Properties

Label 1216.2.a.o.1.1
Level $1216$
Weight $2$
Character 1216.1
Self dual yes
Analytic conductor $9.710$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(1,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.70980888579\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1216.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{3} -3.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+2.00000 q^{3} -3.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} -3.00000 q^{11} +4.00000 q^{13} -6.00000 q^{15} -3.00000 q^{17} -1.00000 q^{19} -2.00000 q^{21} +4.00000 q^{25} -4.00000 q^{27} -6.00000 q^{29} -4.00000 q^{31} -6.00000 q^{33} +3.00000 q^{35} -2.00000 q^{37} +8.00000 q^{39} -6.00000 q^{41} +1.00000 q^{43} -3.00000 q^{45} -3.00000 q^{47} -6.00000 q^{49} -6.00000 q^{51} -12.0000 q^{53} +9.00000 q^{55} -2.00000 q^{57} +6.00000 q^{59} +1.00000 q^{61} -1.00000 q^{63} -12.0000 q^{65} +4.00000 q^{67} +6.00000 q^{71} -7.00000 q^{73} +8.00000 q^{75} +3.00000 q^{77} +8.00000 q^{79} -11.0000 q^{81} -12.0000 q^{83} +9.00000 q^{85} -12.0000 q^{87} +12.0000 q^{89} -4.00000 q^{91} -8.00000 q^{93} +3.00000 q^{95} +8.00000 q^{97} -3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000 1.15470 0.577350 0.816497i \(-0.304087\pi\)
0.577350 + 0.816497i \(0.304087\pi\)
\(4\) 0 0
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) −6.00000 −1.54919
\(16\) 0 0
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) −6.00000 −1.04447
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 8.00000 1.28103
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 1.00000 0.152499 0.0762493 0.997089i \(-0.475706\pi\)
0.0762493 + 0.997089i \(0.475706\pi\)
\(44\) 0 0
\(45\) −3.00000 −0.447214
\(46\) 0 0
\(47\) −3.00000 −0.437595 −0.218797 0.975770i \(-0.570213\pi\)
−0.218797 + 0.975770i \(0.570213\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) 0 0
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 0 0
\(55\) 9.00000 1.21356
\(56\) 0 0
\(57\) −2.00000 −0.264906
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) −12.0000 −1.48842
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) 0 0
\(75\) 8.00000 0.923760
\(76\) 0 0
\(77\) 3.00000 0.341882
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 9.00000 0.976187
\(86\) 0 0
\(87\) −12.0000 −1.28654
\(88\) 0 0
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) −8.00000 −0.829561
\(94\) 0 0
\(95\) 3.00000 0.307794
\(96\) 0 0
\(97\) 8.00000 0.812277 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) 0 0
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 0 0
\(105\) 6.00000 0.585540
\(106\) 0 0
\(107\) 18.0000 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(108\) 0 0
\(109\) 16.0000 1.53252 0.766261 0.642529i \(-0.222115\pi\)
0.766261 + 0.642529i \(0.222115\pi\)
\(110\) 0 0
\(111\) −4.00000 −0.379663
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.00000 0.369800
\(118\) 0 0
\(119\) 3.00000 0.275010
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) −12.0000 −1.08200
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 0 0
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) 15.0000 1.31056 0.655278 0.755388i \(-0.272551\pi\)
0.655278 + 0.755388i \(0.272551\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 12.0000 1.03280
\(136\) 0 0
\(137\) −3.00000 −0.256307 −0.128154 0.991754i \(-0.540905\pi\)
−0.128154 + 0.991754i \(0.540905\pi\)
\(138\) 0 0
\(139\) 13.0000 1.10265 0.551323 0.834292i \(-0.314123\pi\)
0.551323 + 0.834292i \(0.314123\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 0 0
\(143\) −12.0000 −1.00349
\(144\) 0 0
\(145\) 18.0000 1.49482
\(146\) 0 0
\(147\) −12.0000 −0.989743
\(148\) 0 0
\(149\) −21.0000 −1.72039 −0.860194 0.509968i \(-0.829657\pi\)
−0.860194 + 0.509968i \(0.829657\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 0 0
\(153\) −3.00000 −0.242536
\(154\) 0 0
\(155\) 12.0000 0.963863
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 0 0
\(159\) −24.0000 −1.90332
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −20.0000 −1.56652 −0.783260 0.621694i \(-0.786445\pi\)
−0.783260 + 0.621694i \(0.786445\pi\)
\(164\) 0 0
\(165\) 18.0000 1.40130
\(166\) 0 0
\(167\) −18.0000 −1.39288 −0.696441 0.717614i \(-0.745234\pi\)
−0.696441 + 0.717614i \(0.745234\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 0 0
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) 12.0000 0.901975
\(178\) 0 0
\(179\) 18.0000 1.34538 0.672692 0.739923i \(-0.265138\pi\)
0.672692 + 0.739923i \(0.265138\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) 6.00000 0.441129
\(186\) 0 0
\(187\) 9.00000 0.658145
\(188\) 0 0
\(189\) 4.00000 0.290957
\(190\) 0 0
\(191\) 3.00000 0.217072 0.108536 0.994092i \(-0.465384\pi\)
0.108536 + 0.994092i \(0.465384\pi\)
\(192\) 0 0
\(193\) −4.00000 −0.287926 −0.143963 0.989583i \(-0.545985\pi\)
−0.143963 + 0.989583i \(0.545985\pi\)
\(194\) 0 0
\(195\) −24.0000 −1.71868
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) 11.0000 0.779769 0.389885 0.920864i \(-0.372515\pi\)
0.389885 + 0.920864i \(0.372515\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 0 0
\(203\) 6.00000 0.421117
\(204\) 0 0
\(205\) 18.0000 1.25717
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.00000 0.207514
\(210\) 0 0
\(211\) −14.0000 −0.963800 −0.481900 0.876226i \(-0.660053\pi\)
−0.481900 + 0.876226i \(0.660053\pi\)
\(212\) 0 0
\(213\) 12.0000 0.822226
\(214\) 0 0
\(215\) −3.00000 −0.204598
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 0 0
\(219\) −14.0000 −0.946032
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) −10.0000 −0.669650 −0.334825 0.942280i \(-0.608677\pi\)
−0.334825 + 0.942280i \(0.608677\pi\)
\(224\) 0 0
\(225\) 4.00000 0.266667
\(226\) 0 0
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) −5.00000 −0.330409 −0.165205 0.986259i \(-0.552828\pi\)
−0.165205 + 0.986259i \(0.552828\pi\)
\(230\) 0 0
\(231\) 6.00000 0.394771
\(232\) 0 0
\(233\) −21.0000 −1.37576 −0.687878 0.725826i \(-0.741458\pi\)
−0.687878 + 0.725826i \(0.741458\pi\)
\(234\) 0 0
\(235\) 9.00000 0.587095
\(236\) 0 0
\(237\) 16.0000 1.03931
\(238\) 0 0
\(239\) 15.0000 0.970269 0.485135 0.874439i \(-0.338771\pi\)
0.485135 + 0.874439i \(0.338771\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) −10.0000 −0.641500
\(244\) 0 0
\(245\) 18.0000 1.14998
\(246\) 0 0
\(247\) −4.00000 −0.254514
\(248\) 0 0
\(249\) −24.0000 −1.52094
\(250\) 0 0
\(251\) −21.0000 −1.32551 −0.662754 0.748837i \(-0.730613\pi\)
−0.662754 + 0.748837i \(0.730613\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 18.0000 1.12720
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 2.00000 0.124274
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 9.00000 0.554964 0.277482 0.960731i \(-0.410500\pi\)
0.277482 + 0.960731i \(0.410500\pi\)
\(264\) 0 0
\(265\) 36.0000 2.21146
\(266\) 0 0
\(267\) 24.0000 1.46878
\(268\) 0 0
\(269\) −24.0000 −1.46331 −0.731653 0.681677i \(-0.761251\pi\)
−0.731653 + 0.681677i \(0.761251\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) −8.00000 −0.484182
\(274\) 0 0
\(275\) −12.0000 −0.723627
\(276\) 0 0
\(277\) 19.0000 1.14160 0.570800 0.821089i \(-0.306633\pi\)
0.570800 + 0.821089i \(0.306633\pi\)
\(278\) 0 0
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 13.0000 0.772770 0.386385 0.922338i \(-0.373724\pi\)
0.386385 + 0.922338i \(0.373724\pi\)
\(284\) 0 0
\(285\) 6.00000 0.355409
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 16.0000 0.937937
\(292\) 0 0
\(293\) 12.0000 0.701047 0.350524 0.936554i \(-0.386004\pi\)
0.350524 + 0.936554i \(0.386004\pi\)
\(294\) 0 0
\(295\) −18.0000 −1.04800
\(296\) 0 0
\(297\) 12.0000 0.696311
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −1.00000 −0.0576390
\(302\) 0 0
\(303\) −12.0000 −0.689382
\(304\) 0 0
\(305\) −3.00000 −0.171780
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 28.0000 1.59286
\(310\) 0 0
\(311\) −3.00000 −0.170114 −0.0850572 0.996376i \(-0.527107\pi\)
−0.0850572 + 0.996376i \(0.527107\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 0 0
\(315\) 3.00000 0.169031
\(316\) 0 0
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) 18.0000 1.00781
\(320\) 0 0
\(321\) 36.0000 2.00932
\(322\) 0 0
\(323\) 3.00000 0.166924
\(324\) 0 0
\(325\) 16.0000 0.887520
\(326\) 0 0
\(327\) 32.0000 1.76960
\(328\) 0 0
\(329\) 3.00000 0.165395
\(330\) 0 0
\(331\) 28.0000 1.53902 0.769510 0.638635i \(-0.220501\pi\)
0.769510 + 0.638635i \(0.220501\pi\)
\(332\) 0 0
\(333\) −2.00000 −0.109599
\(334\) 0 0
\(335\) −12.0000 −0.655630
\(336\) 0 0
\(337\) 32.0000 1.74315 0.871576 0.490261i \(-0.163099\pi\)
0.871576 + 0.490261i \(0.163099\pi\)
\(338\) 0 0
\(339\) 12.0000 0.651751
\(340\) 0 0
\(341\) 12.0000 0.649836
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −21.0000 −1.12734 −0.563670 0.826000i \(-0.690611\pi\)
−0.563670 + 0.826000i \(0.690611\pi\)
\(348\) 0 0
\(349\) −17.0000 −0.909989 −0.454995 0.890494i \(-0.650359\pi\)
−0.454995 + 0.890494i \(0.650359\pi\)
\(350\) 0 0
\(351\) −16.0000 −0.854017
\(352\) 0 0
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) −18.0000 −0.955341
\(356\) 0 0
\(357\) 6.00000 0.317554
\(358\) 0 0
\(359\) 15.0000 0.791670 0.395835 0.918322i \(-0.370455\pi\)
0.395835 + 0.918322i \(0.370455\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −4.00000 −0.209946
\(364\) 0 0
\(365\) 21.0000 1.09919
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 12.0000 0.623009
\(372\) 0 0
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) 6.00000 0.309839
\(376\) 0 0
\(377\) −24.0000 −1.23606
\(378\) 0 0
\(379\) 34.0000 1.74646 0.873231 0.487306i \(-0.162020\pi\)
0.873231 + 0.487306i \(0.162020\pi\)
\(380\) 0 0
\(381\) 4.00000 0.204926
\(382\) 0 0
\(383\) 12.0000 0.613171 0.306586 0.951843i \(-0.400813\pi\)
0.306586 + 0.951843i \(0.400813\pi\)
\(384\) 0 0
\(385\) −9.00000 −0.458682
\(386\) 0 0
\(387\) 1.00000 0.0508329
\(388\) 0 0
\(389\) −15.0000 −0.760530 −0.380265 0.924878i \(-0.624167\pi\)
−0.380265 + 0.924878i \(0.624167\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 30.0000 1.51330
\(394\) 0 0
\(395\) −24.0000 −1.20757
\(396\) 0 0
\(397\) 7.00000 0.351320 0.175660 0.984451i \(-0.443794\pi\)
0.175660 + 0.984451i \(0.443794\pi\)
\(398\) 0 0
\(399\) 2.00000 0.100125
\(400\) 0 0
\(401\) 12.0000 0.599251 0.299626 0.954057i \(-0.403138\pi\)
0.299626 + 0.954057i \(0.403138\pi\)
\(402\) 0 0
\(403\) −16.0000 −0.797017
\(404\) 0 0
\(405\) 33.0000 1.63978
\(406\) 0 0
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) −4.00000 −0.197787 −0.0988936 0.995098i \(-0.531530\pi\)
−0.0988936 + 0.995098i \(0.531530\pi\)
\(410\) 0 0
\(411\) −6.00000 −0.295958
\(412\) 0 0
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) 36.0000 1.76717
\(416\) 0 0
\(417\) 26.0000 1.27323
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −8.00000 −0.389896 −0.194948 0.980814i \(-0.562454\pi\)
−0.194948 + 0.980814i \(0.562454\pi\)
\(422\) 0 0
\(423\) −3.00000 −0.145865
\(424\) 0 0
\(425\) −12.0000 −0.582086
\(426\) 0 0
\(427\) −1.00000 −0.0483934
\(428\) 0 0
\(429\) −24.0000 −1.15873
\(430\) 0 0
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 36.0000 1.72607
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −10.0000 −0.477274 −0.238637 0.971109i \(-0.576701\pi\)
−0.238637 + 0.971109i \(0.576701\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) 3.00000 0.142534 0.0712672 0.997457i \(-0.477296\pi\)
0.0712672 + 0.997457i \(0.477296\pi\)
\(444\) 0 0
\(445\) −36.0000 −1.70656
\(446\) 0 0
\(447\) −42.0000 −1.98653
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 18.0000 0.847587
\(452\) 0 0
\(453\) −20.0000 −0.939682
\(454\) 0 0
\(455\) 12.0000 0.562569
\(456\) 0 0
\(457\) −37.0000 −1.73079 −0.865393 0.501093i \(-0.832931\pi\)
−0.865393 + 0.501093i \(0.832931\pi\)
\(458\) 0 0
\(459\) 12.0000 0.560112
\(460\) 0 0
\(461\) −9.00000 −0.419172 −0.209586 0.977790i \(-0.567212\pi\)
−0.209586 + 0.977790i \(0.567212\pi\)
\(462\) 0 0
\(463\) −31.0000 −1.44069 −0.720346 0.693615i \(-0.756017\pi\)
−0.720346 + 0.693615i \(0.756017\pi\)
\(464\) 0 0
\(465\) 24.0000 1.11297
\(466\) 0 0
\(467\) 27.0000 1.24941 0.624705 0.780860i \(-0.285219\pi\)
0.624705 + 0.780860i \(0.285219\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) −28.0000 −1.29017
\(472\) 0 0
\(473\) −3.00000 −0.137940
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) −12.0000 −0.549442
\(478\) 0 0
\(479\) −12.0000 −0.548294 −0.274147 0.961688i \(-0.588395\pi\)
−0.274147 + 0.961688i \(0.588395\pi\)
\(480\) 0 0
\(481\) −8.00000 −0.364769
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −24.0000 −1.08978
\(486\) 0 0
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 0 0
\(489\) −40.0000 −1.80886
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) 18.0000 0.810679
\(494\) 0 0
\(495\) 9.00000 0.404520
\(496\) 0 0
\(497\) −6.00000 −0.269137
\(498\) 0 0
\(499\) −5.00000 −0.223831 −0.111915 0.993718i \(-0.535699\pi\)
−0.111915 + 0.993718i \(0.535699\pi\)
\(500\) 0 0
\(501\) −36.0000 −1.60836
\(502\) 0 0
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) 0 0
\(507\) 6.00000 0.266469
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 7.00000 0.309662
\(512\) 0 0
\(513\) 4.00000 0.176604
\(514\) 0 0
\(515\) −42.0000 −1.85074
\(516\) 0 0
\(517\) 9.00000 0.395820
\(518\) 0 0
\(519\) 36.0000 1.58022
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −38.0000 −1.66162 −0.830812 0.556553i \(-0.812124\pi\)
−0.830812 + 0.556553i \(0.812124\pi\)
\(524\) 0 0
\(525\) −8.00000 −0.349149
\(526\) 0 0
\(527\) 12.0000 0.522728
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 6.00000 0.260378
\(532\) 0 0
\(533\) −24.0000 −1.03956
\(534\) 0 0
\(535\) −54.0000 −2.33462
\(536\) 0 0
\(537\) 36.0000 1.55351
\(538\) 0 0
\(539\) 18.0000 0.775315
\(540\) 0 0
\(541\) 25.0000 1.07483 0.537417 0.843317i \(-0.319400\pi\)
0.537417 + 0.843317i \(0.319400\pi\)
\(542\) 0 0
\(543\) −4.00000 −0.171656
\(544\) 0 0
\(545\) −48.0000 −2.05609
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 0 0
\(549\) 1.00000 0.0426790
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) −8.00000 −0.340195
\(554\) 0 0
\(555\) 12.0000 0.509372
\(556\) 0 0
\(557\) −21.0000 −0.889799 −0.444899 0.895581i \(-0.646761\pi\)
−0.444899 + 0.895581i \(0.646761\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 18.0000 0.759961
\(562\) 0 0
\(563\) −6.00000 −0.252870 −0.126435 0.991975i \(-0.540353\pi\)
−0.126435 + 0.991975i \(0.540353\pi\)
\(564\) 0 0
\(565\) −18.0000 −0.757266
\(566\) 0 0
\(567\) 11.0000 0.461957
\(568\) 0 0
\(569\) −24.0000 −1.00613 −0.503066 0.864248i \(-0.667795\pi\)
−0.503066 + 0.864248i \(0.667795\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 0 0
\(573\) 6.00000 0.250654
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 11.0000 0.457936 0.228968 0.973434i \(-0.426465\pi\)
0.228968 + 0.973434i \(0.426465\pi\)
\(578\) 0 0
\(579\) −8.00000 −0.332469
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) 36.0000 1.49097
\(584\) 0 0
\(585\) −12.0000 −0.496139
\(586\) 0 0
\(587\) −45.0000 −1.85735 −0.928674 0.370896i \(-0.879051\pi\)
−0.928674 + 0.370896i \(0.879051\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) −36.0000 −1.48084
\(592\) 0 0
\(593\) −42.0000 −1.72473 −0.862367 0.506284i \(-0.831019\pi\)
−0.862367 + 0.506284i \(0.831019\pi\)
\(594\) 0 0
\(595\) −9.00000 −0.368964
\(596\) 0 0
\(597\) 22.0000 0.900400
\(598\) 0 0
\(599\) −36.0000 −1.47092 −0.735460 0.677568i \(-0.763034\pi\)
−0.735460 + 0.677568i \(0.763034\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 0 0
\(605\) 6.00000 0.243935
\(606\) 0 0
\(607\) 32.0000 1.29884 0.649420 0.760430i \(-0.275012\pi\)
0.649420 + 0.760430i \(0.275012\pi\)
\(608\) 0 0
\(609\) 12.0000 0.486265
\(610\) 0 0
\(611\) −12.0000 −0.485468
\(612\) 0 0
\(613\) −29.0000 −1.17130 −0.585649 0.810564i \(-0.699160\pi\)
−0.585649 + 0.810564i \(0.699160\pi\)
\(614\) 0 0
\(615\) 36.0000 1.45166
\(616\) 0 0
\(617\) 9.00000 0.362326 0.181163 0.983453i \(-0.442014\pi\)
0.181163 + 0.983453i \(0.442014\pi\)
\(618\) 0 0
\(619\) −44.0000 −1.76851 −0.884255 0.467005i \(-0.845333\pi\)
−0.884255 + 0.467005i \(0.845333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 6.00000 0.239617
\(628\) 0 0
\(629\) 6.00000 0.239236
\(630\) 0 0
\(631\) 11.0000 0.437903 0.218952 0.975736i \(-0.429736\pi\)
0.218952 + 0.975736i \(0.429736\pi\)
\(632\) 0 0
\(633\) −28.0000 −1.11290
\(634\) 0 0
\(635\) −6.00000 −0.238103
\(636\) 0 0
\(637\) −24.0000 −0.950915
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 13.0000 0.512670 0.256335 0.966588i \(-0.417485\pi\)
0.256335 + 0.966588i \(0.417485\pi\)
\(644\) 0 0
\(645\) −6.00000 −0.236250
\(646\) 0 0
\(647\) 27.0000 1.06148 0.530740 0.847535i \(-0.321914\pi\)
0.530740 + 0.847535i \(0.321914\pi\)
\(648\) 0 0
\(649\) −18.0000 −0.706562
\(650\) 0 0
\(651\) 8.00000 0.313545
\(652\) 0 0
\(653\) 39.0000 1.52619 0.763094 0.646288i \(-0.223679\pi\)
0.763094 + 0.646288i \(0.223679\pi\)
\(654\) 0 0
\(655\) −45.0000 −1.75830
\(656\) 0 0
\(657\) −7.00000 −0.273096
\(658\) 0 0
\(659\) 30.0000 1.16863 0.584317 0.811525i \(-0.301362\pi\)
0.584317 + 0.811525i \(0.301362\pi\)
\(660\) 0 0
\(661\) −32.0000 −1.24466 −0.622328 0.782757i \(-0.713813\pi\)
−0.622328 + 0.782757i \(0.713813\pi\)
\(662\) 0 0
\(663\) −24.0000 −0.932083
\(664\) 0 0
\(665\) −3.00000 −0.116335
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −20.0000 −0.773245
\(670\) 0 0
\(671\) −3.00000 −0.115814
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 0 0
\(675\) −16.0000 −0.615840
\(676\) 0 0
\(677\) 42.0000 1.61419 0.807096 0.590421i \(-0.201038\pi\)
0.807096 + 0.590421i \(0.201038\pi\)
\(678\) 0 0
\(679\) −8.00000 −0.307012
\(680\) 0 0
\(681\) −24.0000 −0.919682
\(682\) 0 0
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 0 0
\(685\) 9.00000 0.343872
\(686\) 0 0
\(687\) −10.0000 −0.381524
\(688\) 0 0
\(689\) −48.0000 −1.82865
\(690\) 0 0
\(691\) −17.0000 −0.646710 −0.323355 0.946278i \(-0.604811\pi\)
−0.323355 + 0.946278i \(0.604811\pi\)
\(692\) 0 0
\(693\) 3.00000 0.113961
\(694\) 0 0
\(695\) −39.0000 −1.47935
\(696\) 0 0
\(697\) 18.0000 0.681799
\(698\) 0 0
\(699\) −42.0000 −1.58859
\(700\) 0 0
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) 0 0
\(703\) 2.00000 0.0754314
\(704\) 0 0
\(705\) 18.0000 0.677919
\(706\) 0 0
\(707\) 6.00000 0.225653
\(708\) 0 0
\(709\) −26.0000 −0.976450 −0.488225 0.872718i \(-0.662356\pi\)
−0.488225 + 0.872718i \(0.662356\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 36.0000 1.34632
\(716\) 0 0
\(717\) 30.0000 1.12037
\(718\) 0 0
\(719\) 15.0000 0.559406 0.279703 0.960087i \(-0.409764\pi\)
0.279703 + 0.960087i \(0.409764\pi\)
\(720\) 0 0
\(721\) −14.0000 −0.521387
\(722\) 0 0
\(723\) −20.0000 −0.743808
\(724\) 0 0
\(725\) −24.0000 −0.891338
\(726\) 0 0
\(727\) −19.0000 −0.704671 −0.352335 0.935874i \(-0.614612\pi\)
−0.352335 + 0.935874i \(0.614612\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −3.00000 −0.110959
\(732\) 0 0
\(733\) 22.0000 0.812589 0.406294 0.913742i \(-0.366821\pi\)
0.406294 + 0.913742i \(0.366821\pi\)
\(734\) 0 0
\(735\) 36.0000 1.32788
\(736\) 0 0
\(737\) −12.0000 −0.442026
\(738\) 0 0
\(739\) −11.0000 −0.404642 −0.202321 0.979319i \(-0.564848\pi\)
−0.202321 + 0.979319i \(0.564848\pi\)
\(740\) 0 0
\(741\) −8.00000 −0.293887
\(742\) 0 0
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) 63.0000 2.30814
\(746\) 0 0
\(747\) −12.0000 −0.439057
\(748\) 0 0
\(749\) −18.0000 −0.657706
\(750\) 0 0
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) 0 0
\(753\) −42.0000 −1.53057
\(754\) 0 0
\(755\) 30.0000 1.09181
\(756\) 0 0
\(757\) 25.0000 0.908640 0.454320 0.890838i \(-0.349882\pi\)
0.454320 + 0.890838i \(0.349882\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 33.0000 1.19625 0.598125 0.801403i \(-0.295913\pi\)
0.598125 + 0.801403i \(0.295913\pi\)
\(762\) 0 0
\(763\) −16.0000 −0.579239
\(764\) 0 0
\(765\) 9.00000 0.325396
\(766\) 0 0
\(767\) 24.0000 0.866590
\(768\) 0 0
\(769\) 23.0000 0.829401 0.414701 0.909958i \(-0.363886\pi\)
0.414701 + 0.909958i \(0.363886\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 0 0
\(775\) −16.0000 −0.574737
\(776\) 0 0
\(777\) 4.00000 0.143499
\(778\) 0 0
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) −18.0000 −0.644091
\(782\) 0 0
\(783\) 24.0000 0.857690
\(784\) 0 0
\(785\) 42.0000 1.49904
\(786\) 0 0
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) 0 0
\(789\) 18.0000 0.640817
\(790\) 0 0
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) 4.00000 0.142044
\(794\) 0 0
\(795\) 72.0000 2.55358
\(796\) 0 0
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) 9.00000 0.318397
\(800\) 0 0
\(801\) 12.0000 0.423999
\(802\) 0 0
\(803\) 21.0000 0.741074
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −48.0000 −1.68968
\(808\) 0 0
\(809\) −9.00000 −0.316423 −0.158212 0.987405i \(-0.550573\pi\)
−0.158212 + 0.987405i \(0.550573\pi\)
\(810\) 0 0
\(811\) 16.0000 0.561836 0.280918 0.959732i \(-0.409361\pi\)
0.280918 + 0.959732i \(0.409361\pi\)
\(812\) 0 0
\(813\) −32.0000 −1.12229
\(814\) 0 0
\(815\) 60.0000 2.10171
\(816\) 0 0
\(817\) −1.00000 −0.0349856
\(818\) 0 0
\(819\) −4.00000 −0.139771
\(820\) 0 0
\(821\) −33.0000 −1.15171 −0.575854 0.817553i \(-0.695330\pi\)
−0.575854 + 0.817553i \(0.695330\pi\)
\(822\) 0 0
\(823\) −49.0000 −1.70803 −0.854016 0.520246i \(-0.825840\pi\)
−0.854016 + 0.520246i \(0.825840\pi\)
\(824\) 0 0
\(825\) −24.0000 −0.835573
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) 16.0000 0.555703 0.277851 0.960624i \(-0.410378\pi\)
0.277851 + 0.960624i \(0.410378\pi\)
\(830\) 0 0
\(831\) 38.0000 1.31821
\(832\) 0 0
\(833\) 18.0000 0.623663
\(834\) 0 0
\(835\) 54.0000 1.86875
\(836\) 0 0
\(837\) 16.0000 0.553041
\(838\) 0 0
\(839\) 18.0000 0.621429 0.310715 0.950503i \(-0.399432\pi\)
0.310715 + 0.950503i \(0.399432\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 12.0000 0.413302
\(844\) 0 0
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) 2.00000 0.0687208
\(848\) 0 0
\(849\) 26.0000 0.892318
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 0 0
\(855\) 3.00000 0.102598
\(856\) 0 0
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) 0 0
\(859\) 49.0000 1.67186 0.835929 0.548837i \(-0.184929\pi\)
0.835929 + 0.548837i \(0.184929\pi\)
\(860\) 0 0
\(861\) 12.0000 0.408959
\(862\) 0 0
\(863\) 18.0000 0.612727 0.306364 0.951915i \(-0.400888\pi\)
0.306364 + 0.951915i \(0.400888\pi\)
\(864\) 0 0
\(865\) −54.0000 −1.83606
\(866\) 0 0
\(867\) −16.0000 −0.543388
\(868\) 0 0
\(869\) −24.0000 −0.814144
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) 0 0
\(873\) 8.00000 0.270759
\(874\) 0 0
\(875\) −3.00000 −0.101419
\(876\) 0 0
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) 0 0
\(879\) 24.0000 0.809500
\(880\) 0 0
\(881\) −27.0000 −0.909653 −0.454827 0.890580i \(-0.650299\pi\)
−0.454827 + 0.890580i \(0.650299\pi\)
\(882\) 0 0
\(883\) −47.0000 −1.58168 −0.790838 0.612026i \(-0.790355\pi\)
−0.790838 + 0.612026i \(0.790355\pi\)
\(884\) 0 0
\(885\) −36.0000 −1.21013
\(886\) 0 0
\(887\) 18.0000 0.604381 0.302190 0.953248i \(-0.402282\pi\)
0.302190 + 0.953248i \(0.402282\pi\)
\(888\) 0 0
\(889\) −2.00000 −0.0670778
\(890\) 0 0
\(891\) 33.0000 1.10554
\(892\) 0 0
\(893\) 3.00000 0.100391
\(894\) 0 0
\(895\) −54.0000 −1.80502
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) 36.0000 1.19933
\(902\) 0 0
\(903\) −2.00000 −0.0665558
\(904\) 0 0
\(905\) 6.00000 0.199447
\(906\) 0 0
\(907\) −8.00000 −0.265636 −0.132818 0.991140i \(-0.542403\pi\)
−0.132818 + 0.991140i \(0.542403\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) −6.00000 −0.198789 −0.0993944 0.995048i \(-0.531691\pi\)
−0.0993944 + 0.995048i \(0.531691\pi\)
\(912\) 0 0
\(913\) 36.0000 1.19143
\(914\) 0 0
\(915\) −6.00000 −0.198354
\(916\) 0 0
\(917\) −15.0000 −0.495344
\(918\) 0 0
\(919\) 20.0000 0.659739 0.329870 0.944027i \(-0.392995\pi\)
0.329870 + 0.944027i \(0.392995\pi\)
\(920\) 0 0
\(921\) −40.0000 −1.31804
\(922\) 0 0
\(923\) 24.0000 0.789970
\(924\) 0 0
\(925\) −8.00000 −0.263038
\(926\) 0 0
\(927\) 14.0000 0.459820
\(928\) 0 0
\(929\) −18.0000 −0.590561 −0.295280 0.955411i \(-0.595413\pi\)
−0.295280 + 0.955411i \(0.595413\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) 0 0
\(933\) −6.00000 −0.196431
\(934\) 0 0
\(935\) −27.0000 −0.882994
\(936\) 0 0
\(937\) −7.00000 −0.228680 −0.114340 0.993442i \(-0.536475\pi\)
−0.114340 + 0.993442i \(0.536475\pi\)
\(938\) 0 0
\(939\) −20.0000 −0.652675
\(940\) 0 0
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −12.0000 −0.390360
\(946\) 0 0
\(947\) 36.0000 1.16984 0.584921 0.811090i \(-0.301125\pi\)
0.584921 + 0.811090i \(0.301125\pi\)
\(948\) 0 0
\(949\) −28.0000 −0.908918
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) 0 0
\(953\) −48.0000 −1.55487 −0.777436 0.628962i \(-0.783480\pi\)
−0.777436 + 0.628962i \(0.783480\pi\)
\(954\) 0 0
\(955\) −9.00000 −0.291233
\(956\) 0 0
\(957\) 36.0000 1.16371
\(958\) 0 0
\(959\) 3.00000 0.0968751
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 18.0000 0.580042
\(964\) 0 0
\(965\) 12.0000 0.386294
\(966\) 0 0
\(967\) −40.0000 −1.28631 −0.643157 0.765735i \(-0.722376\pi\)
−0.643157 + 0.765735i \(0.722376\pi\)
\(968\) 0 0
\(969\) 6.00000 0.192748
\(970\) 0 0
\(971\) −60.0000 −1.92549 −0.962746 0.270408i \(-0.912841\pi\)
−0.962746 + 0.270408i \(0.912841\pi\)
\(972\) 0 0
\(973\) −13.0000 −0.416761
\(974\) 0 0
\(975\) 32.0000 1.02482
\(976\) 0 0
\(977\) 24.0000 0.767828 0.383914 0.923369i \(-0.374576\pi\)
0.383914 + 0.923369i \(0.374576\pi\)
\(978\) 0 0
\(979\) −36.0000 −1.15056
\(980\) 0 0
\(981\) 16.0000 0.510841
\(982\) 0 0
\(983\) −36.0000 −1.14822 −0.574111 0.818778i \(-0.694652\pi\)
−0.574111 + 0.818778i \(0.694652\pi\)
\(984\) 0 0
\(985\) 54.0000 1.72058
\(986\) 0 0
\(987\) 6.00000 0.190982
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −34.0000 −1.08005 −0.540023 0.841650i \(-0.681584\pi\)
−0.540023 + 0.841650i \(0.681584\pi\)
\(992\) 0 0
\(993\) 56.0000 1.77711
\(994\) 0 0
\(995\) −33.0000 −1.04617
\(996\) 0 0
\(997\) −17.0000 −0.538395 −0.269198 0.963085i \(-0.586759\pi\)
−0.269198 + 0.963085i \(0.586759\pi\)
\(998\) 0 0
\(999\) 8.00000 0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.2.a.o.1.1 1
4.3 odd 2 1216.2.a.b.1.1 1
8.3 odd 2 304.2.a.f.1.1 1
8.5 even 2 19.2.a.a.1.1 1
24.5 odd 2 171.2.a.b.1.1 1
24.11 even 2 2736.2.a.c.1.1 1
40.13 odd 4 475.2.b.a.324.1 2
40.19 odd 2 7600.2.a.c.1.1 1
40.29 even 2 475.2.a.b.1.1 1
40.37 odd 4 475.2.b.a.324.2 2
56.5 odd 6 931.2.f.b.704.1 2
56.13 odd 2 931.2.a.a.1.1 1
56.37 even 6 931.2.f.c.704.1 2
56.45 odd 6 931.2.f.b.324.1 2
56.53 even 6 931.2.f.c.324.1 2
88.21 odd 2 2299.2.a.b.1.1 1
104.77 even 2 3211.2.a.a.1.1 1
120.29 odd 2 4275.2.a.i.1.1 1
136.101 even 2 5491.2.a.b.1.1 1
152.5 even 18 361.2.e.d.234.1 6
152.13 odd 18 361.2.e.e.245.1 6
152.21 odd 18 361.2.e.e.99.1 6
152.29 odd 18 361.2.e.e.62.1 6
152.37 odd 2 361.2.a.b.1.1 1
152.45 even 6 361.2.c.c.68.1 2
152.53 odd 18 361.2.e.e.54.1 6
152.61 even 18 361.2.e.d.54.1 6
152.69 odd 6 361.2.c.a.68.1 2
152.75 even 2 5776.2.a.c.1.1 1
152.85 even 18 361.2.e.d.62.1 6
152.93 even 18 361.2.e.d.99.1 6
152.101 even 18 361.2.e.d.245.1 6
152.109 odd 18 361.2.e.e.234.1 6
152.117 odd 18 361.2.e.e.28.1 6
152.125 even 6 361.2.c.c.292.1 2
152.141 odd 6 361.2.c.a.292.1 2
152.149 even 18 361.2.e.d.28.1 6
168.125 even 2 8379.2.a.j.1.1 1
456.341 even 2 3249.2.a.d.1.1 1
760.189 odd 2 9025.2.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.2.a.a.1.1 1 8.5 even 2
171.2.a.b.1.1 1 24.5 odd 2
304.2.a.f.1.1 1 8.3 odd 2
361.2.a.b.1.1 1 152.37 odd 2
361.2.c.a.68.1 2 152.69 odd 6
361.2.c.a.292.1 2 152.141 odd 6
361.2.c.c.68.1 2 152.45 even 6
361.2.c.c.292.1 2 152.125 even 6
361.2.e.d.28.1 6 152.149 even 18
361.2.e.d.54.1 6 152.61 even 18
361.2.e.d.62.1 6 152.85 even 18
361.2.e.d.99.1 6 152.93 even 18
361.2.e.d.234.1 6 152.5 even 18
361.2.e.d.245.1 6 152.101 even 18
361.2.e.e.28.1 6 152.117 odd 18
361.2.e.e.54.1 6 152.53 odd 18
361.2.e.e.62.1 6 152.29 odd 18
361.2.e.e.99.1 6 152.21 odd 18
361.2.e.e.234.1 6 152.109 odd 18
361.2.e.e.245.1 6 152.13 odd 18
475.2.a.b.1.1 1 40.29 even 2
475.2.b.a.324.1 2 40.13 odd 4
475.2.b.a.324.2 2 40.37 odd 4
931.2.a.a.1.1 1 56.13 odd 2
931.2.f.b.324.1 2 56.45 odd 6
931.2.f.b.704.1 2 56.5 odd 6
931.2.f.c.324.1 2 56.53 even 6
931.2.f.c.704.1 2 56.37 even 6
1216.2.a.b.1.1 1 4.3 odd 2
1216.2.a.o.1.1 1 1.1 even 1 trivial
2299.2.a.b.1.1 1 88.21 odd 2
2736.2.a.c.1.1 1 24.11 even 2
3211.2.a.a.1.1 1 104.77 even 2
3249.2.a.d.1.1 1 456.341 even 2
4275.2.a.i.1.1 1 120.29 odd 2
5491.2.a.b.1.1 1 136.101 even 2
5776.2.a.c.1.1 1 152.75 even 2
7600.2.a.c.1.1 1 40.19 odd 2
8379.2.a.j.1.1 1 168.125 even 2
9025.2.a.d.1.1 1 760.189 odd 2