Properties

Label 12.3.c
Level $12$
Weight $3$
Character orbit 12.c
Rep. character $\chi_{12}(5,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $6$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 12.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(6\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(12, [\chi])\).

Total New Old
Modular forms 7 1 6
Cusp forms 1 1 0
Eisenstein series 6 0 6

Trace form

\( q - 3 q^{3} + 2 q^{7} + 9 q^{9} - 22 q^{13} + 26 q^{19} - 6 q^{21} + 25 q^{25} - 27 q^{27} - 46 q^{31} + 26 q^{37} + 66 q^{39} - 22 q^{43} - 45 q^{49} - 78 q^{57} + 74 q^{61} + 18 q^{63} + 122 q^{67} - 46 q^{73}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(12, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
12.3.c.a 12.c 3.b $1$ $0.327$ \(\Q\) \(\Q(\sqrt{-3}) \) 12.3.c.a \(0\) \(-3\) \(0\) \(2\) $\mathrm{U}(1)[D_{2}]$ \(q-3q^{3}+2q^{7}+9q^{9}-22q^{13}+26q^{19}+\cdots\)