Properties

Label 120.4.k.c.61.4
Level $120$
Weight $4$
Character 120.61
Analytic conductor $7.080$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,4,Mod(61,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.61");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 120.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.08022920069\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 4 x^{13} + 7 x^{12} - 22 x^{11} + 70 x^{10} - 232 x^{9} + 1080 x^{8} - 4000 x^{7} + \cdots + 2097152 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{15} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 61.4
Root \(1.74774 + 2.22383i\) of defining polynomial
Character \(\chi\) \(=\) 120.61
Dual form 120.4.k.c.61.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.22383 + 1.74774i) q^{2} -3.00000i q^{3} +(1.89082 - 7.77334i) q^{4} +5.00000i q^{5} +(5.24321 + 6.67148i) q^{6} +2.94025 q^{7} +(9.38089 + 20.5912i) q^{8} -9.00000 q^{9} +(-8.73869 - 11.1191i) q^{10} -17.8593i q^{11} +(-23.3200 - 5.67247i) q^{12} -46.7050i q^{13} +(-6.53861 + 5.13879i) q^{14} +15.0000 q^{15} +(-56.8496 - 29.3960i) q^{16} -21.6786 q^{17} +(20.0145 - 15.7296i) q^{18} -162.197i q^{19} +(38.8667 + 9.45412i) q^{20} -8.82075i q^{21} +(31.2134 + 39.7160i) q^{22} +160.548 q^{23} +(61.7737 - 28.1427i) q^{24} -25.0000 q^{25} +(81.6281 + 103.864i) q^{26} +27.0000i q^{27} +(5.55949 - 22.8556i) q^{28} -214.174i q^{29} +(-33.3574 + 26.2161i) q^{30} -1.79631 q^{31} +(177.800 - 33.9865i) q^{32} -53.5779 q^{33} +(48.2094 - 37.8885i) q^{34} +14.7012i q^{35} +(-17.0174 + 69.9600i) q^{36} -163.742i q^{37} +(283.478 + 360.699i) q^{38} -140.115 q^{39} +(-102.956 + 46.9045i) q^{40} -203.616 q^{41} +(15.4164 + 19.6158i) q^{42} +62.8357i q^{43} +(-138.826 - 33.7688i) q^{44} -45.0000i q^{45} +(-357.031 + 280.596i) q^{46} +10.3285 q^{47} +(-88.1881 + 170.549i) q^{48} -334.355 q^{49} +(55.5957 - 43.6935i) q^{50} +65.0358i q^{51} +(-363.054 - 88.3110i) q^{52} +364.051i q^{53} +(-47.1889 - 60.0434i) q^{54} +89.2965 q^{55} +(27.5822 + 60.5434i) q^{56} -486.591 q^{57} +(374.320 + 476.286i) q^{58} +290.985i q^{59} +(28.3624 - 116.600i) q^{60} -522.551i q^{61} +(3.99469 - 3.13948i) q^{62} -26.4622 q^{63} +(-335.998 + 386.328i) q^{64} +233.525 q^{65} +(119.148 - 93.6401i) q^{66} +681.913i q^{67} +(-40.9904 + 168.515i) q^{68} -481.643i q^{69} +(-25.6939 - 32.6930i) q^{70} +455.528 q^{71} +(-84.4280 - 185.321i) q^{72} +768.573 q^{73} +(286.178 + 364.134i) q^{74} +75.0000i q^{75} +(-1260.81 - 306.686i) q^{76} -52.5108i q^{77} +(311.592 - 244.884i) q^{78} +1015.12 q^{79} +(146.980 - 284.248i) q^{80} +81.0000 q^{81} +(452.807 - 355.867i) q^{82} +274.715i q^{83} +(-68.5667 - 16.6785i) q^{84} -108.393i q^{85} +(-109.820 - 139.736i) q^{86} -642.522 q^{87} +(367.745 - 167.536i) q^{88} -1572.69 q^{89} +(78.6482 + 100.072i) q^{90} -137.324i q^{91} +(303.568 - 1247.99i) q^{92} +5.38893i q^{93} +(-22.9688 + 18.0515i) q^{94} +810.986 q^{95} +(-101.959 - 533.401i) q^{96} +178.134 q^{97} +(743.548 - 584.365i) q^{98} +160.734i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{2} - 2 q^{4} + 12 q^{6} - 28 q^{7} - 8 q^{8} - 126 q^{9} - 20 q^{10} + 12 q^{12} - 8 q^{14} + 210 q^{15} - 22 q^{16} + 204 q^{17} + 18 q^{18} - 20 q^{20} - 84 q^{22} - 328 q^{23} - 138 q^{24}+ \cdots + 6246 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.22383 + 1.74774i −0.786242 + 0.617919i
\(3\) 3.00000i 0.577350i
\(4\) 1.89082 7.77334i 0.236353 0.971667i
\(5\) 5.00000i 0.447214i
\(6\) 5.24321 + 6.67148i 0.356756 + 0.453937i
\(7\) 2.94025 0.158759 0.0793793 0.996844i \(-0.474706\pi\)
0.0793793 + 0.996844i \(0.474706\pi\)
\(8\) 9.38089 + 20.5912i 0.414581 + 0.910013i
\(9\) −9.00000 −0.333333
\(10\) −8.73869 11.1191i −0.276342 0.351618i
\(11\) 17.8593i 0.489526i −0.969583 0.244763i \(-0.921290\pi\)
0.969583 0.244763i \(-0.0787101\pi\)
\(12\) −23.3200 5.67247i −0.560992 0.136458i
\(13\) 46.7050i 0.996434i −0.867052 0.498217i \(-0.833988\pi\)
0.867052 0.498217i \(-0.166012\pi\)
\(14\) −6.53861 + 5.13879i −0.124823 + 0.0980999i
\(15\) 15.0000 0.258199
\(16\) −56.8496 29.3960i −0.888275 0.459313i
\(17\) −21.6786 −0.309284 −0.154642 0.987971i \(-0.549422\pi\)
−0.154642 + 0.987971i \(0.549422\pi\)
\(18\) 20.0145 15.7296i 0.262081 0.205973i
\(19\) 162.197i 1.95845i −0.202773 0.979226i \(-0.564995\pi\)
0.202773 0.979226i \(-0.435005\pi\)
\(20\) 38.8667 + 9.45412i 0.434543 + 0.105700i
\(21\) 8.82075i 0.0916593i
\(22\) 31.2134 + 39.7160i 0.302487 + 0.384886i
\(23\) 160.548 1.45550 0.727751 0.685842i \(-0.240566\pi\)
0.727751 + 0.685842i \(0.240566\pi\)
\(24\) 61.7737 28.1427i 0.525396 0.239358i
\(25\) −25.0000 −0.200000
\(26\) 81.6281 + 103.864i 0.615715 + 0.783438i
\(27\) 27.0000i 0.192450i
\(28\) 5.55949 22.8556i 0.0375230 0.154260i
\(29\) 214.174i 1.37142i −0.727876 0.685709i \(-0.759492\pi\)
0.727876 0.685709i \(-0.240508\pi\)
\(30\) −33.3574 + 26.2161i −0.203007 + 0.159546i
\(31\) −1.79631 −0.0104073 −0.00520366 0.999986i \(-0.501656\pi\)
−0.00520366 + 0.999986i \(0.501656\pi\)
\(32\) 177.800 33.9865i 0.982217 0.187750i
\(33\) −53.5779 −0.282628
\(34\) 48.2094 37.8885i 0.243172 0.191112i
\(35\) 14.7012i 0.0709990i
\(36\) −17.0174 + 69.9600i −0.0787843 + 0.323889i
\(37\) 163.742i 0.727542i −0.931488 0.363771i \(-0.881489\pi\)
0.931488 0.363771i \(-0.118511\pi\)
\(38\) 283.478 + 360.699i 1.21016 + 1.53982i
\(39\) −140.115 −0.575291
\(40\) −102.956 + 46.9045i −0.406970 + 0.185406i
\(41\) −203.616 −0.775596 −0.387798 0.921744i \(-0.626764\pi\)
−0.387798 + 0.921744i \(0.626764\pi\)
\(42\) 15.4164 + 19.6158i 0.0566380 + 0.0720664i
\(43\) 62.8357i 0.222845i 0.993773 + 0.111423i \(0.0355407\pi\)
−0.993773 + 0.111423i \(0.964459\pi\)
\(44\) −138.826 33.7688i −0.475656 0.115701i
\(45\) 45.0000i 0.149071i
\(46\) −357.031 + 280.596i −1.14438 + 0.899382i
\(47\) 10.3285 0.0320546 0.0160273 0.999872i \(-0.494898\pi\)
0.0160273 + 0.999872i \(0.494898\pi\)
\(48\) −88.1881 + 170.549i −0.265184 + 0.512846i
\(49\) −334.355 −0.974796
\(50\) 55.5957 43.6935i 0.157248 0.123584i
\(51\) 65.0358i 0.178565i
\(52\) −363.054 88.3110i −0.968202 0.235510i
\(53\) 364.051i 0.943513i 0.881729 + 0.471757i \(0.156380\pi\)
−0.881729 + 0.471757i \(0.843620\pi\)
\(54\) −47.1889 60.0434i −0.118919 0.151312i
\(55\) 89.2965 0.218923
\(56\) 27.5822 + 60.5434i 0.0658182 + 0.144472i
\(57\) −486.591 −1.13071
\(58\) 374.320 + 476.286i 0.847425 + 1.07827i
\(59\) 290.985i 0.642084i 0.947065 + 0.321042i \(0.104033\pi\)
−0.947065 + 0.321042i \(0.895967\pi\)
\(60\) 28.3624 116.600i 0.0610261 0.250883i
\(61\) 522.551i 1.09682i −0.836211 0.548408i \(-0.815234\pi\)
0.836211 0.548408i \(-0.184766\pi\)
\(62\) 3.99469 3.13948i 0.00818268 0.00643088i
\(63\) −26.4622 −0.0529195
\(64\) −335.998 + 386.328i −0.656246 + 0.754547i
\(65\) 233.525 0.445619
\(66\) 119.148 93.6401i 0.222214 0.174641i
\(67\) 681.913i 1.24342i 0.783249 + 0.621708i \(0.213561\pi\)
−0.783249 + 0.621708i \(0.786439\pi\)
\(68\) −40.9904 + 168.515i −0.0731002 + 0.300521i
\(69\) 481.643i 0.840334i
\(70\) −25.6939 32.6930i −0.0438716 0.0558224i
\(71\) 455.528 0.761426 0.380713 0.924693i \(-0.375679\pi\)
0.380713 + 0.924693i \(0.375679\pi\)
\(72\) −84.4280 185.321i −0.138194 0.303338i
\(73\) 768.573 1.23226 0.616128 0.787646i \(-0.288701\pi\)
0.616128 + 0.787646i \(0.288701\pi\)
\(74\) 286.178 + 364.134i 0.449562 + 0.572024i
\(75\) 75.0000i 0.115470i
\(76\) −1260.81 306.686i −1.90296 0.462886i
\(77\) 52.5108i 0.0777164i
\(78\) 311.592 244.884i 0.452318 0.355483i
\(79\) 1015.12 1.44569 0.722846 0.691009i \(-0.242834\pi\)
0.722846 + 0.691009i \(0.242834\pi\)
\(80\) 146.980 284.248i 0.205411 0.397248i
\(81\) 81.0000 0.111111
\(82\) 452.807 355.867i 0.609806 0.479256i
\(83\) 274.715i 0.363300i 0.983363 + 0.181650i \(0.0581438\pi\)
−0.983363 + 0.181650i \(0.941856\pi\)
\(84\) −68.5667 16.6785i −0.0890623 0.0216639i
\(85\) 108.393i 0.138316i
\(86\) −109.820 139.736i −0.137700 0.175210i
\(87\) −642.522 −0.791788
\(88\) 367.745 167.536i 0.445474 0.202948i
\(89\) −1572.69 −1.87309 −0.936543 0.350553i \(-0.885994\pi\)
−0.936543 + 0.350553i \(0.885994\pi\)
\(90\) 78.6482 + 100.072i 0.0921139 + 0.117206i
\(91\) 137.324i 0.158192i
\(92\) 303.568 1247.99i 0.344012 1.41426i
\(93\) 5.38893i 0.00600867i
\(94\) −22.9688 + 18.0515i −0.0252027 + 0.0198072i
\(95\) 810.986 0.875846
\(96\) −101.959 533.401i −0.108398 0.567083i
\(97\) 178.134 0.186462 0.0932308 0.995645i \(-0.470281\pi\)
0.0932308 + 0.995645i \(0.470281\pi\)
\(98\) 743.548 584.365i 0.766425 0.602345i
\(99\) 160.734i 0.163175i
\(100\) −47.2706 + 194.333i −0.0472706 + 0.194333i
\(101\) 282.191i 0.278010i 0.990292 + 0.139005i \(0.0443904\pi\)
−0.990292 + 0.139005i \(0.955610\pi\)
\(102\) −113.665 144.628i −0.110339 0.140395i
\(103\) 1280.40 1.22487 0.612435 0.790521i \(-0.290190\pi\)
0.612435 + 0.790521i \(0.290190\pi\)
\(104\) 961.714 438.135i 0.906767 0.413102i
\(105\) 44.1037 0.0409913
\(106\) −636.265 809.586i −0.583014 0.741830i
\(107\) 84.8590i 0.0766694i 0.999265 + 0.0383347i \(0.0122053\pi\)
−0.999265 + 0.0383347i \(0.987795\pi\)
\(108\) 209.880 + 51.0522i 0.186997 + 0.0454861i
\(109\) 440.379i 0.386979i 0.981102 + 0.193489i \(0.0619805\pi\)
−0.981102 + 0.193489i \(0.938020\pi\)
\(110\) −198.580 + 156.067i −0.172126 + 0.135276i
\(111\) −491.226 −0.420046
\(112\) −167.152 86.4316i −0.141021 0.0729198i
\(113\) −505.336 −0.420691 −0.210345 0.977627i \(-0.567459\pi\)
−0.210345 + 0.977627i \(0.567459\pi\)
\(114\) 1082.10 850.434i 0.889014 0.698688i
\(115\) 802.739i 0.650920i
\(116\) −1664.85 404.965i −1.33256 0.324139i
\(117\) 420.345i 0.332145i
\(118\) −508.565 647.100i −0.396756 0.504833i
\(119\) −63.7404 −0.0491015
\(120\) 140.713 + 308.868i 0.107044 + 0.234964i
\(121\) 1012.05 0.760365
\(122\) 913.283 + 1162.06i 0.677744 + 0.862364i
\(123\) 610.848i 0.447791i
\(124\) −3.39651 + 13.9633i −0.00245980 + 0.0101125i
\(125\) 125.000i 0.0894427i
\(126\) 58.8475 46.2491i 0.0416075 0.0327000i
\(127\) −1760.50 −1.23007 −0.615037 0.788498i \(-0.710859\pi\)
−0.615037 + 0.788498i \(0.710859\pi\)
\(128\) 72.0006 1446.36i 0.0497189 0.998763i
\(129\) 188.507 0.128660
\(130\) −519.320 + 408.141i −0.350364 + 0.275356i
\(131\) 1984.48i 1.32355i −0.749703 0.661774i \(-0.769804\pi\)
0.749703 0.661774i \(-0.230196\pi\)
\(132\) −101.306 + 416.479i −0.0667999 + 0.274620i
\(133\) 476.900i 0.310921i
\(134\) −1191.80 1516.46i −0.768330 0.977626i
\(135\) −135.000 −0.0860663
\(136\) −203.364 446.389i −0.128223 0.281452i
\(137\) −1675.18 −1.04467 −0.522337 0.852739i \(-0.674940\pi\)
−0.522337 + 0.852739i \(0.674940\pi\)
\(138\) 841.787 + 1071.09i 0.519258 + 0.660706i
\(139\) 1903.41i 1.16148i 0.814090 + 0.580739i \(0.197236\pi\)
−0.814090 + 0.580739i \(0.802764\pi\)
\(140\) 114.278 + 27.7975i 0.0689874 + 0.0167808i
\(141\) 30.9855i 0.0185068i
\(142\) −1013.02 + 796.144i −0.598665 + 0.470499i
\(143\) −834.119 −0.487780
\(144\) 511.646 + 264.564i 0.296092 + 0.153104i
\(145\) 1070.87 0.613317
\(146\) −1709.17 + 1343.26i −0.968851 + 0.761433i
\(147\) 1003.06i 0.562799i
\(148\) −1272.82 309.607i −0.706928 0.171957i
\(149\) 2678.70i 1.47280i 0.676544 + 0.736402i \(0.263477\pi\)
−0.676544 + 0.736402i \(0.736523\pi\)
\(150\) −131.080 166.787i −0.0713511 0.0907874i
\(151\) 2693.58 1.45166 0.725829 0.687875i \(-0.241456\pi\)
0.725829 + 0.687875i \(0.241456\pi\)
\(152\) 3339.84 1521.55i 1.78222 0.811936i
\(153\) 195.107 0.103095
\(154\) 91.7751 + 116.775i 0.0480224 + 0.0611039i
\(155\) 8.98156i 0.00465430i
\(156\) −264.933 + 1089.16i −0.135972 + 0.558992i
\(157\) 1110.97i 0.564745i −0.959305 0.282372i \(-0.908879\pi\)
0.959305 0.282372i \(-0.0911213\pi\)
\(158\) −2257.45 + 1774.16i −1.13666 + 0.893320i
\(159\) 1092.15 0.544738
\(160\) 169.932 + 889.001i 0.0839645 + 0.439261i
\(161\) 472.051 0.231073
\(162\) −180.130 + 141.567i −0.0873602 + 0.0686576i
\(163\) 3368.46i 1.61864i −0.587368 0.809320i \(-0.699836\pi\)
0.587368 0.809320i \(-0.300164\pi\)
\(164\) −385.002 + 1582.77i −0.183314 + 0.753622i
\(165\) 267.890i 0.126395i
\(166\) −480.130 610.920i −0.224490 0.285642i
\(167\) −1734.65 −0.803779 −0.401889 0.915688i \(-0.631646\pi\)
−0.401889 + 0.915688i \(0.631646\pi\)
\(168\) 181.630 82.7465i 0.0834111 0.0380002i
\(169\) 15.6411 0.00711928
\(170\) 189.442 + 241.047i 0.0854681 + 0.108750i
\(171\) 1459.77i 0.652817i
\(172\) 488.443 + 118.811i 0.216531 + 0.0526701i
\(173\) 4013.33i 1.76374i 0.471489 + 0.881872i \(0.343717\pi\)
−0.471489 + 0.881872i \(0.656283\pi\)
\(174\) 1428.86 1122.96i 0.622537 0.489261i
\(175\) −73.5062 −0.0317517
\(176\) −524.992 + 1015.29i −0.224845 + 0.434833i
\(177\) 872.954 0.370707
\(178\) 3497.39 2748.65i 1.47270 1.15741i
\(179\) 3881.48i 1.62076i −0.585906 0.810379i \(-0.699261\pi\)
0.585906 0.810379i \(-0.300739\pi\)
\(180\) −349.800 85.0871i −0.144848 0.0352334i
\(181\) 733.629i 0.301272i −0.988589 0.150636i \(-0.951868\pi\)
0.988589 0.150636i \(-0.0481321\pi\)
\(182\) 240.007 + 305.386i 0.0977500 + 0.124378i
\(183\) −1567.65 −0.633248
\(184\) 1506.08 + 3305.88i 0.603423 + 1.32452i
\(185\) 818.711 0.325366
\(186\) −9.41844 11.9841i −0.00371287 0.00472427i
\(187\) 387.164i 0.151402i
\(188\) 19.5294 80.2870i 0.00757621 0.0311465i
\(189\) 79.3867i 0.0305531i
\(190\) −1803.49 + 1417.39i −0.688627 + 0.541202i
\(191\) 21.6852 0.00821512 0.00410756 0.999992i \(-0.498693\pi\)
0.00410756 + 0.999992i \(0.498693\pi\)
\(192\) 1158.98 + 1007.99i 0.435638 + 0.378884i
\(193\) 1319.65 0.492179 0.246089 0.969247i \(-0.420854\pi\)
0.246089 + 0.969247i \(0.420854\pi\)
\(194\) −396.139 + 311.332i −0.146604 + 0.115218i
\(195\) 700.575i 0.257278i
\(196\) −632.206 + 2599.05i −0.230396 + 0.947177i
\(197\) 2620.65i 0.947784i −0.880583 0.473892i \(-0.842849\pi\)
0.880583 0.473892i \(-0.157151\pi\)
\(198\) −280.920 357.444i −0.100829 0.128295i
\(199\) −3324.94 −1.18442 −0.592209 0.805785i \(-0.701744\pi\)
−0.592209 + 0.805785i \(0.701744\pi\)
\(200\) −234.522 514.781i −0.0829162 0.182003i
\(201\) 2045.74 0.717887
\(202\) −493.195 627.543i −0.171788 0.218583i
\(203\) 629.725i 0.217724i
\(204\) 505.545 + 122.971i 0.173506 + 0.0422044i
\(205\) 1018.08i 0.346857i
\(206\) −2847.39 + 2237.80i −0.963044 + 0.756870i
\(207\) −1444.93 −0.485167
\(208\) −1372.94 + 2655.16i −0.457675 + 0.885107i
\(209\) −2896.73 −0.958712
\(210\) −98.0791 + 77.0818i −0.0322291 + 0.0253293i
\(211\) 187.219i 0.0610840i −0.999533 0.0305420i \(-0.990277\pi\)
0.999533 0.0305420i \(-0.00972333\pi\)
\(212\) 2829.89 + 688.356i 0.916781 + 0.223002i
\(213\) 1366.58i 0.439609i
\(214\) −148.311 188.712i −0.0473755 0.0602807i
\(215\) −314.178 −0.0996594
\(216\) −555.963 + 253.284i −0.175132 + 0.0797861i
\(217\) −5.28160 −0.00165225
\(218\) −769.668 979.328i −0.239121 0.304259i
\(219\) 2305.72i 0.711443i
\(220\) 168.844 694.132i 0.0517430 0.212720i
\(221\) 1012.50i 0.308181i
\(222\) 1092.40 858.535i 0.330258 0.259554i
\(223\) −3512.67 −1.05482 −0.527412 0.849610i \(-0.676838\pi\)
−0.527412 + 0.849610i \(0.676838\pi\)
\(224\) 522.777 99.9287i 0.155935 0.0298070i
\(225\) 225.000 0.0666667
\(226\) 1123.78 883.196i 0.330765 0.259953i
\(227\) 1976.34i 0.577862i −0.957350 0.288931i \(-0.906700\pi\)
0.957350 0.288931i \(-0.0932998\pi\)
\(228\) −920.059 + 3782.44i −0.267247 + 1.09868i
\(229\) 3669.36i 1.05886i 0.848354 + 0.529429i \(0.177594\pi\)
−0.848354 + 0.529429i \(0.822406\pi\)
\(230\) −1402.98 1785.15i −0.402216 0.511781i
\(231\) −157.532 −0.0448696
\(232\) 4410.11 2009.14i 1.24801 0.568563i
\(233\) −3950.24 −1.11068 −0.555341 0.831623i \(-0.687412\pi\)
−0.555341 + 0.831623i \(0.687412\pi\)
\(234\) −734.653 934.775i −0.205238 0.261146i
\(235\) 51.6426i 0.0143353i
\(236\) 2261.92 + 550.200i 0.623892 + 0.151758i
\(237\) 3045.35i 0.834671i
\(238\) 141.748 111.402i 0.0386056 0.0303407i
\(239\) 2706.48 0.732499 0.366250 0.930517i \(-0.380642\pi\)
0.366250 + 0.930517i \(0.380642\pi\)
\(240\) −852.744 440.940i −0.229352 0.118594i
\(241\) 7437.22 1.98786 0.993928 0.110029i \(-0.0350945\pi\)
0.993928 + 0.110029i \(0.0350945\pi\)
\(242\) −2250.61 + 1768.79i −0.597831 + 0.469844i
\(243\) 243.000i 0.0641500i
\(244\) −4061.97 988.052i −1.06574 0.259236i
\(245\) 1671.77i 0.435942i
\(246\) −1067.60 1358.42i −0.276698 0.352072i
\(247\) −7575.42 −1.95147
\(248\) −16.8510 36.9883i −0.00431468 0.00947079i
\(249\) 824.146 0.209751
\(250\) 218.467 + 277.979i 0.0552683 + 0.0703236i
\(251\) 4230.91i 1.06395i −0.846759 0.531977i \(-0.821449\pi\)
0.846759 0.531977i \(-0.178551\pi\)
\(252\) −50.0354 + 205.700i −0.0125077 + 0.0514202i
\(253\) 2867.27i 0.712505i
\(254\) 3915.06 3076.90i 0.967136 0.760086i
\(255\) −325.179 −0.0798568
\(256\) 2367.75 + 3342.30i 0.578063 + 0.815992i
\(257\) 6002.97 1.45702 0.728511 0.685034i \(-0.240213\pi\)
0.728511 + 0.685034i \(0.240213\pi\)
\(258\) −419.207 + 329.461i −0.101158 + 0.0795013i
\(259\) 481.443i 0.115503i
\(260\) 441.555 1815.27i 0.105323 0.432993i
\(261\) 1927.57i 0.457139i
\(262\) 3468.35 + 4413.14i 0.817846 + 1.04063i
\(263\) 3518.76 0.825004 0.412502 0.910957i \(-0.364655\pi\)
0.412502 + 0.910957i \(0.364655\pi\)
\(264\) −502.609 1103.24i −0.117172 0.257195i
\(265\) −1820.25 −0.421952
\(266\) 833.496 + 1060.54i 0.192124 + 0.244459i
\(267\) 4718.06i 1.08143i
\(268\) 5300.74 + 1289.38i 1.20819 + 0.293885i
\(269\) 619.760i 0.140474i −0.997530 0.0702368i \(-0.977625\pi\)
0.997530 0.0702368i \(-0.0223755\pi\)
\(270\) 300.217 235.945i 0.0676689 0.0531820i
\(271\) 3575.48 0.801457 0.400728 0.916197i \(-0.368757\pi\)
0.400728 + 0.916197i \(0.368757\pi\)
\(272\) 1232.42 + 637.264i 0.274729 + 0.142058i
\(273\) −411.973 −0.0913324
\(274\) 3725.31 2927.78i 0.821366 0.645523i
\(275\) 446.483i 0.0979051i
\(276\) −3743.98 910.703i −0.816525 0.198615i
\(277\) 170.064i 0.0368886i 0.999830 + 0.0184443i \(0.00587134\pi\)
−0.999830 + 0.0184443i \(0.994129\pi\)
\(278\) −3326.67 4232.87i −0.717699 0.913203i
\(279\) 16.1668 0.00346911
\(280\) −302.717 + 137.911i −0.0646100 + 0.0294348i
\(281\) 2940.17 0.624184 0.312092 0.950052i \(-0.398970\pi\)
0.312092 + 0.950052i \(0.398970\pi\)
\(282\) 54.1546 + 68.9065i 0.0114357 + 0.0145508i
\(283\) 3031.88i 0.636843i −0.947949 0.318422i \(-0.896847\pi\)
0.947949 0.318422i \(-0.103153\pi\)
\(284\) 861.323 3540.97i 0.179965 0.739853i
\(285\) 2432.96i 0.505670i
\(286\) 1854.94 1457.82i 0.383513 0.301408i
\(287\) −598.681 −0.123133
\(288\) −1600.20 + 305.878i −0.327406 + 0.0625835i
\(289\) −4443.04 −0.904343
\(290\) −2381.43 + 1871.60i −0.482215 + 0.378980i
\(291\) 534.402i 0.107654i
\(292\) 1453.24 5974.37i 0.291247 1.19734i
\(293\) 7805.49i 1.55632i 0.628067 + 0.778159i \(0.283846\pi\)
−0.628067 + 0.778159i \(0.716154\pi\)
\(294\) −1753.09 2230.64i −0.347764 0.442496i
\(295\) −1454.92 −0.287149
\(296\) 3371.65 1536.05i 0.662072 0.301625i
\(297\) 482.201 0.0942093
\(298\) −4681.67 5956.97i −0.910073 1.15798i
\(299\) 7498.39i 1.45031i
\(300\) 583.000 + 141.812i 0.112198 + 0.0272917i
\(301\) 184.752i 0.0353786i
\(302\) −5990.06 + 4707.67i −1.14136 + 0.897007i
\(303\) 846.572 0.160509
\(304\) −4767.95 + 9220.84i −0.899542 + 1.73964i
\(305\) 2612.76 0.490511
\(306\) −433.885 + 340.996i −0.0810574 + 0.0637041i
\(307\) 7999.54i 1.48716i 0.668647 + 0.743580i \(0.266874\pi\)
−0.668647 + 0.743580i \(0.733126\pi\)
\(308\) −408.184 99.2887i −0.0755145 0.0183685i
\(309\) 3841.20i 0.707179i
\(310\) 15.6974 + 19.9734i 0.00287598 + 0.00365940i
\(311\) 7248.12 1.32155 0.660777 0.750582i \(-0.270227\pi\)
0.660777 + 0.750582i \(0.270227\pi\)
\(312\) −1314.40 2885.14i −0.238505 0.523522i
\(313\) −6711.86 −1.21207 −0.606033 0.795440i \(-0.707240\pi\)
−0.606033 + 0.795440i \(0.707240\pi\)
\(314\) 1941.68 + 2470.60i 0.348966 + 0.444026i
\(315\) 132.311i 0.0236663i
\(316\) 1919.41 7890.86i 0.341694 1.40473i
\(317\) 4006.43i 0.709854i 0.934894 + 0.354927i \(0.115494\pi\)
−0.934894 + 0.354927i \(0.884506\pi\)
\(318\) −2428.76 + 1908.80i −0.428296 + 0.336604i
\(319\) −3825.00 −0.671344
\(320\) −1931.64 1679.99i −0.337444 0.293482i
\(321\) 254.577 0.0442651
\(322\) −1049.76 + 825.021i −0.181680 + 0.142785i
\(323\) 3516.20i 0.605718i
\(324\) 153.157 629.640i 0.0262614 0.107963i
\(325\) 1167.63i 0.199287i
\(326\) 5887.19 + 7490.88i 1.00019 + 1.27264i
\(327\) 1321.14 0.223422
\(328\) −1910.10 4192.70i −0.321547 0.705802i
\(329\) 30.3684 0.00508895
\(330\) 468.201 + 595.740i 0.0781018 + 0.0993770i
\(331\) 6182.22i 1.02660i 0.858208 + 0.513302i \(0.171578\pi\)
−0.858208 + 0.513302i \(0.828422\pi\)
\(332\) 2135.45 + 519.438i 0.353007 + 0.0858671i
\(333\) 1473.68i 0.242514i
\(334\) 3857.56 3031.71i 0.631965 0.496670i
\(335\) −3409.56 −0.556073
\(336\) −259.295 + 501.456i −0.0421003 + 0.0814186i
\(337\) 7794.12 1.25986 0.629930 0.776652i \(-0.283084\pi\)
0.629930 + 0.776652i \(0.283084\pi\)
\(338\) −34.7830 + 27.3365i −0.00559748 + 0.00439914i
\(339\) 1516.01i 0.242886i
\(340\) −842.575 204.952i −0.134397 0.0326914i
\(341\) 32.0809i 0.00509465i
\(342\) −2551.30 3246.29i −0.403388 0.513272i
\(343\) −1991.59 −0.313516
\(344\) −1293.86 + 589.454i −0.202792 + 0.0923874i
\(345\) 2408.22 0.375809
\(346\) −7014.24 8924.95i −1.08985 1.38673i
\(347\) 12357.0i 1.91170i 0.293860 + 0.955849i \(0.405060\pi\)
−0.293860 + 0.955849i \(0.594940\pi\)
\(348\) −1214.90 + 4994.54i −0.187142 + 0.769355i
\(349\) 12912.3i 1.98045i 0.139469 + 0.990226i \(0.455461\pi\)
−0.139469 + 0.990226i \(0.544539\pi\)
\(350\) 163.465 128.470i 0.0249645 0.0196200i
\(351\) 1261.04 0.191764
\(352\) −606.974 3175.39i −0.0919087 0.480820i
\(353\) 1085.49 0.163669 0.0818343 0.996646i \(-0.473922\pi\)
0.0818343 + 0.996646i \(0.473922\pi\)
\(354\) −1941.30 + 1525.69i −0.291466 + 0.229067i
\(355\) 2277.64i 0.340520i
\(356\) −2973.68 + 12225.0i −0.442709 + 1.82002i
\(357\) 191.221i 0.0283488i
\(358\) 6783.82 + 8631.75i 1.00150 + 1.27431i
\(359\) 12270.1 1.80387 0.901936 0.431869i \(-0.142146\pi\)
0.901936 + 0.431869i \(0.142146\pi\)
\(360\) 926.605 422.140i 0.135657 0.0618021i
\(361\) −19448.9 −2.83553
\(362\) 1282.19 + 1631.46i 0.186161 + 0.236873i
\(363\) 3036.14i 0.438997i
\(364\) −1067.47 259.656i −0.153710 0.0373892i
\(365\) 3842.86i 0.551081i
\(366\) 3486.19 2739.85i 0.497886 0.391296i
\(367\) 2883.50 0.410130 0.205065 0.978748i \(-0.434259\pi\)
0.205065 + 0.978748i \(0.434259\pi\)
\(368\) −9127.07 4719.47i −1.29288 0.668531i
\(369\) 1832.54 0.258532
\(370\) −1820.67 + 1430.89i −0.255817 + 0.201050i
\(371\) 1070.40i 0.149791i
\(372\) 41.8900 + 10.1895i 0.00583843 + 0.00142017i
\(373\) 10056.9i 1.39605i −0.716071 0.698027i \(-0.754061\pi\)
0.716071 0.698027i \(-0.245939\pi\)
\(374\) −676.662 860.987i −0.0935544 0.119039i
\(375\) −375.000 −0.0516398
\(376\) 96.8907 + 212.677i 0.0132892 + 0.0291701i
\(377\) −10003.0 −1.36653
\(378\) −138.747 176.542i −0.0188793 0.0240221i
\(379\) 3683.45i 0.499225i −0.968346 0.249612i \(-0.919697\pi\)
0.968346 0.249612i \(-0.0803032\pi\)
\(380\) 1533.43 6304.07i 0.207009 0.851031i
\(381\) 5281.51i 0.710184i
\(382\) −48.2242 + 37.9001i −0.00645908 + 0.00507628i
\(383\) 7961.76 1.06221 0.531105 0.847306i \(-0.321777\pi\)
0.531105 + 0.847306i \(0.321777\pi\)
\(384\) −4339.09 216.002i −0.576636 0.0287052i
\(385\) 262.554 0.0347558
\(386\) −2934.67 + 2306.40i −0.386971 + 0.304126i
\(387\) 565.521i 0.0742818i
\(388\) 336.820 1384.70i 0.0440707 0.181179i
\(389\) 6298.86i 0.820989i 0.911863 + 0.410495i \(0.134644\pi\)
−0.911863 + 0.410495i \(0.865356\pi\)
\(390\) 1224.42 + 1557.96i 0.158977 + 0.202283i
\(391\) −3480.45 −0.450163
\(392\) −3136.55 6884.78i −0.404132 0.887076i
\(393\) −5953.44 −0.764151
\(394\) 4580.21 + 5827.87i 0.585654 + 0.745188i
\(395\) 5075.59i 0.646533i
\(396\) 1249.44 + 303.919i 0.158552 + 0.0385669i
\(397\) 7320.36i 0.925436i −0.886505 0.462718i \(-0.846874\pi\)
0.886505 0.462718i \(-0.153126\pi\)
\(398\) 7394.10 5811.13i 0.931239 0.731874i
\(399\) −1430.70 −0.179510
\(400\) 1421.24 + 734.901i 0.177655 + 0.0918626i
\(401\) −2292.02 −0.285432 −0.142716 0.989764i \(-0.545583\pi\)
−0.142716 + 0.989764i \(0.545583\pi\)
\(402\) −4549.37 + 3575.41i −0.564433 + 0.443596i
\(403\) 83.8968i 0.0103702i
\(404\) 2193.56 + 533.573i 0.270133 + 0.0657085i
\(405\) 405.000i 0.0496904i
\(406\) 1100.59 + 1400.40i 0.134536 + 0.171184i
\(407\) −2924.32 −0.356150
\(408\) −1339.17 + 610.093i −0.162497 + 0.0740297i
\(409\) −7748.03 −0.936712 −0.468356 0.883540i \(-0.655154\pi\)
−0.468356 + 0.883540i \(0.655154\pi\)
\(410\) 1779.34 + 2264.03i 0.214330 + 0.272714i
\(411\) 5025.54i 0.603142i
\(412\) 2421.01 9952.99i 0.289502 1.19017i
\(413\) 855.567i 0.101936i
\(414\) 3213.28 2525.36i 0.381459 0.299794i
\(415\) −1373.58 −0.162473
\(416\) −1587.34 8304.16i −0.187081 0.978714i
\(417\) 5710.24 0.670580
\(418\) 6441.83 5062.72i 0.753780 0.592406i
\(419\) 4998.52i 0.582801i −0.956601 0.291401i \(-0.905879\pi\)
0.956601 0.291401i \(-0.0941213\pi\)
\(420\) 83.3924 342.833i 0.00968841 0.0398299i
\(421\) 3795.98i 0.439441i −0.975563 0.219720i \(-0.929485\pi\)
0.975563 0.219720i \(-0.0705145\pi\)
\(422\) 327.211 + 416.344i 0.0377449 + 0.0480268i
\(423\) −92.9566 −0.0106849
\(424\) −7496.25 + 3415.12i −0.858609 + 0.391162i
\(425\) 541.965 0.0618568
\(426\) 2388.43 + 3039.05i 0.271643 + 0.345639i
\(427\) 1536.43i 0.174129i
\(428\) 659.638 + 160.453i 0.0744972 + 0.0181210i
\(429\) 2502.36i 0.281620i
\(430\) 698.678 549.101i 0.0783564 0.0615814i
\(431\) −8423.43 −0.941398 −0.470699 0.882294i \(-0.655998\pi\)
−0.470699 + 0.882294i \(0.655998\pi\)
\(432\) 793.693 1534.94i 0.0883948 0.170949i
\(433\) −2521.08 −0.279805 −0.139902 0.990165i \(-0.544679\pi\)
−0.139902 + 0.990165i \(0.544679\pi\)
\(434\) 11.7454 9.23086i 0.00129907 0.00102096i
\(435\) 3212.61i 0.354099i
\(436\) 3423.22 + 832.679i 0.376015 + 0.0914636i
\(437\) 26040.4i 2.85053i
\(438\) 4029.79 + 5127.52i 0.439614 + 0.559366i
\(439\) 10195.5 1.10844 0.554220 0.832370i \(-0.313017\pi\)
0.554220 + 0.832370i \(0.313017\pi\)
\(440\) 837.681 + 1838.73i 0.0907611 + 0.199222i
\(441\) 3009.19 0.324932
\(442\) −1769.58 2251.62i −0.190431 0.242305i
\(443\) 8694.08i 0.932434i 0.884670 + 0.466217i \(0.154383\pi\)
−0.884670 + 0.466217i \(0.845617\pi\)
\(444\) −928.822 + 3818.47i −0.0992792 + 0.408145i
\(445\) 7863.44i 0.837669i
\(446\) 7811.57 6139.23i 0.829347 0.651795i
\(447\) 8036.10 0.850324
\(448\) −987.917 + 1135.90i −0.104185 + 0.119791i
\(449\) 10748.7 1.12976 0.564878 0.825174i \(-0.308923\pi\)
0.564878 + 0.825174i \(0.308923\pi\)
\(450\) −500.361 + 393.241i −0.0524161 + 0.0411946i
\(451\) 3636.44i 0.379674i
\(452\) −955.502 + 3928.15i −0.0994315 + 0.408771i
\(453\) 8080.74i 0.838116i
\(454\) 3454.13 + 4395.05i 0.357072 + 0.454339i
\(455\) 686.622 0.0707458
\(456\) −4564.66 10019.5i −0.468772 1.02896i
\(457\) 15551.7 1.59185 0.795925 0.605395i \(-0.206985\pi\)
0.795925 + 0.605395i \(0.206985\pi\)
\(458\) −6413.09 8160.03i −0.654288 0.832518i
\(459\) 585.322i 0.0595217i
\(460\) 6239.96 + 1517.84i 0.632478 + 0.153847i
\(461\) 16031.5i 1.61966i −0.586668 0.809828i \(-0.699560\pi\)
0.586668 0.809828i \(-0.300440\pi\)
\(462\) 350.325 275.325i 0.0352783 0.0277257i
\(463\) 16487.8 1.65498 0.827488 0.561484i \(-0.189769\pi\)
0.827488 + 0.561484i \(0.189769\pi\)
\(464\) −6295.86 + 12175.7i −0.629910 + 1.21820i
\(465\) −26.9447 −0.00268716
\(466\) 8784.65 6903.98i 0.873264 0.686311i
\(467\) 3578.77i 0.354616i −0.984155 0.177308i \(-0.943261\pi\)
0.984155 0.177308i \(-0.0567389\pi\)
\(468\) 3267.49 + 794.799i 0.322734 + 0.0785034i
\(469\) 2004.99i 0.197403i
\(470\) −90.2577 114.844i −0.00885803 0.0112710i
\(471\) −3332.90 −0.326055
\(472\) −5991.73 + 2729.69i −0.584305 + 0.266196i
\(473\) 1122.20 0.109088
\(474\) 5322.48 + 6772.34i 0.515759 + 0.656253i
\(475\) 4054.93i 0.391690i
\(476\) −120.522 + 495.476i −0.0116053 + 0.0477103i
\(477\) 3276.46i 0.314504i
\(478\) −6018.74 + 4730.21i −0.575922 + 0.452625i
\(479\) −7375.39 −0.703529 −0.351764 0.936089i \(-0.614418\pi\)
−0.351764 + 0.936089i \(0.614418\pi\)
\(480\) 2667.00 509.797i 0.253607 0.0484770i
\(481\) −7647.58 −0.724947
\(482\) −16539.1 + 12998.3i −1.56294 + 1.22833i
\(483\) 1416.15i 0.133410i
\(484\) 1913.60 7866.97i 0.179714 0.738821i
\(485\) 890.670i 0.0833881i
\(486\) 424.700 + 540.390i 0.0396395 + 0.0504374i
\(487\) −3961.33 −0.368594 −0.184297 0.982871i \(-0.559001\pi\)
−0.184297 + 0.982871i \(0.559001\pi\)
\(488\) 10760.0 4902.00i 0.998117 0.454719i
\(489\) −10105.4 −0.934522
\(490\) 2921.82 + 3717.74i 0.269377 + 0.342756i
\(491\) 18035.1i 1.65766i −0.559498 0.828832i \(-0.689006\pi\)
0.559498 0.828832i \(-0.310994\pi\)
\(492\) 4748.32 + 1155.00i 0.435104 + 0.105837i
\(493\) 4642.99i 0.424158i
\(494\) 16846.4 13239.9i 1.53433 1.20585i
\(495\) −803.669 −0.0729742
\(496\) 102.120 + 52.8044i 0.00924456 + 0.00478022i
\(497\) 1339.37 0.120883
\(498\) −1832.76 + 1440.39i −0.164915 + 0.129609i
\(499\) 100.386i 0.00900581i 0.999990 + 0.00450290i \(0.00143332\pi\)
−0.999990 + 0.00450290i \(0.998567\pi\)
\(500\) −971.667 236.353i −0.0869086 0.0211401i
\(501\) 5203.94i 0.464062i
\(502\) 7394.51 + 9408.81i 0.657437 + 0.836525i
\(503\) 188.469 0.0167066 0.00835331 0.999965i \(-0.497341\pi\)
0.00835331 + 0.999965i \(0.497341\pi\)
\(504\) −248.239 544.890i −0.0219394 0.0481574i
\(505\) −1410.95 −0.124330
\(506\) 5011.24 + 6376.32i 0.440270 + 0.560202i
\(507\) 46.9232i 0.00411032i
\(508\) −3328.80 + 13685.0i −0.290732 + 1.19522i
\(509\) 14790.1i 1.28794i −0.765051 0.643969i \(-0.777286\pi\)
0.765051 0.643969i \(-0.222714\pi\)
\(510\) 723.142 568.327i 0.0627868 0.0493450i
\(511\) 2259.79 0.195631
\(512\) −11106.9 3294.50i −0.958714 0.284371i
\(513\) 4379.32 0.376904
\(514\) −13349.6 + 10491.6i −1.14557 + 0.900321i
\(515\) 6402.00i 0.547779i
\(516\) 356.433 1465.33i 0.0304091 0.125014i
\(517\) 184.460i 0.0156916i
\(518\) 841.436 + 1070.65i 0.0713717 + 0.0908137i
\(519\) 12040.0 1.01830
\(520\) 2190.67 + 4808.57i 0.184745 + 0.405519i
\(521\) −20291.3 −1.70630 −0.853148 0.521669i \(-0.825310\pi\)
−0.853148 + 0.521669i \(0.825310\pi\)
\(522\) −3368.88 4286.58i −0.282475 0.359422i
\(523\) 19968.5i 1.66953i −0.550608 0.834764i \(-0.685604\pi\)
0.550608 0.834764i \(-0.314396\pi\)
\(524\) −15426.0 3752.30i −1.28605 0.312825i
\(525\) 220.519i 0.0183319i
\(526\) −7825.12 + 6149.87i −0.648653 + 0.509785i
\(527\) 38.9415 0.00321882
\(528\) 3045.88 + 1574.98i 0.251051 + 0.129815i
\(529\) 13608.6 1.11848
\(530\) 4047.93 3181.33i 0.331756 0.260732i
\(531\) 2618.86i 0.214028i
\(532\) −3707.11 901.734i −0.302112 0.0734871i
\(533\) 9509.88i 0.772831i
\(534\) −8245.94 10492.2i −0.668234 0.850263i
\(535\) −424.295 −0.0342876
\(536\) −14041.4 + 6396.95i −1.13152 + 0.515496i
\(537\) −11644.4 −0.935745
\(538\) 1083.18 + 1378.24i 0.0868013 + 0.110446i
\(539\) 5971.35i 0.477188i
\(540\) −255.261 + 1049.40i −0.0203420 + 0.0836278i
\(541\) 5128.95i 0.407598i 0.979013 + 0.203799i \(0.0653290\pi\)
−0.979013 + 0.203799i \(0.934671\pi\)
\(542\) −7951.25 + 6249.00i −0.630139 + 0.495235i
\(543\) −2200.89 −0.173939
\(544\) −3854.46 + 736.778i −0.303784 + 0.0580682i
\(545\) −2201.90 −0.173062
\(546\) 916.158 720.021i 0.0718094 0.0564360i
\(547\) 3129.68i 0.244635i 0.992491 + 0.122318i \(0.0390326\pi\)
−0.992491 + 0.122318i \(0.960967\pi\)
\(548\) −3167.47 + 13021.7i −0.246912 + 1.01507i
\(549\) 4702.96i 0.365606i
\(550\) −780.335 992.901i −0.0604974 0.0769771i
\(551\) −34738.4 −2.68585
\(552\) 9917.63 4518.25i 0.764715 0.348386i
\(553\) 2984.70 0.229516
\(554\) −297.227 378.193i −0.0227942 0.0290034i
\(555\) 2456.13i 0.187850i
\(556\) 14795.9 + 3599.02i 1.12857 + 0.274519i
\(557\) 5331.08i 0.405539i −0.979226 0.202770i \(-0.935006\pi\)
0.979226 0.202770i \(-0.0649942\pi\)
\(558\) −35.9522 + 28.2553i −0.00272756 + 0.00214363i
\(559\) 2934.74 0.222051
\(560\) 432.158 835.760i 0.0326107 0.0630666i
\(561\) 1161.49 0.0874123
\(562\) −6538.43 + 5138.65i −0.490760 + 0.385695i
\(563\) 10623.7i 0.795270i 0.917544 + 0.397635i \(0.130169\pi\)
−0.917544 + 0.397635i \(0.869831\pi\)
\(564\) −240.861 58.5882i −0.0179824 0.00437413i
\(565\) 2526.68i 0.188139i
\(566\) 5298.93 + 6742.38i 0.393517 + 0.500713i
\(567\) 238.160 0.0176398
\(568\) 4273.26 + 9379.88i 0.315673 + 0.692907i
\(569\) −24063.9 −1.77296 −0.886478 0.462771i \(-0.846855\pi\)
−0.886478 + 0.462771i \(0.846855\pi\)
\(570\) 4252.17 + 5410.48i 0.312463 + 0.397579i
\(571\) 7975.08i 0.584495i 0.956343 + 0.292248i \(0.0944031\pi\)
−0.956343 + 0.292248i \(0.905597\pi\)
\(572\) −1577.17 + 6483.89i −0.115288 + 0.473960i
\(573\) 65.0557i 0.00474300i
\(574\) 1331.36 1046.34i 0.0968120 0.0760859i
\(575\) −4013.70 −0.291100
\(576\) 3023.98 3476.95i 0.218749 0.251516i
\(577\) 9639.60 0.695497 0.347749 0.937588i \(-0.386946\pi\)
0.347749 + 0.937588i \(0.386946\pi\)
\(578\) 9880.56 7765.27i 0.711033 0.558811i
\(579\) 3958.95i 0.284159i
\(580\) 2024.83 8324.23i 0.144959 0.595940i
\(581\) 807.731i 0.0576770i
\(582\) 933.995 + 1188.42i 0.0665212 + 0.0846418i
\(583\) 6501.69 0.461874
\(584\) 7209.90 + 15825.9i 0.510869 + 1.12137i
\(585\) −2101.73 −0.148540
\(586\) −13641.9 17358.1i −0.961679 1.22364i
\(587\) 3045.07i 0.214111i 0.994253 + 0.107056i \(0.0341423\pi\)
−0.994253 + 0.107056i \(0.965858\pi\)
\(588\) 7797.16 + 1896.62i 0.546853 + 0.133019i
\(589\) 291.357i 0.0203822i
\(590\) 3235.50 2542.82i 0.225768 0.177435i
\(591\) −7861.95 −0.547204
\(592\) −4813.37 + 9308.67i −0.334169 + 0.646257i
\(593\) 19029.4 1.31778 0.658890 0.752239i \(-0.271026\pi\)
0.658890 + 0.752239i \(0.271026\pi\)
\(594\) −1072.33 + 842.761i −0.0740713 + 0.0582137i
\(595\) 318.702i 0.0219589i
\(596\) 20822.5 + 5064.95i 1.43108 + 0.348102i
\(597\) 9974.83i 0.683824i
\(598\) 13105.2 + 16675.1i 0.896174 + 1.14030i
\(599\) 5789.36 0.394903 0.197451 0.980313i \(-0.436734\pi\)
0.197451 + 0.980313i \(0.436734\pi\)
\(600\) −1544.34 + 703.567i −0.105079 + 0.0478717i
\(601\) −8009.05 −0.543587 −0.271794 0.962356i \(-0.587617\pi\)
−0.271794 + 0.962356i \(0.587617\pi\)
\(602\) −322.899 410.858i −0.0218611 0.0278161i
\(603\) 6137.21i 0.414472i
\(604\) 5093.09 20938.1i 0.343104 1.41053i
\(605\) 5060.23i 0.340045i
\(606\) −1882.63 + 1479.59i −0.126199 + 0.0991816i
\(607\) −6351.98 −0.424743 −0.212371 0.977189i \(-0.568119\pi\)
−0.212371 + 0.977189i \(0.568119\pi\)
\(608\) −5512.51 28838.7i −0.367700 1.92362i
\(609\) −1889.17 −0.125703
\(610\) −5810.32 + 4566.41i −0.385661 + 0.303096i
\(611\) 482.393i 0.0319403i
\(612\) 368.913 1516.63i 0.0243667 0.100174i
\(613\) 26665.2i 1.75693i 0.477807 + 0.878465i \(0.341432\pi\)
−0.477807 + 0.878465i \(0.658568\pi\)
\(614\) −13981.1 17789.6i −0.918944 1.16927i
\(615\) −3054.24 −0.200258
\(616\) 1081.26 492.598i 0.0707229 0.0322197i
\(617\) 21929.0 1.43084 0.715421 0.698694i \(-0.246235\pi\)
0.715421 + 0.698694i \(0.246235\pi\)
\(618\) 6713.41 + 8542.17i 0.436979 + 0.556014i
\(619\) 24002.5i 1.55855i −0.626683 0.779275i \(-0.715588\pi\)
0.626683 0.779275i \(-0.284412\pi\)
\(620\) −69.8167 16.9825i −0.00452243 0.00110006i
\(621\) 4334.79i 0.280111i
\(622\) −16118.6 + 12667.8i −1.03906 + 0.816613i
\(623\) −4624.10 −0.297368
\(624\) 7965.48 + 4118.83i 0.511017 + 0.264239i
\(625\) 625.000 0.0400000
\(626\) 14926.0 11730.6i 0.952977 0.748958i
\(627\) 8690.18i 0.553513i
\(628\) −8635.93 2100.64i −0.548744 0.133479i
\(629\) 3549.70i 0.225017i
\(630\) 231.245 + 294.237i 0.0146239 + 0.0186075i
\(631\) 19328.2 1.21940 0.609702 0.792631i \(-0.291289\pi\)
0.609702 + 0.792631i \(0.291289\pi\)
\(632\) 9522.71 + 20902.5i 0.599356 + 1.31560i
\(633\) −561.658 −0.0352669
\(634\) −7002.19 8909.62i −0.438632 0.558117i
\(635\) 8802.52i 0.550106i
\(636\) 2065.07 8489.67i 0.128750 0.529304i
\(637\) 15616.1i 0.971320i
\(638\) 8506.14 6685.09i 0.527839 0.414836i
\(639\) −4099.75 −0.253809
\(640\) 7231.82 + 360.003i 0.446661 + 0.0222350i
\(641\) 10005.0 0.616496 0.308248 0.951306i \(-0.400257\pi\)
0.308248 + 0.951306i \(0.400257\pi\)
\(642\) −566.136 + 444.934i −0.0348031 + 0.0273522i
\(643\) 3532.54i 0.216656i 0.994115 + 0.108328i \(0.0345496\pi\)
−0.994115 + 0.108328i \(0.965450\pi\)
\(644\) 892.564 3669.41i 0.0546149 0.224526i
\(645\) 942.535i 0.0575384i
\(646\) −6145.40 7819.44i −0.374284 0.476241i
\(647\) −4225.62 −0.256764 −0.128382 0.991725i \(-0.540978\pi\)
−0.128382 + 0.991725i \(0.540978\pi\)
\(648\) 759.852 + 1667.89i 0.0460645 + 0.101113i
\(649\) 5196.78 0.314317
\(650\) −2040.70 2596.60i −0.123143 0.156688i
\(651\) 15.8448i 0.000953928i
\(652\) −26184.2 6369.17i −1.57278 0.382570i
\(653\) 9696.74i 0.581107i 0.956859 + 0.290553i \(0.0938394\pi\)
−0.956859 + 0.290553i \(0.906161\pi\)
\(654\) −2937.98 + 2309.00i −0.175664 + 0.138057i
\(655\) 9922.41 0.591909
\(656\) 11575.5 + 5985.50i 0.688943 + 0.356241i
\(657\) −6917.15 −0.410752
\(658\) −67.5341 + 53.0760i −0.00400115 + 0.00314456i
\(659\) 8708.23i 0.514757i 0.966311 + 0.257378i \(0.0828587\pi\)
−0.966311 + 0.257378i \(0.917141\pi\)
\(660\) −2082.40 506.532i −0.122814 0.0298738i
\(661\) 7496.13i 0.441098i 0.975376 + 0.220549i \(0.0707849\pi\)
−0.975376 + 0.220549i \(0.929215\pi\)
\(662\) −10804.9 13748.2i −0.634357 0.807159i
\(663\) 3037.50 0.177928
\(664\) −5656.73 + 2577.07i −0.330608 + 0.150617i
\(665\) 2384.50 0.139048
\(666\) −2575.60 3277.21i −0.149854 0.190675i
\(667\) 34385.2i 1.99610i
\(668\) −3279.91 + 13484.0i −0.189975 + 0.781005i
\(669\) 10538.0i 0.609003i
\(670\) 7582.28 5959.02i 0.437208 0.343608i
\(671\) −9332.40 −0.536920
\(672\) −299.786 1568.33i −0.0172091 0.0900293i
\(673\) 21372.6 1.22415 0.612076 0.790799i \(-0.290335\pi\)
0.612076 + 0.790799i \(0.290335\pi\)
\(674\) −17332.8 + 13622.1i −0.990554 + 0.778491i
\(675\) 675.000i 0.0384900i
\(676\) 29.5745 121.583i 0.00168266 0.00691757i
\(677\) 10393.5i 0.590038i −0.955491 0.295019i \(-0.904674\pi\)
0.955491 0.295019i \(-0.0953260\pi\)
\(678\) −2649.59 3371.34i −0.150084 0.190967i
\(679\) 523.758 0.0296024
\(680\) 2231.94 1016.82i 0.125869 0.0573432i
\(681\) −5929.03 −0.333629
\(682\) −56.0690 71.3423i −0.00314808 0.00400563i
\(683\) 26428.3i 1.48060i 0.672276 + 0.740300i \(0.265317\pi\)
−0.672276 + 0.740300i \(0.734683\pi\)
\(684\) 11347.3 + 2760.18i 0.634321 + 0.154295i
\(685\) 8375.90i 0.467192i
\(686\) 4428.96 3480.78i 0.246499 0.193727i
\(687\) 11008.1 0.611332
\(688\) 1847.12 3572.18i 0.102356 0.197948i
\(689\) 17003.0 0.940149
\(690\) −5355.46 + 4208.93i −0.295477 + 0.232219i
\(691\) 14709.1i 0.809783i 0.914365 + 0.404891i \(0.132691\pi\)
−0.914365 + 0.404891i \(0.867309\pi\)
\(692\) 31196.9 + 7588.49i 1.71377 + 0.416866i
\(693\) 472.597i 0.0259055i
\(694\) −21596.8 27479.9i −1.18127 1.50306i
\(695\) −9517.07 −0.519429
\(696\) −6027.43 13230.3i −0.328260 0.720537i
\(697\) 4414.10 0.239880
\(698\) −22567.3 28714.7i −1.22376 1.55712i
\(699\) 11850.7i 0.641252i
\(700\) −138.987 + 571.389i −0.00750461 + 0.0308521i
\(701\) 5611.11i 0.302323i 0.988509 + 0.151162i \(0.0483014\pi\)
−0.988509 + 0.151162i \(0.951699\pi\)
\(702\) −2804.33 + 2203.96i −0.150773 + 0.118494i
\(703\) −26558.5 −1.42485
\(704\) 6899.55 + 6000.69i 0.369370 + 0.321249i
\(705\) 154.928 0.00827647
\(706\) −2413.95 + 1897.16i −0.128683 + 0.101134i
\(707\) 829.711i 0.0441365i
\(708\) 1650.60 6785.76i 0.0876178 0.360204i
\(709\) 13261.2i 0.702449i −0.936291 0.351224i \(-0.885765\pi\)
0.936291 0.351224i \(-0.114235\pi\)
\(710\) −3980.72 5065.08i −0.210414 0.267731i
\(711\) −9136.06 −0.481897
\(712\) −14753.2 32383.6i −0.776545 1.70453i
\(713\) −288.394 −0.0151479
\(714\) −334.205 425.243i −0.0175172 0.0222890i
\(715\) 4170.60i 0.218142i
\(716\) −30172.1 7339.20i −1.57484 0.383071i
\(717\) 8119.43i 0.422909i
\(718\) −27286.6 + 21444.9i −1.41828 + 1.11465i
\(719\) −4998.44 −0.259263 −0.129632 0.991562i \(-0.541379\pi\)
−0.129632 + 0.991562i \(0.541379\pi\)
\(720\) −1322.82 + 2558.23i −0.0684703 + 0.132416i
\(721\) 3764.70 0.194459
\(722\) 43251.1 33991.6i 2.22941 1.75213i
\(723\) 22311.7i 1.14769i
\(724\) −5702.74 1387.16i −0.292736 0.0712065i
\(725\) 5354.35i 0.274284i
\(726\) 5306.37 + 6751.84i 0.271264 + 0.345158i
\(727\) −1317.31 −0.0672026 −0.0336013 0.999435i \(-0.510698\pi\)
−0.0336013 + 0.999435i \(0.510698\pi\)
\(728\) 2827.68 1288.23i 0.143957 0.0655835i
\(729\) −729.000 −0.0370370
\(730\) −6716.32 8545.87i −0.340523 0.433283i
\(731\) 1362.19i 0.0689225i
\(732\) −2964.16 + 12185.9i −0.149670 + 0.615306i
\(733\) 15742.0i 0.793239i −0.917983 0.396619i \(-0.870183\pi\)
0.917983 0.396619i \(-0.129817\pi\)
\(734\) −6412.41 + 5039.61i −0.322461 + 0.253427i
\(735\) −5015.32 −0.251691
\(736\) 28545.4 5456.45i 1.42962 0.273271i
\(737\) 12178.5 0.608684
\(738\) −4075.26 + 3202.80i −0.203269 + 0.159752i
\(739\) 4513.21i 0.224656i −0.993671 0.112328i \(-0.964169\pi\)
0.993671 0.112328i \(-0.0358308\pi\)
\(740\) 1548.04 6364.11i 0.0769013 0.316148i
\(741\) 22726.3i 1.12668i
\(742\) −1870.78 2380.38i −0.0925585 0.117772i
\(743\) 3157.00 0.155880 0.0779401 0.996958i \(-0.475166\pi\)
0.0779401 + 0.996958i \(0.475166\pi\)
\(744\) −110.965 + 50.5530i −0.00546797 + 0.00249108i
\(745\) −13393.5 −0.658658
\(746\) 17576.9 + 22364.9i 0.862648 + 1.09764i
\(747\) 2472.44i 0.121100i
\(748\) 3009.56 + 732.060i 0.147113 + 0.0357844i
\(749\) 249.507i 0.0121719i
\(750\) 833.936 655.402i 0.0406014 0.0319092i
\(751\) 2252.87 0.109465 0.0547326 0.998501i \(-0.482569\pi\)
0.0547326 + 0.998501i \(0.482569\pi\)
\(752\) −587.172 303.617i −0.0284733 0.0147231i
\(753\) −12692.7 −0.614274
\(754\) 22245.0 17482.6i 1.07442 0.844403i
\(755\) 13467.9i 0.649202i
\(756\) 617.100 + 150.106i 0.0296874 + 0.00722131i
\(757\) 26431.9i 1.26907i 0.772895 + 0.634534i \(0.218808\pi\)
−0.772895 + 0.634534i \(0.781192\pi\)
\(758\) 6437.71 + 8191.36i 0.308480 + 0.392511i
\(759\) −8601.82 −0.411365
\(760\) 7607.77 + 16699.2i 0.363109 + 0.797031i
\(761\) 29909.5 1.42473 0.712363 0.701811i \(-0.247625\pi\)
0.712363 + 0.701811i \(0.247625\pi\)
\(762\) −9230.70 11745.2i −0.438836 0.558376i
\(763\) 1294.82i 0.0614362i
\(764\) 41.0030 168.567i 0.00194167 0.00798237i
\(765\) 975.536i 0.0461053i
\(766\) −17705.6 + 13915.1i −0.835155 + 0.656360i
\(767\) 13590.4 0.639794
\(768\) 10026.9 7103.24i 0.471113 0.333745i
\(769\) 25085.4 1.17634 0.588168 0.808739i \(-0.299850\pi\)
0.588168 + 0.808739i \(0.299850\pi\)
\(770\) −583.875 + 458.876i −0.0273265 + 0.0214763i
\(771\) 18008.9i 0.841212i
\(772\) 2495.22 10258.1i 0.116328 0.478234i
\(773\) 7838.06i 0.364703i −0.983233 0.182352i \(-0.941629\pi\)
0.983233 0.182352i \(-0.0583709\pi\)
\(774\) 988.382 + 1257.62i 0.0459001 + 0.0584034i
\(775\) 44.9078 0.00208146
\(776\) 1671.06 + 3668.00i 0.0773034 + 0.169682i
\(777\) −1444.33 −0.0666859
\(778\) −11008.8 14007.6i −0.507305 0.645496i
\(779\) 33025.9i 1.51897i
\(780\) −5445.81 1324.66i −0.249989 0.0608084i
\(781\) 8135.41i 0.372737i
\(782\) 7739.92 6082.91i 0.353937 0.278164i
\(783\) 5782.70 0.263929
\(784\) 19007.9 + 9828.71i 0.865886 + 0.447736i
\(785\) 5554.84 0.252561
\(786\) 13239.4 10405.1i 0.600808 0.472183i
\(787\) 591.082i 0.0267723i 0.999910 + 0.0133861i \(0.00426107\pi\)
−0.999910 + 0.0133861i \(0.995739\pi\)
\(788\) −20371.2 4955.18i −0.920931 0.224012i
\(789\) 10556.3i 0.476316i
\(790\) −8870.80 11287.2i −0.399505 0.508332i
\(791\) −1485.81 −0.0667882
\(792\) −3309.71 + 1507.83i −0.148491 + 0.0676493i
\(793\) −24405.8 −1.09291
\(794\) 12794.1 + 16279.2i 0.571845 + 0.727617i
\(795\) 5460.76i 0.243614i
\(796\) −6286.88 + 25845.9i −0.279940 + 1.15086i
\(797\) 2775.04i 0.123334i 0.998097 + 0.0616668i \(0.0196416\pi\)
−0.998097 + 0.0616668i \(0.980358\pi\)
\(798\) 3181.63 2500.49i 0.141139 0.110923i
\(799\) −223.908 −0.00991399
\(800\) −4445.01 + 849.661i −0.196443 + 0.0375501i
\(801\) 14154.2 0.624362
\(802\) 5097.06 4005.85i 0.224418 0.176374i
\(803\) 13726.2i 0.603220i
\(804\) 3868.13 15902.2i 0.169675 0.697547i
\(805\) 2360.25i 0.103339i
\(806\) −146.630 186.572i −0.00640795 0.00815350i
\(807\) −1859.28 −0.0811025
\(808\) −5810.65 + 2647.20i −0.252993 + 0.115258i
\(809\) −4977.21 −0.216303 −0.108152 0.994134i \(-0.534493\pi\)
−0.108152 + 0.994134i \(0.534493\pi\)
\(810\) −707.834 900.650i −0.0307046 0.0390687i
\(811\) 6737.08i 0.291703i 0.989307 + 0.145851i \(0.0465921\pi\)
−0.989307 + 0.145851i \(0.953408\pi\)
\(812\) −4895.06 1190.70i −0.211556 0.0514598i
\(813\) 10726.4i 0.462721i
\(814\) 6503.19 5110.95i 0.280020 0.220072i
\(815\) 16842.3 0.723878
\(816\) 1911.79 3697.25i 0.0820173 0.158615i
\(817\) 10191.8 0.436432
\(818\) 17230.3 13541.5i 0.736483 0.578812i
\(819\) 1235.92i 0.0527308i
\(820\) −7913.87 1925.01i −0.337030 0.0819807i
\(821\) 1069.68i 0.0454716i 0.999742 + 0.0227358i \(0.00723765\pi\)
−0.999742 + 0.0227358i \(0.992762\pi\)
\(822\) −8783.33 11175.9i −0.372693 0.474216i
\(823\) −21261.4 −0.900518 −0.450259 0.892898i \(-0.648668\pi\)
−0.450259 + 0.892898i \(0.648668\pi\)
\(824\) 12011.3 + 26365.0i 0.507808 + 1.11465i
\(825\) 1339.45 0.0565256
\(826\) −1495.31 1902.63i −0.0629884 0.0801466i
\(827\) 106.022i 0.00445796i −0.999998 0.00222898i \(-0.999290\pi\)
0.999998 0.00222898i \(-0.000709508\pi\)
\(828\) −2732.11 + 11231.9i −0.114671 + 0.471421i
\(829\) 411.629i 0.0172454i 0.999963 + 0.00862272i \(0.00274473\pi\)
−0.999963 + 0.00862272i \(0.997255\pi\)
\(830\) 3054.60 2400.65i 0.127743 0.100395i
\(831\) 510.191 0.0212976
\(832\) 18043.5 + 15692.8i 0.751857 + 0.653905i
\(833\) 7248.34 0.301489
\(834\) −12698.6 + 9980.01i −0.527238 + 0.414364i
\(835\) 8673.24i 0.359461i
\(836\) −5477.20 + 22517.2i −0.226594 + 0.931549i
\(837\) 48.5004i 0.00200289i
\(838\) 8736.11 + 11115.9i 0.360124 + 0.458223i
\(839\) −29684.4 −1.22148 −0.610738 0.791833i \(-0.709127\pi\)
−0.610738 + 0.791833i \(0.709127\pi\)
\(840\) 413.732 + 908.150i 0.0169942 + 0.0373026i
\(841\) −21481.5 −0.880786
\(842\) 6634.37 + 8441.60i 0.271539 + 0.345507i
\(843\) 8820.51i 0.360373i
\(844\) −1455.32 353.999i −0.0593533 0.0144374i
\(845\) 78.2053i 0.00318384i
\(846\) 206.720 162.464i 0.00840090 0.00660239i
\(847\) 2975.67 0.120714
\(848\) 10701.6 20696.1i 0.433368 0.838099i
\(849\) −9095.64 −0.367681
\(850\) −1205.24 + 947.212i −0.0486344 + 0.0382225i
\(851\) 26288.4i 1.05894i
\(852\) −10622.9 2583.97i −0.427154 0.103903i
\(853\) 19661.9i 0.789227i −0.918847 0.394614i \(-0.870878\pi\)
0.918847 0.394614i \(-0.129122\pi\)
\(854\) 2685.28 + 3416.76i 0.107598 + 0.136908i
\(855\) −7298.87 −0.291949
\(856\) −1747.35 + 796.053i −0.0697701 + 0.0317857i
\(857\) −34610.8 −1.37956 −0.689779 0.724020i \(-0.742292\pi\)
−0.689779 + 0.724020i \(0.742292\pi\)
\(858\) −4373.47 5564.81i −0.174018 0.221421i
\(859\) 13980.2i 0.555295i −0.960683 0.277648i \(-0.910445\pi\)
0.960683 0.277648i \(-0.0895548\pi\)
\(860\) −594.056 + 2442.21i −0.0235548 + 0.0968358i
\(861\) 1796.04i 0.0710906i
\(862\) 18732.3 14722.0i 0.740167 0.581707i
\(863\) −38597.5 −1.52245 −0.761224 0.648488i \(-0.775401\pi\)
−0.761224 + 0.648488i \(0.775401\pi\)
\(864\) 917.634 + 4800.61i 0.0361326 + 0.189028i
\(865\) −20066.6 −0.788770
\(866\) 5606.46 4406.19i 0.219994 0.172897i
\(867\) 13329.1i 0.522123i
\(868\) −9.98658 + 41.0557i −0.000390514 + 0.00160544i
\(869\) 18129.3i 0.707704i
\(870\) 5614.80 + 7144.29i 0.218804 + 0.278407i
\(871\) 31848.7 1.23898
\(872\) −9067.95 + 4131.15i −0.352155 + 0.160434i
\(873\) −1603.21 −0.0621538
\(874\) 45511.8 + 57909.4i 1.76140 + 2.24121i
\(875\) 367.531i 0.0141998i
\(876\) −17923.1 4359.71i −0.691286 0.168152i
\(877\) 47471.5i 1.82782i 0.405915 + 0.913911i \(0.366953\pi\)
−0.405915 + 0.913911i \(0.633047\pi\)
\(878\) −22673.1 + 17819.1i −0.871502 + 0.684925i
\(879\) 23416.5 0.898541
\(880\) −5076.47 2624.96i −0.194463 0.100554i
\(881\) 28819.4 1.10210 0.551050 0.834472i \(-0.314227\pi\)
0.551050 + 0.834472i \(0.314227\pi\)
\(882\) −6691.93 + 5259.28i −0.255475 + 0.200782i
\(883\) 11414.0i 0.435009i 0.976059 + 0.217504i \(0.0697916\pi\)
−0.976059 + 0.217504i \(0.930208\pi\)
\(884\) 7870.50 + 1914.46i 0.299450 + 0.0728395i
\(885\) 4364.77i 0.165785i
\(886\) −15195.0 19334.1i −0.576168 0.733119i
\(887\) 25787.8 0.976178 0.488089 0.872794i \(-0.337694\pi\)
0.488089 + 0.872794i \(0.337694\pi\)
\(888\) −4608.14 10115.0i −0.174143 0.382247i
\(889\) −5176.32 −0.195285
\(890\) 13743.2 + 17486.9i 0.517612 + 0.658611i
\(891\) 1446.60i 0.0543917i
\(892\) −6641.84 + 27305.2i −0.249311 + 1.02494i
\(893\) 1675.26i 0.0627775i
\(894\) −17870.9 + 14045.0i −0.668560 + 0.525431i
\(895\) 19407.4 0.724825
\(896\) 211.700 4252.67i 0.00789330 0.158562i
\(897\) −22495.2 −0.837338
\(898\) −23903.2 + 18785.8i −0.888262 + 0.698098i
\(899\) 384.723i 0.0142728i
\(900\) 425.435 1749.00i 0.0157569 0.0647778i
\(901\) 7892.10i 0.291814i
\(902\) −6355.54 8086.81i −0.234608 0.298516i
\(903\) 554.257 0.0204258
\(904\) −4740.51 10405.5i −0.174410 0.382834i
\(905\) 3668.14 0.134733
\(906\) 14123.0 + 17970.2i 0.517887 + 0.658962i
\(907\) 1475.86i 0.0540301i 0.999635 + 0.0270150i \(0.00860020\pi\)
−0.999635 + 0.0270150i \(0.991400\pi\)
\(908\) −15362.8 3736.92i −0.561489 0.136579i
\(909\) 2539.72i 0.0926700i
\(910\) −1526.93 + 1200.04i −0.0556233 + 0.0437151i
\(911\) 20391.9 0.741616 0.370808 0.928710i \(-0.379081\pi\)
0.370808 + 0.928710i \(0.379081\pi\)
\(912\) 27662.5 + 14303.9i 1.00438 + 0.519351i
\(913\) 4906.22 0.177845
\(914\) −34584.2 + 27180.2i −1.25158 + 0.983634i
\(915\) 7838.27i 0.283197i
\(916\) 28523.2 + 6938.12i 1.02886 + 0.250264i
\(917\) 5834.87i 0.210125i
\(918\) 1022.99 + 1301.66i 0.0367796 + 0.0467985i
\(919\) 10447.6 0.375011 0.187506 0.982264i \(-0.439960\pi\)
0.187506 + 0.982264i \(0.439960\pi\)
\(920\) −16529.4 + 7530.41i −0.592345 + 0.269859i
\(921\) 23998.6 0.858612
\(922\) 28018.9 + 35651.3i 1.00082 + 1.27344i
\(923\) 21275.4i 0.758711i
\(924\) −297.866 + 1224.55i −0.0106051 + 0.0435983i
\(925\) 4093.55i 0.145508i
\(926\) −36666.1 + 28816.4i −1.30121 + 1.02264i
\(927\) −11523.6 −0.408290
\(928\) −7279.02 38080.2i −0.257484 1.34703i
\(929\) −22104.8 −0.780663 −0.390332 0.920674i \(-0.627640\pi\)
−0.390332 + 0.920674i \(0.627640\pi\)
\(930\) 59.9203 47.0922i 0.00211276 0.00166045i
\(931\) 54231.4i 1.90909i
\(932\) −7469.20 + 30706.5i −0.262513 + 1.07921i
\(933\) 21744.4i 0.763000i
\(934\) 6254.76 + 7958.57i 0.219124 + 0.278814i
\(935\) −1935.82 −0.0677093
\(936\) −8655.43 + 3943.21i −0.302256 + 0.137701i
\(937\) −40032.2 −1.39572 −0.697862 0.716232i \(-0.745865\pi\)
−0.697862 + 0.716232i \(0.745865\pi\)
\(938\) −3504.20 4458.76i −0.121979 0.155206i
\(939\) 20135.6i 0.699786i
\(940\) 401.435 + 97.6470i 0.0139291 + 0.00338818i
\(941\) 49244.9i 1.70599i −0.521919 0.852995i \(-0.674784\pi\)
0.521919 0.852995i \(-0.325216\pi\)
\(942\) 7411.81 5825.04i 0.256358 0.201476i
\(943\) −32690.1 −1.12888
\(944\) 8553.79 16542.3i 0.294917 0.570347i
\(945\) −396.934 −0.0136638
\(946\) −2495.58 + 1961.31i −0.0857699 + 0.0674078i
\(947\) 15607.6i 0.535565i −0.963479 0.267782i \(-0.913709\pi\)
0.963479 0.267782i \(-0.0862908\pi\)
\(948\) −23672.6 5758.23i −0.811022 0.197277i
\(949\) 35896.2i 1.22786i
\(950\) −7086.95 9017.47i −0.242033 0.307963i
\(951\) 12019.3 0.409834
\(952\) −597.942 1312.49i −0.0203565 0.0446830i
\(953\) −25045.9 −0.851327 −0.425664 0.904881i \(-0.639959\pi\)
−0.425664 + 0.904881i \(0.639959\pi\)
\(954\) 5726.39 + 7286.27i 0.194338 + 0.247277i
\(955\) 108.426i 0.00367392i
\(956\) 5117.47 21038.4i 0.173128 0.711746i
\(957\) 11475.0i 0.387601i
\(958\) 16401.6 12890.3i 0.553144 0.434724i
\(959\) −4925.45 −0.165851
\(960\) −5039.97 + 5794.92i −0.169442 + 0.194823i
\(961\) −29787.8 −0.999892
\(962\) 17006.9 13366.0i 0.569984 0.447958i
\(963\) 763.731i 0.0255565i
\(964\) 14062.5 57812.0i 0.469836 1.93154i
\(965\) 6598.25i 0.220109i
\(966\) 2475.06 + 3149.28i 0.0824367 + 0.104893i
\(967\) −38342.2 −1.27508 −0.637540 0.770417i \(-0.720048\pi\)
−0.637540 + 0.770417i \(0.720048\pi\)
\(968\) 9493.89 + 20839.3i 0.315233 + 0.691941i
\(969\) 10548.6 0.349711
\(970\) −1556.66 1980.70i −0.0515271 0.0655632i
\(971\) 3840.52i 0.126929i −0.997984 0.0634646i \(-0.979785\pi\)
0.997984 0.0634646i \(-0.0202150\pi\)
\(972\) −1888.92 459.470i −0.0623325 0.0151620i
\(973\) 5596.51i 0.184395i
\(974\) 8809.33 6923.37i 0.289804 0.227761i
\(975\) 3502.88 0.115058
\(976\) −15360.9 + 29706.8i −0.503782 + 0.974275i
\(977\) −43474.6 −1.42362 −0.711810 0.702372i \(-0.752124\pi\)
−0.711810 + 0.702372i \(0.752124\pi\)
\(978\) 22472.6 17661.6i 0.734760 0.577459i
\(979\) 28087.1i 0.916924i
\(980\) −12995.3 3161.03i −0.423590 0.103036i
\(981\) 3963.41i 0.128993i
\(982\) 31520.6 + 40107.0i 1.02430 + 1.30332i
\(983\) 17053.6 0.553333 0.276667 0.960966i \(-0.410770\pi\)
0.276667 + 0.960966i \(0.410770\pi\)
\(984\) −12578.1 + 5730.29i −0.407495 + 0.185645i
\(985\) 13103.2 0.423862
\(986\) −8114.73 10325.2i −0.262095 0.333491i
\(987\) 91.1052i 0.00293811i
\(988\) −14323.8 + 58886.3i −0.461235 + 1.89618i
\(989\) 10088.1i 0.324352i
\(990\) 1787.22 1404.60i 0.0573754 0.0450921i
\(991\) 32082.1 1.02838 0.514188 0.857677i \(-0.328093\pi\)
0.514188 + 0.857677i \(0.328093\pi\)
\(992\) −319.385 + 61.0503i −0.0102222 + 0.00195398i
\(993\) 18546.7 0.592710
\(994\) −2978.52 + 2340.86i −0.0950432 + 0.0746958i
\(995\) 16624.7i 0.529687i
\(996\) 1558.31 6406.36i 0.0495754 0.203809i
\(997\) 4324.24i 0.137362i −0.997639 0.0686810i \(-0.978121\pi\)
0.997639 0.0686810i \(-0.0218791\pi\)
\(998\) −175.449 223.241i −0.00556486 0.00708074i
\(999\) 4421.04 0.140015
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 120.4.k.c.61.4 yes 14
3.2 odd 2 360.4.k.d.181.11 14
4.3 odd 2 480.4.k.c.241.10 14
8.3 odd 2 480.4.k.c.241.3 14
8.5 even 2 inner 120.4.k.c.61.3 14
12.11 even 2 1440.4.k.d.721.3 14
24.5 odd 2 360.4.k.d.181.12 14
24.11 even 2 1440.4.k.d.721.10 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.4.k.c.61.3 14 8.5 even 2 inner
120.4.k.c.61.4 yes 14 1.1 even 1 trivial
360.4.k.d.181.11 14 3.2 odd 2
360.4.k.d.181.12 14 24.5 odd 2
480.4.k.c.241.3 14 8.3 odd 2
480.4.k.c.241.10 14 4.3 odd 2
1440.4.k.d.721.3 14 12.11 even 2
1440.4.k.d.721.10 14 24.11 even 2