Properties

Label 1216.2.c.b
Level $1216$
Weight $2$
Character orbit 1216.c
Analytic conductor $9.710$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(609,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.609");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.70980888579\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 i q^{3} - 4 i q^{5} - q^{7} - 6 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + 3 i q^{3} - 4 i q^{5} - q^{7} - 6 q^{9} + 5 i q^{13} + 12 q^{15} - 5 q^{17} + i q^{19} - 3 i q^{21} + 3 q^{23} - 11 q^{25} - 9 i q^{27} - 7 i q^{29} - 10 q^{31} + 4 i q^{35} - 2 i q^{37} - 15 q^{39} - 6 q^{41} - 4 i q^{43} + 24 i q^{45} - 8 q^{47} - 6 q^{49} - 15 i q^{51} - 9 i q^{53} - 3 q^{57} + i q^{59} + 2 i q^{61} + 6 q^{63} + 20 q^{65} + 7 i q^{67} + 9 i q^{69} + 12 q^{71} + 11 q^{73} - 33 i q^{75} - 16 q^{79} + 9 q^{81} + 14 i q^{83} + 20 i q^{85} + 21 q^{87} - 4 q^{89} - 5 i q^{91} - 30 i q^{93} + 4 q^{95} - 12 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{7} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{7} - 12 q^{9} + 24 q^{15} - 10 q^{17} + 6 q^{23} - 22 q^{25} - 20 q^{31} - 30 q^{39} - 12 q^{41} - 16 q^{47} - 12 q^{49} - 6 q^{57} + 12 q^{63} + 40 q^{65} + 24 q^{71} + 22 q^{73} - 32 q^{79} + 18 q^{81} + 42 q^{87} - 8 q^{89} + 8 q^{95} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
609.1
1.00000i
1.00000i
0 3.00000i 0 4.00000i 0 −1.00000 0 −6.00000 0
609.2 0 3.00000i 0 4.00000i 0 −1.00000 0 −6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.2.c.b 2
4.b odd 2 1 1216.2.c.c yes 2
8.b even 2 1 inner 1216.2.c.b 2
8.d odd 2 1 1216.2.c.c yes 2
16.e even 4 1 4864.2.a.a 1
16.e even 4 1 4864.2.a.p 1
16.f odd 4 1 4864.2.a.b 1
16.f odd 4 1 4864.2.a.o 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1216.2.c.b 2 1.a even 1 1 trivial
1216.2.c.b 2 8.b even 2 1 inner
1216.2.c.c yes 2 4.b odd 2 1
1216.2.c.c yes 2 8.d odd 2 1
4864.2.a.a 1 16.e even 4 1
4864.2.a.b 1 16.f odd 4 1
4864.2.a.o 1 16.f odd 4 1
4864.2.a.p 1 16.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1216, [\chi])\):

\( T_{3}^{2} + 9 \) Copy content Toggle raw display
\( T_{5}^{2} + 16 \) Copy content Toggle raw display
\( T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 9 \) Copy content Toggle raw display
$5$ \( T^{2} + 16 \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 25 \) Copy content Toggle raw display
$17$ \( (T + 5)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 1 \) Copy content Toggle raw display
$23$ \( (T - 3)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 49 \) Copy content Toggle raw display
$31$ \( (T + 10)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( (T + 8)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 81 \) Copy content Toggle raw display
$59$ \( T^{2} + 1 \) Copy content Toggle raw display
$61$ \( T^{2} + 4 \) Copy content Toggle raw display
$67$ \( T^{2} + 49 \) Copy content Toggle raw display
$71$ \( (T - 12)^{2} \) Copy content Toggle raw display
$73$ \( (T - 11)^{2} \) Copy content Toggle raw display
$79$ \( (T + 16)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 196 \) Copy content Toggle raw display
$89$ \( (T + 4)^{2} \) Copy content Toggle raw display
$97$ \( (T + 12)^{2} \) Copy content Toggle raw display
show more
show less