Properties

Label 1215.2.e.j
Level 12151215
Weight 22
Character orbit 1215.e
Analytic conductor 9.7029.702
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1215,2,Mod(406,1215)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1215, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1215.406"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1215=355 1215 = 3^{5} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1215.e (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,-2,1,0,0,0,0,4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.701823845599.70182384559
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2ζ6+2)q22ζ6q4+ζ6q5+2q10+(2ζ6+2)q11ζ6q13+(4ζ6+4)q162q17+7q19+(2ζ6+2)q20++14q98+O(q100) q + ( - 2 \zeta_{6} + 2) q^{2} - 2 \zeta_{6} q^{4} + \zeta_{6} q^{5} + 2 q^{10} + ( - 2 \zeta_{6} + 2) q^{11} - \zeta_{6} q^{13} + ( - 4 \zeta_{6} + 4) q^{16} - 2 q^{17} + 7 q^{19} + ( - 2 \zeta_{6} + 2) q^{20} + \cdots + 14 q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q22q4+q5+4q10+2q11q13+4q164q17+14q19+2q204q22+6q23q254q26+4q293q318q324q34+4q37++28q98+O(q100) 2 q + 2 q^{2} - 2 q^{4} + q^{5} + 4 q^{10} + 2 q^{11} - q^{13} + 4 q^{16} - 4 q^{17} + 14 q^{19} + 2 q^{20} - 4 q^{22} + 6 q^{23} - q^{25} - 4 q^{26} + 4 q^{29} - 3 q^{31} - 8 q^{32} - 4 q^{34} + 4 q^{37}+ \cdots + 28 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1215Z)×\left(\mathbb{Z}/1215\mathbb{Z}\right)^\times.

nn 487487 731731
χ(n)\chi(n) 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
406.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 1.73205i 0 −1.00000 1.73205i 0.500000 + 0.866025i 0 0 0 0 2.00000
811.1 1.00000 + 1.73205i 0 −1.00000 + 1.73205i 0.500000 0.866025i 0 0 0 0 2.00000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1215.2.e.j 2
3.b odd 2 1 1215.2.e.a 2
9.c even 3 1 1215.2.a.a 1
9.c even 3 1 inner 1215.2.e.j 2
9.d odd 6 1 1215.2.a.j yes 1
9.d odd 6 1 1215.2.e.a 2
45.h odd 6 1 6075.2.a.c 1
45.j even 6 1 6075.2.a.bg 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1215.2.a.a 1 9.c even 3 1
1215.2.a.j yes 1 9.d odd 6 1
1215.2.e.a 2 3.b odd 2 1
1215.2.e.a 2 9.d odd 6 1
1215.2.e.j 2 1.a even 1 1 trivial
1215.2.e.j 2 9.c even 3 1 inner
6075.2.a.c 1 45.h odd 6 1
6075.2.a.bg 1 45.j even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1215,[χ])S_{2}^{\mathrm{new}}(1215, [\chi]):

T222T2+4 T_{2}^{2} - 2T_{2} + 4 Copy content Toggle raw display
T7 T_{7} Copy content Toggle raw display
T1122T11+4 T_{11}^{2} - 2T_{11} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
1313 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
1717 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
1919 (T7)2 (T - 7)^{2} Copy content Toggle raw display
2323 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
2929 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
3131 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
3737 (T2)2 (T - 2)^{2} Copy content Toggle raw display
4141 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
4343 T211T+121 T^{2} - 11T + 121 Copy content Toggle raw display
4747 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
5353 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
5959 T2+10T+100 T^{2} + 10T + 100 Copy content Toggle raw display
6161 T25T+25 T^{2} - 5T + 25 Copy content Toggle raw display
6767 T215T+225 T^{2} - 15T + 225 Copy content Toggle raw display
7171 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
7373 (T1)2 (T - 1)^{2} Copy content Toggle raw display
7979 T2+15T+225 T^{2} + 15T + 225 Copy content Toggle raw display
8383 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
8989 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
9797 T27T+49 T^{2} - 7T + 49 Copy content Toggle raw display
show more
show less