Properties

Label 121.4.a.a
Level $121$
Weight $4$
Character orbit 121.a
Self dual yes
Analytic conductor $7.139$
Analytic rank $0$
Dimension $1$
CM discriminant -11
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [121,4,Mod(1,121)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(121, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("121.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 121.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.13923111069\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 8 q^{3} - 8 q^{4} + 18 q^{5} + 37 q^{9} - 64 q^{12} + 144 q^{15} + 64 q^{16} - 144 q^{20} - 108 q^{23} + 199 q^{25} + 80 q^{27} + 340 q^{31} - 296 q^{36} - 434 q^{37} + 666 q^{45} - 36 q^{47} + 512 q^{48}+ \cdots - 34 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 8.00000 −8.00000 18.0000 0 0 0 37.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 121.4.a.a 1
3.b odd 2 1 1089.4.a.f 1
4.b odd 2 1 1936.4.a.a 1
11.b odd 2 1 CM 121.4.a.a 1
11.c even 5 4 121.4.c.a 4
11.d odd 10 4 121.4.c.a 4
33.d even 2 1 1089.4.a.f 1
44.c even 2 1 1936.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
121.4.a.a 1 1.a even 1 1 trivial
121.4.a.a 1 11.b odd 2 1 CM
121.4.c.a 4 11.c even 5 4
121.4.c.a 4 11.d odd 10 4
1089.4.a.f 1 3.b odd 2 1
1089.4.a.f 1 33.d even 2 1
1936.4.a.a 1 4.b odd 2 1
1936.4.a.a 1 44.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(121))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 8 \) Copy content Toggle raw display
$5$ \( T - 18 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T + 108 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 340 \) Copy content Toggle raw display
$37$ \( T + 434 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T + 36 \) Copy content Toggle raw display
$53$ \( T + 738 \) Copy content Toggle raw display
$59$ \( T + 720 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T + 416 \) Copy content Toggle raw display
$71$ \( T - 612 \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T - 1674 \) Copy content Toggle raw display
$97$ \( T + 34 \) Copy content Toggle raw display
show more
show less