Properties

Label 1216.2.c.b
Level 12161216
Weight 22
Character orbit 1216.c
Analytic conductor 9.7109.710
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(609,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.609");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1216=2619 1216 = 2^{6} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1216.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.709808885799.70980888579
Analytic rank: 11
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3iq34iq5q76q9+5iq13+12q155q17+iq193iq21+3q2311q259iq277iq2910q31+4iq352iq3715q39+12q97+O(q100) q + 3 i q^{3} - 4 i q^{5} - q^{7} - 6 q^{9} + 5 i q^{13} + 12 q^{15} - 5 q^{17} + i q^{19} - 3 i q^{21} + 3 q^{23} - 11 q^{25} - 9 i q^{27} - 7 i q^{29} - 10 q^{31} + 4 i q^{35} - 2 i q^{37} - 15 q^{39} + \cdots - 12 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q712q9+24q1510q17+6q2322q2520q3130q3912q4116q4712q496q57+12q63+40q65+24q71+22q7332q79+24q97+O(q100) 2 q - 2 q^{7} - 12 q^{9} + 24 q^{15} - 10 q^{17} + 6 q^{23} - 22 q^{25} - 20 q^{31} - 30 q^{39} - 12 q^{41} - 16 q^{47} - 12 q^{49} - 6 q^{57} + 12 q^{63} + 40 q^{65} + 24 q^{71} + 22 q^{73} - 32 q^{79}+ \cdots - 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1216Z)×\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times.

nn 191191 705705 837837
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
609.1
1.00000i
1.00000i
0 3.00000i 0 4.00000i 0 −1.00000 0 −6.00000 0
609.2 0 3.00000i 0 4.00000i 0 −1.00000 0 −6.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.2.c.b 2
4.b odd 2 1 1216.2.c.c yes 2
8.b even 2 1 inner 1216.2.c.b 2
8.d odd 2 1 1216.2.c.c yes 2
16.e even 4 1 4864.2.a.a 1
16.e even 4 1 4864.2.a.p 1
16.f odd 4 1 4864.2.a.b 1
16.f odd 4 1 4864.2.a.o 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1216.2.c.b 2 1.a even 1 1 trivial
1216.2.c.b 2 8.b even 2 1 inner
1216.2.c.c yes 2 4.b odd 2 1
1216.2.c.c yes 2 8.d odd 2 1
4864.2.a.a 1 16.e even 4 1
4864.2.a.b 1 16.f odd 4 1
4864.2.a.o 1 16.f odd 4 1
4864.2.a.p 1 16.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1216,[χ])S_{2}^{\mathrm{new}}(1216, [\chi]):

T32+9 T_{3}^{2} + 9 Copy content Toggle raw display
T52+16 T_{5}^{2} + 16 Copy content Toggle raw display
T7+1 T_{7} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+9 T^{2} + 9 Copy content Toggle raw display
55 T2+16 T^{2} + 16 Copy content Toggle raw display
77 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+25 T^{2} + 25 Copy content Toggle raw display
1717 (T+5)2 (T + 5)^{2} Copy content Toggle raw display
1919 T2+1 T^{2} + 1 Copy content Toggle raw display
2323 (T3)2 (T - 3)^{2} Copy content Toggle raw display
2929 T2+49 T^{2} + 49 Copy content Toggle raw display
3131 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
3737 T2+4 T^{2} + 4 Copy content Toggle raw display
4141 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
4343 T2+16 T^{2} + 16 Copy content Toggle raw display
4747 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
5353 T2+81 T^{2} + 81 Copy content Toggle raw display
5959 T2+1 T^{2} + 1 Copy content Toggle raw display
6161 T2+4 T^{2} + 4 Copy content Toggle raw display
6767 T2+49 T^{2} + 49 Copy content Toggle raw display
7171 (T12)2 (T - 12)^{2} Copy content Toggle raw display
7373 (T11)2 (T - 11)^{2} Copy content Toggle raw display
7979 (T+16)2 (T + 16)^{2} Copy content Toggle raw display
8383 T2+196 T^{2} + 196 Copy content Toggle raw display
8989 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
9797 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
show more
show less