Properties

Label 1200.4.f.f
Level 12001200
Weight 44
Character orbit 1200.f
Analytic conductor 70.80270.802
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1200,4,Mod(49,1200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1200.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1200=24352 1200 = 2^{4} \cdot 3 \cdot 5^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1200.f (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 70.802292006970.8022920069
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 600)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3iq3+19iq79q922q11iq1358iq1753q1957q21+58iq2327iq2722q29+35q3166iq33270iq37+3q39468q41++198q99+O(q100) q + 3 i q^{3} + 19 i q^{7} - 9 q^{9} - 22 q^{11} - i q^{13} - 58 i q^{17} - 53 q^{19} - 57 q^{21} + 58 i q^{23} - 27 i q^{27} - 22 q^{29} + 35 q^{31} - 66 i q^{33} - 270 i q^{37} + 3 q^{39} - 468 q^{41} + \cdots + 198 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q18q944q11106q19114q2144q29+70q31+6q39936q4136q49+348q51+892q59+254q61348q6972q71+2736q79+162q81++396q99+O(q100) 2 q - 18 q^{9} - 44 q^{11} - 106 q^{19} - 114 q^{21} - 44 q^{29} + 70 q^{31} + 6 q^{39} - 936 q^{41} - 36 q^{49} + 348 q^{51} + 892 q^{59} + 254 q^{61} - 348 q^{69} - 72 q^{71} + 2736 q^{79} + 162 q^{81}+ \cdots + 396 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1200Z)×\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times.

nn 401401 577577 751751 901901
χ(n)\chi(n) 11 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
1.00000i
1.00000i
0 3.00000i 0 0 0 19.0000i 0 −9.00000 0
49.2 0 3.00000i 0 0 0 19.0000i 0 −9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1200.4.f.f 2
4.b odd 2 1 600.4.f.h 2
5.b even 2 1 inner 1200.4.f.f 2
5.c odd 4 1 1200.4.a.n 1
5.c odd 4 1 1200.4.a.x 1
12.b even 2 1 1800.4.f.g 2
20.d odd 2 1 600.4.f.h 2
20.e even 4 1 600.4.a.g 1
20.e even 4 1 600.4.a.j yes 1
60.h even 2 1 1800.4.f.g 2
60.l odd 4 1 1800.4.a.g 1
60.l odd 4 1 1800.4.a.bf 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
600.4.a.g 1 20.e even 4 1
600.4.a.j yes 1 20.e even 4 1
600.4.f.h 2 4.b odd 2 1
600.4.f.h 2 20.d odd 2 1
1200.4.a.n 1 5.c odd 4 1
1200.4.a.x 1 5.c odd 4 1
1200.4.f.f 2 1.a even 1 1 trivial
1200.4.f.f 2 5.b even 2 1 inner
1800.4.a.g 1 60.l odd 4 1
1800.4.a.bf 1 60.l odd 4 1
1800.4.f.g 2 12.b even 2 1
1800.4.f.g 2 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(1200,[χ])S_{4}^{\mathrm{new}}(1200, [\chi]):

T72+361 T_{7}^{2} + 361 Copy content Toggle raw display
T11+22 T_{11} + 22 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+9 T^{2} + 9 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+361 T^{2} + 361 Copy content Toggle raw display
1111 (T+22)2 (T + 22)^{2} Copy content Toggle raw display
1313 T2+1 T^{2} + 1 Copy content Toggle raw display
1717 T2+3364 T^{2} + 3364 Copy content Toggle raw display
1919 (T+53)2 (T + 53)^{2} Copy content Toggle raw display
2323 T2+3364 T^{2} + 3364 Copy content Toggle raw display
2929 (T+22)2 (T + 22)^{2} Copy content Toggle raw display
3131 (T35)2 (T - 35)^{2} Copy content Toggle raw display
3737 T2+72900 T^{2} + 72900 Copy content Toggle raw display
4141 (T+468)2 (T + 468)^{2} Copy content Toggle raw display
4343 T2+185761 T^{2} + 185761 Copy content Toggle raw display
4747 T2+52900 T^{2} + 52900 Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 (T446)2 (T - 446)^{2} Copy content Toggle raw display
6161 (T127)2 (T - 127)^{2} Copy content Toggle raw display
6767 T2+657721 T^{2} + 657721 Copy content Toggle raw display
7171 (T+36)2 (T + 36)^{2} Copy content Toggle raw display
7373 T2+272484 T^{2} + 272484 Copy content Toggle raw display
7979 (T1368)2 (T - 1368)^{2} Copy content Toggle raw display
8383 T2+1295044 T^{2} + 1295044 Copy content Toggle raw display
8989 (T+144)2 (T + 144)^{2} Copy content Toggle raw display
9797 T2+1164241 T^{2} + 1164241 Copy content Toggle raw display
show more
show less