Properties

Label 1200.2.o.b.1199.3
Level 12001200
Weight 22
Character 1200.1199
Analytic conductor 9.5829.582
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1200,2,Mod(1199,1200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1200.1199"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1200=24352 1200 = 2^{4} \cdot 3 \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1200.o (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-12,0,0,0,0,0,0,0,24,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.582048242559.58204824255
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 24 2^{4}
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 1199.3
Root 0.866025+0.500000i-0.866025 + 0.500000i of defining polynomial
Character χ\chi == 1200.1199
Dual form 1200.2.o.b.1199.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+1.73205iq33.46410q73.00000q93.46410q11+4.00000iq13+6.00000q173.46410iq196.00000iq213.46410iq235.19615iq276.00000iq293.46410iq316.00000iq33+4.00000iq376.92820q3912.0000iq416.92820q433.46410iq47+5.00000q49+10.3923iq516.00000q53+6.00000q57+3.46410q5910.0000q61+10.3923q63+6.92820q67+6.00000q6913.8564q712.00000iq73+12.0000q77+10.3923iq79+9.00000q81+10.3923iq83+10.3923q8713.8564iq91+6.00000q9310.0000iq97+10.3923q99+O(q100)q+1.73205i q^{3} -3.46410 q^{7} -3.00000 q^{9} -3.46410 q^{11} +4.00000i q^{13} +6.00000 q^{17} -3.46410i q^{19} -6.00000i q^{21} -3.46410i q^{23} -5.19615i q^{27} -6.00000i q^{29} -3.46410i q^{31} -6.00000i q^{33} +4.00000i q^{37} -6.92820 q^{39} -12.0000i q^{41} -6.92820 q^{43} -3.46410i q^{47} +5.00000 q^{49} +10.3923i q^{51} -6.00000 q^{53} +6.00000 q^{57} +3.46410 q^{59} -10.0000 q^{61} +10.3923 q^{63} +6.92820 q^{67} +6.00000 q^{69} -13.8564 q^{71} -2.00000i q^{73} +12.0000 q^{77} +10.3923i q^{79} +9.00000 q^{81} +10.3923i q^{83} +10.3923 q^{87} -13.8564i q^{91} +6.00000 q^{93} -10.0000i q^{97} +10.3923 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q12q9+24q17+20q4924q53+24q5740q61+24q69+48q77+36q81+24q93+O(q100) 4 q - 12 q^{9} + 24 q^{17} + 20 q^{49} - 24 q^{53} + 24 q^{57} - 40 q^{61} + 24 q^{69} + 48 q^{77} + 36 q^{81} + 24 q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1200Z)×\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times.

nn 401401 577577 751751 901901
χ(n)\chi(n) 1-1 1-1 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 1.73205i 1.00000i
44 0 0
55 0 0
66 0 0
77 −3.46410 −1.30931 −0.654654 0.755929i 0.727186π-0.727186\pi
−0.654654 + 0.755929i 0.727186π0.727186\pi
88 0 0
99 −3.00000 −1.00000
1010 0 0
1111 −3.46410 −1.04447 −0.522233 0.852803i 0.674901π-0.674901\pi
−0.522233 + 0.852803i 0.674901π0.674901\pi
1212 0 0
1313 4.00000i 1.10940i 0.832050 + 0.554700i 0.187167π0.187167\pi
−0.832050 + 0.554700i 0.812833π0.812833\pi
1414 0 0
1515 0 0
1616 0 0
1717 6.00000 1.45521 0.727607 0.685994i 0.240633π-0.240633\pi
0.727607 + 0.685994i 0.240633π0.240633\pi
1818 0 0
1919 − 3.46410i − 0.794719i −0.917663 0.397360i 0.869927π-0.869927\pi
0.917663 0.397360i 0.130073π-0.130073\pi
2020 0 0
2121 − 6.00000i − 1.30931i
2222 0 0
2323 − 3.46410i − 0.722315i −0.932505 0.361158i 0.882382π-0.882382\pi
0.932505 0.361158i 0.117618π-0.117618\pi
2424 0 0
2525 0 0
2626 0 0
2727 − 5.19615i − 1.00000i
2828 0 0
2929 − 6.00000i − 1.11417i −0.830455 0.557086i 0.811919π-0.811919\pi
0.830455 0.557086i 0.188081π-0.188081\pi
3030 0 0
3131 − 3.46410i − 0.622171i −0.950382 0.311086i 0.899307π-0.899307\pi
0.950382 0.311086i 0.100693π-0.100693\pi
3232 0 0
3333 − 6.00000i − 1.04447i
3434 0 0
3535 0 0
3636 0 0
3737 4.00000i 0.657596i 0.944400 + 0.328798i 0.106644π0.106644\pi
−0.944400 + 0.328798i 0.893356π0.893356\pi
3838 0 0
3939 −6.92820 −1.10940
4040 0 0
4141 − 12.0000i − 1.87409i −0.349215 0.937043i 0.613552π-0.613552\pi
0.349215 0.937043i 0.386448π-0.386448\pi
4242 0 0
4343 −6.92820 −1.05654 −0.528271 0.849076i 0.677159π-0.677159\pi
−0.528271 + 0.849076i 0.677159π0.677159\pi
4444 0 0
4545 0 0
4646 0 0
4747 − 3.46410i − 0.505291i −0.967559 0.252646i 0.918699π-0.918699\pi
0.967559 0.252646i 0.0813007π-0.0813007\pi
4848 0 0
4949 5.00000 0.714286
5050 0 0
5151 10.3923i 1.45521i
5252 0 0
5353 −6.00000 −0.824163 −0.412082 0.911147i 0.635198π-0.635198\pi
−0.412082 + 0.911147i 0.635198π0.635198\pi
5454 0 0
5555 0 0
5656 0 0
5757 6.00000 0.794719
5858 0 0
5959 3.46410 0.450988 0.225494 0.974245i 0.427600π-0.427600\pi
0.225494 + 0.974245i 0.427600π0.427600\pi
6060 0 0
6161 −10.0000 −1.28037 −0.640184 0.768221i 0.721142π-0.721142\pi
−0.640184 + 0.768221i 0.721142π0.721142\pi
6262 0 0
6363 10.3923 1.30931
6464 0 0
6565 0 0
6666 0 0
6767 6.92820 0.846415 0.423207 0.906033i 0.360904π-0.360904\pi
0.423207 + 0.906033i 0.360904π0.360904\pi
6868 0 0
6969 6.00000 0.722315
7070 0 0
7171 −13.8564 −1.64445 −0.822226 0.569160i 0.807268π-0.807268\pi
−0.822226 + 0.569160i 0.807268π0.807268\pi
7272 0 0
7373 − 2.00000i − 0.234082i −0.993127 0.117041i 0.962659π-0.962659\pi
0.993127 0.117041i 0.0373409π-0.0373409\pi
7474 0 0
7575 0 0
7676 0 0
7777 12.0000 1.36753
7878 0 0
7979 10.3923i 1.16923i 0.811312 + 0.584613i 0.198754π0.198754\pi
−0.811312 + 0.584613i 0.801246π0.801246\pi
8080 0 0
8181 9.00000 1.00000
8282 0 0
8383 10.3923i 1.14070i 0.821401 + 0.570352i 0.193193π0.193193\pi
−0.821401 + 0.570352i 0.806807π0.806807\pi
8484 0 0
8585 0 0
8686 0 0
8787 10.3923 1.11417
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 − 13.8564i − 1.45255i
9292 0 0
9393 6.00000 0.622171
9494 0 0
9595 0 0
9696 0 0
9797 − 10.0000i − 1.01535i −0.861550 0.507673i 0.830506π-0.830506\pi
0.861550 0.507673i 0.169494π-0.169494\pi
9898 0 0
9999 10.3923 1.04447
100100 0 0
101101 − 6.00000i − 0.597022i −0.954406 0.298511i 0.903510π-0.903510\pi
0.954406 0.298511i 0.0964900π-0.0964900\pi
102102 0 0
103103 −10.3923 −1.02398 −0.511992 0.858990i 0.671092π-0.671092\pi
−0.511992 + 0.858990i 0.671092π0.671092\pi
104104 0 0
105105 0 0
106106 0 0
107107 − 3.46410i − 0.334887i −0.985882 0.167444i 0.946449π-0.946449\pi
0.985882 0.167444i 0.0535512π-0.0535512\pi
108108 0 0
109109 −10.0000 −0.957826 −0.478913 0.877862i 0.658969π-0.658969\pi
−0.478913 + 0.877862i 0.658969π0.658969\pi
110110 0 0
111111 −6.92820 −0.657596
112112 0 0
113113 6.00000 0.564433 0.282216 0.959351i 0.408930π-0.408930\pi
0.282216 + 0.959351i 0.408930π0.408930\pi
114114 0 0
115115 0 0
116116 0 0
117117 − 12.0000i − 1.10940i
118118 0 0
119119 −20.7846 −1.90532
120120 0 0
121121 1.00000 0.0909091
122122 0 0
123123 20.7846 1.87409
124124 0 0
125125 0 0
126126 0 0
127127 −10.3923 −0.922168 −0.461084 0.887357i 0.652539π-0.652539\pi
−0.461084 + 0.887357i 0.652539π0.652539\pi
128128 0 0
129129 − 12.0000i − 1.05654i
130130 0 0
131131 17.3205 1.51330 0.756650 0.653820i 0.226835π-0.226835\pi
0.756650 + 0.653820i 0.226835π0.226835\pi
132132 0 0
133133 12.0000i 1.04053i
134134 0 0
135135 0 0
136136 0 0
137137 −18.0000 −1.53784 −0.768922 0.639343i 0.779207π-0.779207\pi
−0.768922 + 0.639343i 0.779207π0.779207\pi
138138 0 0
139139 10.3923i 0.881464i 0.897639 + 0.440732i 0.145281π0.145281\pi
−0.897639 + 0.440732i 0.854719π0.854719\pi
140140 0 0
141141 6.00000 0.505291
142142 0 0
143143 − 13.8564i − 1.15873i
144144 0 0
145145 0 0
146146 0 0
147147 8.66025i 0.714286i
148148 0 0
149149 6.00000i 0.491539i 0.969328 + 0.245770i 0.0790407π0.0790407\pi
−0.969328 + 0.245770i 0.920959π0.920959\pi
150150 0 0
151151 3.46410i 0.281905i 0.990016 + 0.140952i 0.0450164π0.0450164\pi
−0.990016 + 0.140952i 0.954984π0.954984\pi
152152 0 0
153153 −18.0000 −1.45521
154154 0 0
155155 0 0
156156 0 0
157157 16.0000i 1.27694i 0.769647 + 0.638470i 0.220432π0.220432\pi
−0.769647 + 0.638470i 0.779568π0.779568\pi
158158 0 0
159159 − 10.3923i − 0.824163i
160160 0 0
161161 12.0000i 0.945732i
162162 0 0
163163 −13.8564 −1.08532 −0.542659 0.839953i 0.682582π-0.682582\pi
−0.542659 + 0.839953i 0.682582π0.682582\pi
164164 0 0
165165 0 0
166166 0 0
167167 − 3.46410i − 0.268060i −0.990977 0.134030i 0.957208π-0.957208\pi
0.990977 0.134030i 0.0427919π-0.0427919\pi
168168 0 0
169169 −3.00000 −0.230769
170170 0 0
171171 10.3923i 0.794719i
172172 0 0
173173 6.00000 0.456172 0.228086 0.973641i 0.426753π-0.426753\pi
0.228086 + 0.973641i 0.426753π0.426753\pi
174174 0 0
175175 0 0
176176 0 0
177177 6.00000i 0.450988i
178178 0 0
179179 24.2487 1.81243 0.906217 0.422813i 0.138957π-0.138957\pi
0.906217 + 0.422813i 0.138957π0.138957\pi
180180 0 0
181181 −2.00000 −0.148659 −0.0743294 0.997234i 0.523682π-0.523682\pi
−0.0743294 + 0.997234i 0.523682π0.523682\pi
182182 0 0
183183 − 17.3205i − 1.28037i
184184 0 0
185185 0 0
186186 0 0
187187 −20.7846 −1.51992
188188 0 0
189189 18.0000i 1.30931i
190190 0 0
191191 20.7846 1.50392 0.751961 0.659208i 0.229108π-0.229108\pi
0.751961 + 0.659208i 0.229108π0.229108\pi
192192 0 0
193193 2.00000i 0.143963i 0.997406 + 0.0719816i 0.0229323π0.0229323\pi
−0.997406 + 0.0719816i 0.977068π0.977068\pi
194194 0 0
195195 0 0
196196 0 0
197197 −6.00000 −0.427482 −0.213741 0.976890i 0.568565π-0.568565\pi
−0.213741 + 0.976890i 0.568565π0.568565\pi
198198 0 0
199199 − 24.2487i − 1.71895i −0.511182 0.859473i 0.670792π-0.670792\pi
0.511182 0.859473i 0.329208π-0.329208\pi
200200 0 0
201201 12.0000i 0.846415i
202202 0 0
203203 20.7846i 1.45879i
204204 0 0
205205 0 0
206206 0 0
207207 10.3923i 0.722315i
208208 0 0
209209 12.0000i 0.830057i
210210 0 0
211211 − 17.3205i − 1.19239i −0.802839 0.596196i 0.796678π-0.796678\pi
0.802839 0.596196i 0.203322π-0.203322\pi
212212 0 0
213213 − 24.0000i − 1.64445i
214214 0 0
215215 0 0
216216 0 0
217217 12.0000i 0.814613i
218218 0 0
219219 3.46410 0.234082
220220 0 0
221221 24.0000i 1.61441i
222222 0 0
223223 −17.3205 −1.15987 −0.579934 0.814664i 0.696921π-0.696921\pi
−0.579934 + 0.814664i 0.696921π0.696921\pi
224224 0 0
225225 0 0
226226 0 0
227227 3.46410i 0.229920i 0.993370 + 0.114960i 0.0366741π0.0366741\pi
−0.993370 + 0.114960i 0.963326π0.963326\pi
228228 0 0
229229 14.0000 0.925146 0.462573 0.886581i 0.346926π-0.346926\pi
0.462573 + 0.886581i 0.346926π0.346926\pi
230230 0 0
231231 20.7846i 1.36753i
232232 0 0
233233 6.00000 0.393073 0.196537 0.980497i 0.437031π-0.437031\pi
0.196537 + 0.980497i 0.437031π0.437031\pi
234234 0 0
235235 0 0
236236 0 0
237237 −18.0000 −1.16923
238238 0 0
239239 −13.8564 −0.896296 −0.448148 0.893959i 0.647916π-0.647916\pi
−0.448148 + 0.893959i 0.647916π0.647916\pi
240240 0 0
241241 −26.0000 −1.67481 −0.837404 0.546585i 0.815928π-0.815928\pi
−0.837404 + 0.546585i 0.815928π0.815928\pi
242242 0 0
243243 15.5885i 1.00000i
244244 0 0
245245 0 0
246246 0 0
247247 13.8564 0.881662
248248 0 0
249249 −18.0000 −1.14070
250250 0 0
251251 −3.46410 −0.218652 −0.109326 0.994006i 0.534869π-0.534869\pi
−0.109326 + 0.994006i 0.534869π0.534869\pi
252252 0 0
253253 12.0000i 0.754434i
254254 0 0
255255 0 0
256256 0 0
257257 −18.0000 −1.12281 −0.561405 0.827541i 0.689739π-0.689739\pi
−0.561405 + 0.827541i 0.689739π0.689739\pi
258258 0 0
259259 − 13.8564i − 0.860995i
260260 0 0
261261 18.0000i 1.11417i
262262 0 0
263263 − 3.46410i − 0.213606i −0.994280 0.106803i 0.965939π-0.965939\pi
0.994280 0.106803i 0.0340614π-0.0340614\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 − 6.00000i − 0.365826i −0.983129 0.182913i 0.941447π-0.941447\pi
0.983129 0.182913i 0.0585527π-0.0585527\pi
270270 0 0
271271 − 10.3923i − 0.631288i −0.948878 0.315644i 0.897780π-0.897780\pi
0.948878 0.315644i 0.102220π-0.102220\pi
272272 0 0
273273 24.0000 1.45255
274274 0 0
275275 0 0
276276 0 0
277277 − 4.00000i − 0.240337i −0.992754 0.120168i 0.961657π-0.961657\pi
0.992754 0.120168i 0.0383434π-0.0383434\pi
278278 0 0
279279 10.3923i 0.622171i
280280 0 0
281281 12.0000i 0.715860i 0.933748 + 0.357930i 0.116517π0.116517\pi
−0.933748 + 0.357930i 0.883483π0.883483\pi
282282 0 0
283283 6.92820 0.411839 0.205919 0.978569i 0.433982π-0.433982\pi
0.205919 + 0.978569i 0.433982π0.433982\pi
284284 0 0
285285 0 0
286286 0 0
287287 41.5692i 2.45375i
288288 0 0
289289 19.0000 1.11765
290290 0 0
291291 17.3205 1.01535
292292 0 0
293293 −6.00000 −0.350524 −0.175262 0.984522i 0.556077π-0.556077\pi
−0.175262 + 0.984522i 0.556077π0.556077\pi
294294 0 0
295295 0 0
296296 0 0
297297 18.0000i 1.04447i
298298 0 0
299299 13.8564 0.801337
300300 0 0
301301 24.0000 1.38334
302302 0 0
303303 10.3923 0.597022
304304 0 0
305305 0 0
306306 0 0
307307 −6.92820 −0.395413 −0.197707 0.980261i 0.563349π-0.563349\pi
−0.197707 + 0.980261i 0.563349π0.563349\pi
308308 0 0
309309 − 18.0000i − 1.02398i
310310 0 0
311311 −13.8564 −0.785725 −0.392862 0.919597i 0.628515π-0.628515\pi
−0.392862 + 0.919597i 0.628515π0.628515\pi
312312 0 0
313313 14.0000i 0.791327i 0.918396 + 0.395663i 0.129485π0.129485\pi
−0.918396 + 0.395663i 0.870515π0.870515\pi
314314 0 0
315315 0 0
316316 0 0
317317 −18.0000 −1.01098 −0.505490 0.862832i 0.668688π-0.668688\pi
−0.505490 + 0.862832i 0.668688π0.668688\pi
318318 0 0
319319 20.7846i 1.16371i
320320 0 0
321321 6.00000 0.334887
322322 0 0
323323 − 20.7846i − 1.15649i
324324 0 0
325325 0 0
326326 0 0
327327 − 17.3205i − 0.957826i
328328 0 0
329329 12.0000i 0.661581i
330330 0 0
331331 10.3923i 0.571213i 0.958347 + 0.285606i 0.0921950π0.0921950\pi
−0.958347 + 0.285606i 0.907805π0.907805\pi
332332 0 0
333333 − 12.0000i − 0.657596i
334334 0 0
335335 0 0
336336 0 0
337337 − 34.0000i − 1.85210i −0.377403 0.926049i 0.623183π-0.623183\pi
0.377403 0.926049i 0.376817π-0.376817\pi
338338 0 0
339339 10.3923i 0.564433i
340340 0 0
341341 12.0000i 0.649836i
342342 0 0
343343 6.92820 0.374088
344344 0 0
345345 0 0
346346 0 0
347347 − 10.3923i − 0.557888i −0.960307 0.278944i 0.910016π-0.910016\pi
0.960307 0.278944i 0.0899844π-0.0899844\pi
348348 0 0
349349 −26.0000 −1.39175 −0.695874 0.718164i 0.744983π-0.744983\pi
−0.695874 + 0.718164i 0.744983π0.744983\pi
350350 0 0
351351 20.7846 1.10940
352352 0 0
353353 −18.0000 −0.958043 −0.479022 0.877803i 0.659008π-0.659008\pi
−0.479022 + 0.877803i 0.659008π0.659008\pi
354354 0 0
355355 0 0
356356 0 0
357357 − 36.0000i − 1.90532i
358358 0 0
359359 6.92820 0.365657 0.182828 0.983145i 0.441475π-0.441475\pi
0.182828 + 0.983145i 0.441475π0.441475\pi
360360 0 0
361361 7.00000 0.368421
362362 0 0
363363 1.73205i 0.0909091i
364364 0 0
365365 0 0
366366 0 0
367367 3.46410 0.180825 0.0904123 0.995904i 0.471182π-0.471182\pi
0.0904123 + 0.995904i 0.471182π0.471182\pi
368368 0 0
369369 36.0000i 1.87409i
370370 0 0
371371 20.7846 1.07908
372372 0 0
373373 − 16.0000i − 0.828449i −0.910175 0.414224i 0.864053π-0.864053\pi
0.910175 0.414224i 0.135947π-0.135947\pi
374374 0 0
375375 0 0
376376 0 0
377377 24.0000 1.23606
378378 0 0
379379 24.2487i 1.24557i 0.782392 + 0.622786i 0.213999π0.213999\pi
−0.782392 + 0.622786i 0.786001π0.786001\pi
380380 0 0
381381 − 18.0000i − 0.922168i
382382 0 0
383383 − 17.3205i − 0.885037i −0.896759 0.442518i 0.854085π-0.854085\pi
0.896759 0.442518i 0.145915π-0.145915\pi
384384 0 0
385385 0 0
386386 0 0
387387 20.7846 1.05654
388388 0 0
389389 6.00000i 0.304212i 0.988364 + 0.152106i 0.0486055π0.0486055\pi
−0.988364 + 0.152106i 0.951394π0.951394\pi
390390 0 0
391391 − 20.7846i − 1.05112i
392392 0 0
393393 30.0000i 1.51330i
394394 0 0
395395 0 0
396396 0 0
397397 16.0000i 0.803017i 0.915855 + 0.401508i 0.131514π0.131514\pi
−0.915855 + 0.401508i 0.868486π0.868486\pi
398398 0 0
399399 −20.7846 −1.04053
400400 0 0
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 13.8564 0.690237
404404 0 0
405405 0 0
406406 0 0
407407 − 13.8564i − 0.686837i
408408 0 0
409409 14.0000 0.692255 0.346128 0.938187i 0.387496π-0.387496\pi
0.346128 + 0.938187i 0.387496π0.387496\pi
410410 0 0
411411 − 31.1769i − 1.53784i
412412 0 0
413413 −12.0000 −0.590481
414414 0 0
415415 0 0
416416 0 0
417417 −18.0000 −0.881464
418418 0 0
419419 10.3923 0.507697 0.253849 0.967244i 0.418303π-0.418303\pi
0.253849 + 0.967244i 0.418303π0.418303\pi
420420 0 0
421421 −2.00000 −0.0974740 −0.0487370 0.998812i 0.515520π-0.515520\pi
−0.0487370 + 0.998812i 0.515520π0.515520\pi
422422 0 0
423423 10.3923i 0.505291i
424424 0 0
425425 0 0
426426 0 0
427427 34.6410 1.67640
428428 0 0
429429 24.0000 1.15873
430430 0 0
431431 −6.92820 −0.333720 −0.166860 0.985981i 0.553363π-0.553363\pi
−0.166860 + 0.985981i 0.553363π0.553363\pi
432432 0 0
433433 2.00000i 0.0961139i 0.998845 + 0.0480569i 0.0153029π0.0153029\pi
−0.998845 + 0.0480569i 0.984697π0.984697\pi
434434 0 0
435435 0 0
436436 0 0
437437 −12.0000 −0.574038
438438 0 0
439439 3.46410i 0.165333i 0.996577 + 0.0826663i 0.0263436π0.0263436\pi
−0.996577 + 0.0826663i 0.973656π0.973656\pi
440440 0 0
441441 −15.0000 −0.714286
442442 0 0
443443 17.3205i 0.822922i 0.911427 + 0.411461i 0.134981π0.134981\pi
−0.911427 + 0.411461i 0.865019π0.865019\pi
444444 0 0
445445 0 0
446446 0 0
447447 −10.3923 −0.491539
448448 0 0
449449 − 36.0000i − 1.69895i −0.527633 0.849473i 0.676920π-0.676920\pi
0.527633 0.849473i 0.323080π-0.323080\pi
450450 0 0
451451 41.5692i 1.95742i
452452 0 0
453453 −6.00000 −0.281905
454454 0 0
455455 0 0
456456 0 0
457457 2.00000i 0.0935561i 0.998905 + 0.0467780i 0.0148953π0.0148953\pi
−0.998905 + 0.0467780i 0.985105π0.985105\pi
458458 0 0
459459 − 31.1769i − 1.45521i
460460 0 0
461461 − 18.0000i − 0.838344i −0.907907 0.419172i 0.862320π-0.862320\pi
0.907907 0.419172i 0.137680π-0.137680\pi
462462 0 0
463463 10.3923 0.482971 0.241486 0.970404i 0.422365π-0.422365\pi
0.241486 + 0.970404i 0.422365π0.422365\pi
464464 0 0
465465 0 0
466466 0 0
467467 24.2487i 1.12210i 0.827783 + 0.561048i 0.189602π0.189602\pi
−0.827783 + 0.561048i 0.810398π0.810398\pi
468468 0 0
469469 −24.0000 −1.10822
470470 0 0
471471 −27.7128 −1.27694
472472 0 0
473473 24.0000 1.10352
474474 0 0
475475 0 0
476476 0 0
477477 18.0000 0.824163
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 −16.0000 −0.729537
482482 0 0
483483 −20.7846 −0.945732
484484 0 0
485485 0 0
486486 0 0
487487 −17.3205 −0.784867 −0.392434 0.919780i 0.628367π-0.628367\pi
−0.392434 + 0.919780i 0.628367π0.628367\pi
488488 0 0
489489 − 24.0000i − 1.08532i
490490 0 0
491491 −31.1769 −1.40699 −0.703497 0.710698i 0.748379π-0.748379\pi
−0.703497 + 0.710698i 0.748379π0.748379\pi
492492 0 0
493493 − 36.0000i − 1.62136i
494494 0 0
495495 0 0
496496 0 0
497497 48.0000 2.15309
498498 0 0
499499 − 3.46410i − 0.155074i −0.996989 0.0775372i 0.975294π-0.975294\pi
0.996989 0.0775372i 0.0247057π-0.0247057\pi
500500 0 0
501501 6.00000 0.268060
502502 0 0
503503 10.3923i 0.463370i 0.972791 + 0.231685i 0.0744239π0.0744239\pi
−0.972791 + 0.231685i 0.925576π0.925576\pi
504504 0 0
505505 0 0
506506 0 0
507507 − 5.19615i − 0.230769i
508508 0 0
509509 − 6.00000i − 0.265945i −0.991120 0.132973i 0.957548π-0.957548\pi
0.991120 0.132973i 0.0424523π-0.0424523\pi
510510 0 0
511511 6.92820i 0.306486i
512512 0 0
513513 −18.0000 −0.794719
514514 0 0
515515 0 0
516516 0 0
517517 12.0000i 0.527759i
518518 0 0
519519 10.3923i 0.456172i
520520 0 0
521521 − 12.0000i − 0.525730i −0.964833 0.262865i 0.915333π-0.915333\pi
0.964833 0.262865i 0.0846673π-0.0846673\pi
522522 0 0
523523 −34.6410 −1.51475 −0.757373 0.652983i 0.773517π-0.773517\pi
−0.757373 + 0.652983i 0.773517π0.773517\pi
524524 0 0
525525 0 0
526526 0 0
527527 − 20.7846i − 0.905392i
528528 0 0
529529 11.0000 0.478261
530530 0 0
531531 −10.3923 −0.450988
532532 0 0
533533 48.0000 2.07911
534534 0 0
535535 0 0
536536 0 0
537537 42.0000i 1.81243i
538538 0 0
539539 −17.3205 −0.746047
540540 0 0
541541 −2.00000 −0.0859867 −0.0429934 0.999075i 0.513689π-0.513689\pi
−0.0429934 + 0.999075i 0.513689π0.513689\pi
542542 0 0
543543 − 3.46410i − 0.148659i
544544 0 0
545545 0 0
546546 0 0
547547 −20.7846 −0.888686 −0.444343 0.895857i 0.646563π-0.646563\pi
−0.444343 + 0.895857i 0.646563π0.646563\pi
548548 0 0
549549 30.0000 1.28037
550550 0 0
551551 −20.7846 −0.885454
552552 0 0
553553 − 36.0000i − 1.53088i
554554 0 0
555555 0 0
556556 0 0
557557 18.0000 0.762684 0.381342 0.924434i 0.375462π-0.375462\pi
0.381342 + 0.924434i 0.375462π0.375462\pi
558558 0 0
559559 − 27.7128i − 1.17213i
560560 0 0
561561 − 36.0000i − 1.51992i
562562 0 0
563563 3.46410i 0.145994i 0.997332 + 0.0729972i 0.0232564π0.0232564\pi
−0.997332 + 0.0729972i 0.976744π0.976744\pi
564564 0 0
565565 0 0
566566 0 0
567567 −31.1769 −1.30931
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 24.2487i 1.01478i 0.861717 + 0.507388i 0.169389π0.169389\pi
−0.861717 + 0.507388i 0.830611π0.830611\pi
572572 0 0
573573 36.0000i 1.50392i
574574 0 0
575575 0 0
576576 0 0
577577 − 2.00000i − 0.0832611i −0.999133 0.0416305i 0.986745π-0.986745\pi
0.999133 0.0416305i 0.0132552π-0.0132552\pi
578578 0 0
579579 −3.46410 −0.143963
580580 0 0
581581 − 36.0000i − 1.49353i
582582 0 0
583583 20.7846 0.860811
584584 0 0
585585 0 0
586586 0 0
587587 − 31.1769i − 1.28681i −0.765526 0.643404i 0.777521π-0.777521\pi
0.765526 0.643404i 0.222479π-0.222479\pi
588588 0 0
589589 −12.0000 −0.494451
590590 0 0
591591 − 10.3923i − 0.427482i
592592 0 0
593593 −42.0000 −1.72473 −0.862367 0.506284i 0.831019π-0.831019\pi
−0.862367 + 0.506284i 0.831019π0.831019\pi
594594 0 0
595595 0 0
596596 0 0
597597 42.0000 1.71895
598598 0 0
599599 −20.7846 −0.849236 −0.424618 0.905373i 0.639592π-0.639592\pi
−0.424618 + 0.905373i 0.639592π0.639592\pi
600600 0 0
601601 26.0000 1.06056 0.530281 0.847822i 0.322086π-0.322086\pi
0.530281 + 0.847822i 0.322086π0.322086\pi
602602 0 0
603603 −20.7846 −0.846415
604604 0 0
605605 0 0
606606 0 0
607607 31.1769 1.26543 0.632716 0.774384i 0.281940π-0.281940\pi
0.632716 + 0.774384i 0.281940π0.281940\pi
608608 0 0
609609 −36.0000 −1.45879
610610 0 0
611611 13.8564 0.560570
612612 0 0
613613 32.0000i 1.29247i 0.763139 + 0.646234i 0.223657π0.223657\pi
−0.763139 + 0.646234i 0.776343π0.776343\pi
614614 0 0
615615 0 0
616616 0 0
617617 −18.0000 −0.724653 −0.362326 0.932051i 0.618017π-0.618017\pi
−0.362326 + 0.932051i 0.618017π0.618017\pi
618618 0 0
619619 − 45.0333i − 1.81004i −0.425367 0.905021i 0.639855π-0.639855\pi
0.425367 0.905021i 0.360145π-0.360145\pi
620620 0 0
621621 −18.0000 −0.722315
622622 0 0
623623 0 0
624624 0 0
625625 0 0
626626 0 0
627627 −20.7846 −0.830057
628628 0 0
629629 24.0000i 0.956943i
630630 0 0
631631 − 3.46410i − 0.137904i −0.997620 0.0689519i 0.978035π-0.978035\pi
0.997620 0.0689519i 0.0219655π-0.0219655\pi
632632 0 0
633633 30.0000 1.19239
634634 0 0
635635 0 0
636636 0 0
637637 20.0000i 0.792429i
638638 0 0
639639 41.5692 1.64445
640640 0 0
641641 − 24.0000i − 0.947943i −0.880540 0.473972i 0.842820π-0.842820\pi
0.880540 0.473972i 0.157180π-0.157180\pi
642642 0 0
643643 41.5692 1.63933 0.819665 0.572843i 0.194160π-0.194160\pi
0.819665 + 0.572843i 0.194160π0.194160\pi
644644 0 0
645645 0 0
646646 0 0
647647 − 45.0333i − 1.77044i −0.465170 0.885221i 0.654007π-0.654007\pi
0.465170 0.885221i 0.345993π-0.345993\pi
648648 0 0
649649 −12.0000 −0.471041
650650 0 0
651651 −20.7846 −0.814613
652652 0 0
653653 −42.0000 −1.64359 −0.821794 0.569785i 0.807026π-0.807026\pi
−0.821794 + 0.569785i 0.807026π0.807026\pi
654654 0 0
655655 0 0
656656 0 0
657657 6.00000i 0.234082i
658658 0 0
659659 −31.1769 −1.21448 −0.607240 0.794518i 0.707723π-0.707723\pi
−0.607240 + 0.794518i 0.707723π0.707723\pi
660660 0 0
661661 −10.0000 −0.388955 −0.194477 0.980907i 0.562301π-0.562301\pi
−0.194477 + 0.980907i 0.562301π0.562301\pi
662662 0 0
663663 −41.5692 −1.61441
664664 0 0
665665 0 0
666666 0 0
667667 −20.7846 −0.804783
668668 0 0
669669 − 30.0000i − 1.15987i
670670 0 0
671671 34.6410 1.33730
672672 0 0
673673 2.00000i 0.0770943i 0.999257 + 0.0385472i 0.0122730π0.0122730\pi
−0.999257 + 0.0385472i 0.987727π0.987727\pi
674674 0 0
675675 0 0
676676 0 0
677677 30.0000 1.15299 0.576497 0.817099i 0.304419π-0.304419\pi
0.576497 + 0.817099i 0.304419π0.304419\pi
678678 0 0
679679 34.6410i 1.32940i
680680 0 0
681681 −6.00000 −0.229920
682682 0 0
683683 − 17.3205i − 0.662751i −0.943499 0.331375i 0.892487π-0.892487\pi
0.943499 0.331375i 0.107513π-0.107513\pi
684684 0 0
685685 0 0
686686 0 0
687687 24.2487i 0.925146i
688688 0 0
689689 − 24.0000i − 0.914327i
690690 0 0
691691 − 31.1769i − 1.18603i −0.805193 0.593013i 0.797938π-0.797938\pi
0.805193 0.593013i 0.202062π-0.202062\pi
692692 0 0
693693 −36.0000 −1.36753
694694 0 0
695695 0 0
696696 0 0
697697 − 72.0000i − 2.72719i
698698 0 0
699699 10.3923i 0.393073i
700700 0 0
701701 − 42.0000i − 1.58632i −0.609015 0.793159i 0.708435π-0.708435\pi
0.609015 0.793159i 0.291565π-0.291565\pi
702702 0 0
703703 13.8564 0.522604
704704 0 0
705705 0 0
706706 0 0
707707 20.7846i 0.781686i
708708 0 0
709709 −10.0000 −0.375558 −0.187779 0.982211i 0.560129π-0.560129\pi
−0.187779 + 0.982211i 0.560129π0.560129\pi
710710 0 0
711711 − 31.1769i − 1.16923i
712712 0 0
713713 −12.0000 −0.449404
714714 0 0
715715 0 0
716716 0 0
717717 − 24.0000i − 0.896296i
718718 0 0
719719 27.7128 1.03351 0.516757 0.856132i 0.327139π-0.327139\pi
0.516757 + 0.856132i 0.327139π0.327139\pi
720720 0 0
721721 36.0000 1.34071
722722 0 0
723723 − 45.0333i − 1.67481i
724724 0 0
725725 0 0
726726 0 0
727727 −3.46410 −0.128476 −0.0642382 0.997935i 0.520462π-0.520462\pi
−0.0642382 + 0.997935i 0.520462π0.520462\pi
728728 0 0
729729 −27.0000 −1.00000
730730 0 0
731731 −41.5692 −1.53749
732732 0 0
733733 28.0000i 1.03420i 0.855924 + 0.517102i 0.172989π0.172989\pi
−0.855924 + 0.517102i 0.827011π0.827011\pi
734734 0 0
735735 0 0
736736 0 0
737737 −24.0000 −0.884051
738738 0 0
739739 10.3923i 0.382287i 0.981562 + 0.191144i 0.0612196π0.0612196\pi
−0.981562 + 0.191144i 0.938780π0.938780\pi
740740 0 0
741741 24.0000i 0.881662i
742742 0 0
743743 38.1051i 1.39794i 0.715150 + 0.698971i 0.246358π0.246358\pi
−0.715150 + 0.698971i 0.753642π0.753642\pi
744744 0 0
745745 0 0
746746 0 0
747747 − 31.1769i − 1.14070i
748748 0 0
749749 12.0000i 0.438470i
750750 0 0
751751 51.9615i 1.89610i 0.318117 + 0.948051i 0.396950π0.396950\pi
−0.318117 + 0.948051i 0.603050π0.603050\pi
752752 0 0
753753 − 6.00000i − 0.218652i
754754 0 0
755755 0 0
756756 0 0
757757 20.0000i 0.726912i 0.931611 + 0.363456i 0.118403π0.118403\pi
−0.931611 + 0.363456i 0.881597π0.881597\pi
758758 0 0
759759 −20.7846 −0.754434
760760 0 0
761761 − 12.0000i − 0.435000i −0.976060 0.217500i 0.930210π-0.930210\pi
0.976060 0.217500i 0.0697902π-0.0697902\pi
762762 0 0
763763 34.6410 1.25409
764764 0 0
765765 0 0
766766 0 0
767767 13.8564i 0.500326i
768768 0 0
769769 34.0000 1.22607 0.613036 0.790055i 0.289948π-0.289948\pi
0.613036 + 0.790055i 0.289948π0.289948\pi
770770 0 0
771771 − 31.1769i − 1.12281i
772772 0 0
773773 54.0000 1.94225 0.971123 0.238581i 0.0766824π-0.0766824\pi
0.971123 + 0.238581i 0.0766824π0.0766824\pi
774774 0 0
775775 0 0
776776 0 0
777777 24.0000 0.860995
778778 0 0
779779 −41.5692 −1.48937
780780 0 0
781781 48.0000 1.71758
782782 0 0
783783 −31.1769 −1.11417
784784 0 0
785785 0 0
786786 0 0
787787 34.6410 1.23482 0.617409 0.786642i 0.288182π-0.288182\pi
0.617409 + 0.786642i 0.288182π0.288182\pi
788788 0 0
789789 6.00000 0.213606
790790 0 0
791791 −20.7846 −0.739016
792792 0 0
793793 − 40.0000i − 1.42044i
794794 0 0
795795 0 0
796796 0 0
797797 30.0000 1.06265 0.531327 0.847167i 0.321693π-0.321693\pi
0.531327 + 0.847167i 0.321693π0.321693\pi
798798 0 0
799799 − 20.7846i − 0.735307i
800800 0 0
801801 0 0
802802 0 0
803803 6.92820i 0.244491i
804804 0 0
805805 0 0
806806 0 0
807807 10.3923 0.365826
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0 0
811811 24.2487i 0.851487i 0.904844 + 0.425744i 0.139987π0.139987\pi
−0.904844 + 0.425744i 0.860013π0.860013\pi
812812 0 0
813813 18.0000 0.631288
814814 0 0
815815 0 0
816816 0 0
817817 24.0000i 0.839654i
818818 0 0
819819 41.5692i 1.45255i
820820 0 0
821821 − 6.00000i − 0.209401i −0.994504 0.104701i 0.966612π-0.966612\pi
0.994504 0.104701i 0.0333885π-0.0333885\pi
822822 0 0
823823 45.0333 1.56976 0.784881 0.619646i 0.212724π-0.212724\pi
0.784881 + 0.619646i 0.212724π0.212724\pi
824824 0 0
825825 0 0
826826 0 0
827827 − 38.1051i − 1.32504i −0.749042 0.662522i 0.769486π-0.769486\pi
0.749042 0.662522i 0.230514π-0.230514\pi
828828 0 0
829829 14.0000 0.486240 0.243120 0.969996i 0.421829π-0.421829\pi
0.243120 + 0.969996i 0.421829π0.421829\pi
830830 0 0
831831 6.92820 0.240337
832832 0 0
833833 30.0000 1.03944
834834 0 0
835835 0 0
836836 0 0
837837 −18.0000 −0.622171
838838 0 0
839839 48.4974 1.67432 0.837158 0.546960i 0.184215π-0.184215\pi
0.837158 + 0.546960i 0.184215π0.184215\pi
840840 0 0
841841 −7.00000 −0.241379
842842 0 0
843843 −20.7846 −0.715860
844844 0 0
845845 0 0
846846 0 0
847847 −3.46410 −0.119028
848848 0 0
849849 12.0000i 0.411839i
850850 0 0
851851 13.8564 0.474991
852852 0 0
853853 8.00000i 0.273915i 0.990577 + 0.136957i 0.0437323π0.0437323\pi
−0.990577 + 0.136957i 0.956268π0.956268\pi
854854 0 0
855855 0 0
856856 0 0
857857 6.00000 0.204956 0.102478 0.994735i 0.467323π-0.467323\pi
0.102478 + 0.994735i 0.467323π0.467323\pi
858858 0 0
859859 51.9615i 1.77290i 0.462820 + 0.886452i 0.346838π0.346838\pi
−0.462820 + 0.886452i 0.653162π0.653162\pi
860860 0 0
861861 −72.0000 −2.45375
862862 0 0
863863 51.9615i 1.76879i 0.466738 + 0.884395i 0.345429π0.345429\pi
−0.466738 + 0.884395i 0.654571π0.654571\pi
864864 0 0
865865 0 0
866866 0 0
867867 32.9090i 1.11765i
868868 0 0
869869 − 36.0000i − 1.22122i
870870 0 0
871871 27.7128i 0.939013i
872872 0 0
873873 30.0000i 1.01535i
874874 0 0
875875 0 0
876876 0 0
877877 − 32.0000i − 1.08056i −0.841484 0.540282i 0.818318π-0.818318\pi
0.841484 0.540282i 0.181682π-0.181682\pi
878878 0 0
879879 − 10.3923i − 0.350524i
880880 0 0
881881 48.0000i 1.61716i 0.588386 + 0.808581i 0.299764π0.299764\pi
−0.588386 + 0.808581i 0.700236π0.700236\pi
882882 0 0
883883 13.8564 0.466305 0.233153 0.972440i 0.425096π-0.425096\pi
0.233153 + 0.972440i 0.425096π0.425096\pi
884884 0 0
885885 0 0
886886 0 0
887887 24.2487i 0.814192i 0.913385 + 0.407096i 0.133459π0.133459\pi
−0.913385 + 0.407096i 0.866541π0.866541\pi
888888 0 0
889889 36.0000 1.20740
890890 0 0
891891 −31.1769 −1.04447
892892 0 0
893893 −12.0000 −0.401565
894894 0 0
895895 0 0
896896 0 0
897897 24.0000i 0.801337i
898898 0 0
899899 −20.7846 −0.693206
900900 0 0
901901 −36.0000 −1.19933
902902 0 0
903903 41.5692i 1.38334i
904904 0 0
905905 0 0
906906 0 0
907907 41.5692 1.38028 0.690142 0.723674i 0.257548π-0.257548\pi
0.690142 + 0.723674i 0.257548π0.257548\pi
908908 0 0
909909 18.0000i 0.597022i
910910 0 0
911911 34.6410 1.14771 0.573854 0.818958i 0.305448π-0.305448\pi
0.573854 + 0.818958i 0.305448π0.305448\pi
912912 0 0
913913 − 36.0000i − 1.19143i
914914 0 0
915915 0 0
916916 0 0
917917 −60.0000 −1.98137
918918 0 0
919919 − 45.0333i − 1.48551i −0.669562 0.742756i 0.733518π-0.733518\pi
0.669562 0.742756i 0.266482π-0.266482\pi
920920 0 0
921921 − 12.0000i − 0.395413i
922922 0 0
923923 − 55.4256i − 1.82436i
924924 0 0
925925 0 0
926926 0 0
927927 31.1769 1.02398
928928 0 0
929929 12.0000i 0.393707i 0.980433 + 0.196854i 0.0630724π0.0630724\pi
−0.980433 + 0.196854i 0.936928π0.936928\pi
930930 0 0
931931 − 17.3205i − 0.567657i
932932 0 0
933933 − 24.0000i − 0.785725i
934934 0 0
935935 0 0
936936 0 0
937937 − 38.0000i − 1.24141i −0.784046 0.620703i 0.786847π-0.786847\pi
0.784046 0.620703i 0.213153π-0.213153\pi
938938 0 0
939939 −24.2487 −0.791327
940940 0 0
941941 54.0000i 1.76035i 0.474650 + 0.880175i 0.342575π0.342575\pi
−0.474650 + 0.880175i 0.657425π0.657425\pi
942942 0 0
943943 −41.5692 −1.35368
944944 0 0
945945 0 0
946946 0 0
947947 31.1769i 1.01311i 0.862207 + 0.506557i 0.169082π0.169082\pi
−0.862207 + 0.506557i 0.830918π0.830918\pi
948948 0 0
949949 8.00000 0.259691
950950 0 0
951951 − 31.1769i − 1.01098i
952952 0 0
953953 −18.0000 −0.583077 −0.291539 0.956559i 0.594167π-0.594167\pi
−0.291539 + 0.956559i 0.594167π0.594167\pi
954954 0 0
955955 0 0
956956 0 0
957957 −36.0000 −1.16371
958958 0 0
959959 62.3538 2.01351
960960 0 0
961961 19.0000 0.612903
962962 0 0
963963 10.3923i 0.334887i
964964 0 0
965965 0 0
966966 0 0
967967 51.9615 1.67097 0.835485 0.549513i 0.185187π-0.185187\pi
0.835485 + 0.549513i 0.185187π0.185187\pi
968968 0 0
969969 36.0000 1.15649
970970 0 0
971971 −3.46410 −0.111168 −0.0555842 0.998454i 0.517702π-0.517702\pi
−0.0555842 + 0.998454i 0.517702π0.517702\pi
972972 0 0
973973 − 36.0000i − 1.15411i
974974 0 0
975975 0 0
976976 0 0
977977 30.0000 0.959785 0.479893 0.877327i 0.340676π-0.340676\pi
0.479893 + 0.877327i 0.340676π0.340676\pi
978978 0 0
979979 0 0
980980 0 0
981981 30.0000 0.957826
982982 0 0
983983 − 58.8897i − 1.87829i −0.343520 0.939145i 0.611619π-0.611619\pi
0.343520 0.939145i 0.388381π-0.388381\pi
984984 0 0
985985 0 0
986986 0 0
987987 −20.7846 −0.661581
988988 0 0
989989 24.0000i 0.763156i
990990 0 0
991991 17.3205i 0.550204i 0.961415 + 0.275102i 0.0887116π0.0887116\pi
−0.961415 + 0.275102i 0.911288π0.911288\pi
992992 0 0
993993 −18.0000 −0.571213
994994 0 0
995995 0 0
996996 0 0
997997 52.0000i 1.64686i 0.567420 + 0.823428i 0.307941π0.307941\pi
−0.567420 + 0.823428i 0.692059π0.692059\pi
998998 0 0
999999 20.7846 0.657596
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1200.2.o.b.1199.3 4
3.2 odd 2 1200.2.o.a.1199.1 4
4.3 odd 2 inner 1200.2.o.b.1199.2 4
5.2 odd 4 240.2.h.b.191.3 yes 4
5.3 odd 4 1200.2.h.m.1151.2 4
5.4 even 2 1200.2.o.a.1199.2 4
12.11 even 2 1200.2.o.a.1199.4 4
15.2 even 4 240.2.h.b.191.2 yes 4
15.8 even 4 1200.2.h.m.1151.4 4
15.14 odd 2 inner 1200.2.o.b.1199.4 4
20.3 even 4 1200.2.h.m.1151.3 4
20.7 even 4 240.2.h.b.191.1 4
20.19 odd 2 1200.2.o.a.1199.3 4
40.27 even 4 960.2.h.d.191.4 4
40.37 odd 4 960.2.h.d.191.2 4
60.23 odd 4 1200.2.h.m.1151.1 4
60.47 odd 4 240.2.h.b.191.4 yes 4
60.59 even 2 inner 1200.2.o.b.1199.1 4
120.77 even 4 960.2.h.d.191.3 4
120.107 odd 4 960.2.h.d.191.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.h.b.191.1 4 20.7 even 4
240.2.h.b.191.2 yes 4 15.2 even 4
240.2.h.b.191.3 yes 4 5.2 odd 4
240.2.h.b.191.4 yes 4 60.47 odd 4
960.2.h.d.191.1 4 120.107 odd 4
960.2.h.d.191.2 4 40.37 odd 4
960.2.h.d.191.3 4 120.77 even 4
960.2.h.d.191.4 4 40.27 even 4
1200.2.h.m.1151.1 4 60.23 odd 4
1200.2.h.m.1151.2 4 5.3 odd 4
1200.2.h.m.1151.3 4 20.3 even 4
1200.2.h.m.1151.4 4 15.8 even 4
1200.2.o.a.1199.1 4 3.2 odd 2
1200.2.o.a.1199.2 4 5.4 even 2
1200.2.o.a.1199.3 4 20.19 odd 2
1200.2.o.a.1199.4 4 12.11 even 2
1200.2.o.b.1199.1 4 60.59 even 2 inner
1200.2.o.b.1199.2 4 4.3 odd 2 inner
1200.2.o.b.1199.3 4 1.1 even 1 trivial
1200.2.o.b.1199.4 4 15.14 odd 2 inner