0.593750i
\(769\) −19.0526 −0.687053 −0.343526 0.939143i \(-0.611621\pi\)
−0.343526 + 0.939143i \(0.611621\pi\)
\(770\) 27.0000 31.1769i 0.973012 1.12354i
\(771\) 30.0000 1.08042
\(772\) −0.866025 + 1.50000i −0.0311689 + 0.0539862i
\(773\) 6.92820 + 12.0000i 0.249190 + 0.431610i 0.963301 0.268422i \(-0.0865023\pi\)
−0.714111 + 0.700032i \(0.753169\pi\)
\(774\) −19.0526 33.0000i −0.684830 1.18616i
\(775\) −1.73205 + 3.00000i −0.0622171 + 0.107763i
\(776\) −9.00000 −0.323081
\(777\) 0 0
\(778\) −5.19615 −0.186291
\(779\) −4.50000 + 7.79423i −0.161229 + 0.279257i
\(780\) 0 0
\(781\) −4.50000 7.79423i −0.161023 0.278899i
\(782\) 0 0
\(783\) 15.0000 0.536056
\(784\) 27.5000 21.6506i 0.982143 0.773237i
\(785\) −39.8372 −1.42185
\(786\) 12.9904 22.5000i 0.463352 0.802548i
\(787\) −15.5885 27.0000i −0.555668 0.962446i −0.997851 0.0655211i \(-0.979129\pi\)
0.442183 0.896925i \(-0.354204\pi\)
\(788\) −11.2583 19.5000i −0.401061 0.694659i
\(789\) 1.50000 2.59808i 0.0534014 0.0924940i
\(790\) 15.0000 0.533676
\(791\) −38.9711 7.50000i −1.38565 0.266669i
\(792\) −18.0000 −0.639602
\(793\) 0 0
\(794\) 31.5000 + 54.5596i 1.11789 + 1.93625i
\(795\) 7.79423 + 13.5000i 0.276433 + 0.478796i
\(796\) 2.00000 3.46410i 0.0708881 0.122782i
\(797\) 33.0000 1.16892 0.584460 0.811423i \(-0.301306\pi\)
0.584460 + 0.811423i \(0.301306\pi\)
\(798\) 5.19615 6.00000i 0.183942 0.212398i
\(799\) −51.9615 −1.83827
\(800\) −5.19615 + 9.00000i −0.183712 + 0.318198i
\(801\) −6.92820 12.0000i −0.244796 0.423999i
\(802\) 6.00000 + 10.3923i 0.211867 + 0.366965i
\(803\) −22.5000 + 38.9711i −0.794008 + 1.37526i
\(804\) 8.66025 0.305424
\(805\) 0 0
\(806\) 0 0
\(807\) −3.00000 + 5.19615i −0.105605 + 0.182913i
\(808\) 7.79423 + 13.5000i 0.274200 + 0.474928i
\(809\) 10.5000 + 18.1865i 0.369160 + 0.639404i 0.989434 0.144981i \(-0.0463120\pi\)
−0.620274 + 0.784385i \(0.712979\pi\)
\(810\) 1.50000 2.59808i 0.0527046 0.0912871i
\(811\) −3.46410 −0.121641 −0.0608205 0.998149i \(-0.519372\pi\)
−0.0608205 + 0.998149i \(0.519372\pi\)
\(812\) 2.59808 + 7.50000i 0.0911746 + 0.263198i
\(813\) 17.3205 0.607457
\(814\) 0 0
\(815\) −10.5000 18.1865i −0.367799 0.637046i
\(816\) 15.0000 + 25.9808i 0.525105 + 0.909509i
\(817\) −9.52628 + 16.5000i −0.333282 + 0.577262i
\(818\) 12.0000 0.419570
\(819\) 0 0
\(820\) 9.00000 0.314294
\(821\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(822\) 0 0
\(823\) 16.0000 + 27.7128i 0.557725 + 0.966008i 0.997686 + 0.0679910i \(0.0216589\pi\)
−0.439961 + 0.898017i \(0.645008\pi\)
\(824\) 11.2583 19.5000i 0.392203 0.679315i
\(825\) −10.3923 −0.361814
\(826\) −15.5885 3.00000i −0.542392 0.104383i
\(827\) −10.3923 −0.361376 −0.180688 0.983540i \(-0.557832\pi\)
−0.180688 + 0.983540i \(0.557832\pi\)
\(828\) 0 0
\(829\) 3.50000 + 6.06218i 0.121560 + 0.210548i 0.920383 0.391018i \(-0.127877\pi\)
−0.798823 + 0.601566i \(0.794544\pi\)
\(830\) 5.19615 + 9.00000i 0.180361 + 0.312395i
\(831\) 5.00000 8.66025i 0.173448 0.300421i
\(832\) 0 0
\(833\) 6.00000 + 41.5692i 0.207888 + 1.44029i
\(834\) 22.5167 0.779688
\(835\) 1.50000 2.59808i 0.0519096 0.0899101i
\(836\) −4.50000 7.79423i −0.155636 0.269569i
\(837\) 4.33013 + 7.50000i 0.149671 + 0.259238i
\(838\) −18.1865 + 31.5000i −0.628243 + 1.08815i
\(839\) 1.73205 0.0597970 0.0298985 0.999553i \(-0.490482\pi\)
0.0298985 + 0.999553i \(0.490482\pi\)
\(840\) 7.79423 + 1.50000i 0.268926 + 0.0517549i
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) 3.46410 + 6.00000i 0.119310 + 0.206651i
\(844\) −6.50000 11.2583i −0.223739 0.387528i
\(845\) 0 0
\(846\) −30.0000 −1.03142
\(847\) 27.7128 32.0000i 0.952224 1.09953i
\(848\) 45.0000 1.54531
\(849\) −9.50000 + 16.4545i −0.326039 + 0.564716i
\(850\) −10.3923 18.0000i −0.356453 0.617395i
\(851\) 0 0
\(852\) −0.866025 + 1.50000i −0.0296695 + 0.0513892i
\(853\) −41.5692 −1.42330 −0.711651 0.702533i \(-0.752052\pi\)
−0.711651 + 0.702533i \(0.752052\pi\)
\(854\) 10.5000 + 30.3109i 0.359303 + 1.03722i
\(855\) −6.00000 −0.205196
\(856\) 0 0
\(857\) −16.5000 28.5788i −0.563629 0.976235i −0.997176 0.0751033i \(-0.976071\pi\)
0.433546 0.901131i \(-0.357262\pi\)
\(858\) 0 0
\(859\) 14.5000 25.1147i 0.494734 0.856904i −0.505248 0.862974i \(-0.668599\pi\)
0.999982 + 0.00607046i \(0.00193230\pi\)
\(860\) 19.0526 0.649687
\(861\) 4.50000 + 12.9904i 0.153360 + 0.442711i
\(862\) 57.0000 1.94143
\(863\) 0.866025 1.50000i 0.0294798 0.0510606i −0.850909 0.525313i \(-0.823948\pi\)
0.880389 + 0.474252i \(0.157282\pi\)
\(864\) 12.9904 + 22.5000i 0.441942 + 0.765466i
\(865\) −12.9904 22.5000i −0.441686 0.765023i
\(866\) 16.4545 28.5000i 0.559146 0.968469i
\(867\) −19.0000 −0.645274
\(868\) −3.00000 + 3.46410i −0.101827 + 0.117579i
\(869\) 25.9808 0.881337
\(870\) −4.50000 + 7.79423i −0.152564 + 0.264249i
\(871\) 0 0
\(872\) −4.50000 7.79423i −0.152389 0.263946i
\(873\) 5.19615 9.00000i 0.175863 0.304604i
\(874\) 0 0
\(875\) −31.5000 6.06218i −1.06489 0.204939i
\(876\) 8.66025 0.292603
\(877\) −0.866025 + 1.50000i −0.0292436 + 0.0506514i −0.880277 0.474460i \(-0.842643\pi\)
0.851033 + 0.525112i \(0.175977\pi\)
\(878\) 6.92820 + 12.0000i 0.233816 + 0.404980i
\(879\) −12.9904 22.5000i −0.438155 0.758906i
\(880\) 22.5000 38.9711i 0.758475 1.31372i
\(881\) 33.0000 1.11180 0.555899 0.831250i \(-0.312374\pi\)
0.555899 + 0.831250i \(0.312374\pi\)
\(882\) 3.46410 + 24.0000i 0.116642 + 0.808122i
\(883\) 44.0000 1.48072 0.740359 0.672212i \(-0.234656\pi\)
0.740359 + 0.672212i \(0.234656\pi\)
\(884\) 0 0
\(885\) −3.00000 5.19615i −0.100844 0.174667i
\(886\) −12.9904 22.5000i −0.436420 0.755902i
\(887\) −12.0000 + 20.7846i −0.402921 + 0.697879i −0.994077 0.108678i \(-0.965338\pi\)
0.591156 + 0.806557i \(0.298672\pi\)
\(888\) 0 0
\(889\) 33.7750 + 6.50000i 1.13278 + 0.218003i
\(890\) 20.7846 0.696702
\(891\) 2.59808 4.50000i 0.0870388 0.150756i
\(892\) −2.59808 4.50000i −0.0869900 0.150671i
\(893\) 7.50000 + 12.9904i 0.250978 + 0.434707i
\(894\) −16.5000 + 28.5788i −0.551843 + 0.955819i
\(895\) 5.19615 0.173688
\(896\) 21.0000 24.2487i 0.701561 0.810093i
\(897\) 0 0
\(898\) −1.50000 + 2.59808i −0.0500556 + 0.0866989i
\(899\) 2.59808 + 4.50000i 0.0866507 + 0.150083i
\(900\) −2.00000 3.46410i −0.0666667 0.115470i
\(901\) −27.0000 + 46.7654i −0.899500 + 1.55798i
\(902\) 46.7654 1.55712
\(903\) 9.52628 + 27.5000i 0.317015 + 0.915143i
\(904\) −25.9808 −0.864107
\(905\) −1.73205 + 3.00000i −0.0575753 + 0.0997234i
\(906\) −10.5000 18.1865i −0.348839 0.604207i
\(907\) −14.5000 25.1147i −0.481465 0.833921i 0.518309 0.855193i \(-0.326562\pi\)
−0.999774 + 0.0212722i \(0.993228\pi\)
\(908\) 8.66025 15.0000i 0.287401 0.497792i
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 4.33013 7.50000i 0.143385 0.248350i
\(913\) 9.00000 + 15.5885i 0.297857 + 0.515903i
\(914\) −30.0000 51.9615i −0.992312 1.71873i
\(915\) −6.06218 + 10.5000i −0.200409 + 0.347119i
\(916\) −12.1244 −0.400600
\(917\) 25.9808 30.0000i 0.857960 0.990687i
\(918\) −51.9615 −1.71499
\(919\) 23.5000 40.7032i 0.775193 1.34267i −0.159492 0.987199i \(-0.550986\pi\)
0.934686 0.355475i \(-0.115681\pi\)
\(920\) 0 0
\(921\) −12.1244 21.0000i −0.399511 0.691974i
\(922\) 25.5000 44.1673i 0.839798 1.45457i
\(923\) 0 0
\(924\) −13.5000 2.59808i −0.444117 0.0854704i
\(925\) 0 0
\(926\) −21.0000 + 36.3731i −0.690103 + 1.19529i
\(927\) 13.0000 + 22.5167i 0.426976 + 0.739544i
\(928\) 7.79423 + 13.5000i 0.255858 + 0.443159i
\(929\) 23.3827 40.5000i 0.767161 1.32876i −0.171935 0.985108i \(-0.555002\pi\)
0.939096 0.343654i \(-0.111665\pi\)
\(930\) −5.19615 −0.170389
\(931\) 9.52628 7.50000i 0.312211 0.245803i
\(932\) −3.00000 −0.0982683
\(933\) 7.50000 12.9904i 0.245539 0.425286i
\(934\) −18.1865 31.5000i −0.595082 1.03071i
\(935\) 27.0000 + 46.7654i 0.882994 + 1.52939i
\(936\) 0 0
\(937\) 22.0000 0.718709 0.359354 0.933201i \(-0.382997\pi\)
0.359354 + 0.933201i \(0.382997\pi\)
\(938\) 38.9711 + 7.50000i 1.27245 + 0.244884i
\(939\) −19.0000 −0.620042
\(940\) 7.50000 12.9904i 0.244623 0.423700i
\(941\) 2.59808 + 4.50000i 0.0846949 + 0.146696i 0.905261 0.424856i \(-0.139675\pi\)
−0.820566 + 0.571551i \(0.806342\pi\)
\(942\) 19.9186 + 34.5000i 0.648983 + 1.12407i
\(943\) 0 0
\(944\) −17.3205 −0.563735
\(945\) −15.0000 + 17.3205i −0.487950 + 0.563436i
\(946\) 99.0000 3.21877
\(947\) 19.0526 33.0000i 0.619125 1.07236i −0.370521 0.928824i \(-0.620821\pi\)
0.989646 0.143532i \(-0.0458459\pi\)
\(948\) −2.50000 4.33013i −0.0811962 0.140636i
\(949\) 0 0
\(950\) −3.00000 + 5.19615i −0.0973329 + 0.168585i
\(951\) −5.19615 −0.168497
\(952\) 9.00000 + 25.9808i 0.291692 + 0.842041i
\(953\) 57.0000 1.84641 0.923206 0.384307i \(-0.125559\pi\)
0.923206 + 0.384307i \(0.125559\pi\)
\(954\) −15.5885 + 27.0000i −0.504695 + 0.874157i
\(955\) −12.9904 22.5000i −0.420359 0.728083i
\(956\) −5.19615 9.00000i −0.168056 0.291081i
\(957\) −7.79423 + 13.5000i −0.251952 + 0.436393i
\(958\) 51.0000 1.64774
\(959\) 0 0
\(960\) 1.73205 0.0559017
\(961\) 14.0000 24.2487i 0.451613 0.782216i
\(962\) 0 0
\(963\) 0 0
\(964\) −3.46410 + 6.00000i −0.111571 + 0.193247i
\(965\) −3.00000 −0.0965734
\(966\) 0 0
\(967\) −10.3923 −0.334194 −0.167097 0.985940i \(-0.553439\pi\)
−0.167097 + 0.985940i \(0.553439\pi\)
\(968\) 13.8564 24.0000i 0.445362 0.771389i
\(969\) 5.19615 + 9.00000i 0.166924 + 0.289122i
\(970\) 7.79423 + 13.5000i 0.250258 + 0.433459i
\(971\) −10.5000 + 18.1865i −0.336961 + 0.583634i −0.983860 0.178942i \(-0.942732\pi\)
0.646899 + 0.762576i \(0.276066\pi\)
\(972\) −16.0000 −0.513200
\(973\) 33.7750 + 6.50000i 1.08278 + 0.208380i
\(974\) −42.0000 −1.34577
\(975\) 0 0
\(976\) 17.5000 + 30.3109i 0.560161 + 0.970228i
\(977\) −9.52628 16.5000i −0.304773 0.527882i 0.672438 0.740153i \(-0.265247\pi\)
−0.977211 + 0.212272i \(0.931914\pi\)
\(978\) −10.5000 + 18.1865i −0.335753 + 0.581541i
\(979\) 36.0000 1.15056
\(980\) −11.2583 4.50000i −0.359634 0.143747i
\(981\) 10.3923 0.331801
\(982\) −23.3827 + 40.5000i −0.746171 + 1.29241i
\(983\) −18.1865 31.5000i −0.580060 1.00469i −0.995472 0.0950602i \(-0.969696\pi\)
0.415411 0.909634i \(-0.363638\pi\)
\(984\) 4.50000 + 7.79423i 0.143455 + 0.248471i
\(985\) 19.5000 33.7750i 0.621322 1.07616i
\(986\) −31.1769 −0.992875
\(987\) 22.5000 + 4.33013i 0.716183 + 0.137829i
\(988\) 0 0
\(989\) 0 0
\(990\) 15.5885 + 27.0000i 0.495434 + 0.858116i
\(991\) −29.5000 51.0955i −0.937098 1.62310i −0.770849 0.637018i \(-0.780168\pi\)
−0.166250 0.986084i \(-0.553166\pi\)
\(992\) −4.50000 + 7.79423i −0.142875 + 0.247467i
\(993\) −32.9090 −1.04433
\(994\) −5.19615 + 6.00000i −0.164812 + 0.190308i
\(995\) 6.92820 0.219639
\(996\) 1.73205 3.00000i 0.0548821 0.0950586i
\(997\) −1.00000 1.73205i −0.0316703 0.0548546i 0.849756 0.527176i \(-0.176749\pi\)
−0.881426 + 0.472322i \(0.843416\pi\)
\(998\) 1.50000 + 2.59808i 0.0474817 + 0.0822407i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1183.2.e.e.170.1 4
7.2 even 3 8281.2.a.s.1.2 2
7.4 even 3 inner 1183.2.e.e.508.1 4
7.5 odd 6 8281.2.a.w.1.2 2
13.2 odd 12 91.2.u.a.30.1 yes 2
13.7 odd 12 91.2.k.a.23.1 yes 2
13.12 even 2 inner 1183.2.e.e.170.2 4
39.2 even 12 819.2.do.c.667.1 2
39.20 even 12 819.2.bm.a.478.1 2
91.2 odd 12 637.2.q.c.589.1 2
91.12 odd 6 8281.2.a.w.1.1 2
91.20 even 12 637.2.k.b.569.1 2
91.25 even 6 inner 1183.2.e.e.508.2 4
91.33 even 12 637.2.q.b.491.1 2
91.41 even 12 637.2.u.a.30.1 2
91.46 odd 12 91.2.u.a.88.1 yes 2
91.51 even 6 8281.2.a.s.1.1 2
91.54 even 12 637.2.q.b.589.1 2
91.59 even 12 637.2.u.a.361.1 2
91.67 odd 12 91.2.k.a.4.1 2
91.72 odd 12 637.2.q.c.491.1 2
91.80 even 12 637.2.k.b.459.1 2
273.137 even 12 819.2.do.c.361.1 2
273.158 even 12 819.2.bm.a.550.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.k.a.4.1 2 91.67 odd 12
91.2.k.a.23.1 yes 2 13.7 odd 12
91.2.u.a.30.1 yes 2 13.2 odd 12
91.2.u.a.88.1 yes 2 91.46 odd 12
637.2.k.b.459.1 2 91.80 even 12
637.2.k.b.569.1 2 91.20 even 12
637.2.q.b.491.1 2 91.33 even 12
637.2.q.b.589.1 2 91.54 even 12
637.2.q.c.491.1 2 91.72 odd 12
637.2.q.c.589.1 2 91.2 odd 12
637.2.u.a.30.1 2 91.41 even 12
637.2.u.a.361.1 2 91.59 even 12
819.2.bm.a.478.1 2 39.20 even 12
819.2.bm.a.550.1 2 273.158 even 12
819.2.do.c.361.1 2 273.137 even 12
819.2.do.c.667.1 2 39.2 even 12
1183.2.e.e.170.1 4 1.1 even 1 trivial
1183.2.e.e.170.2 4 13.12 even 2 inner
1183.2.e.e.508.1 4 7.4 even 3 inner
1183.2.e.e.508.2 4 91.25 even 6 inner
8281.2.a.s.1.1 2 91.51 even 6
8281.2.a.s.1.2 2 7.2 even 3
8281.2.a.w.1.1 2 91.12 odd 6
8281.2.a.w.1.2 2 7.5 odd 6