Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1216,2,Mod(303,1216)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1216, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1216.303");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1216 = 2^{6} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1216.m (of order \(4\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.70980888579\) |
Analytic rank: | \(0\) |
Dimension: | \(76\) |
Relative dimension: | \(38\) over \(\Q(i)\) |
Twist minimal: | no (minimal twist has level 304) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
303.1 | 0 | −2.33030 | − | 2.33030i | 0 | 1.33252 | − | 1.33252i | 0 | −2.39899 | 0 | 7.86060i | 0 | ||||||||||||||
303.2 | 0 | −2.19409 | − | 2.19409i | 0 | −1.29836 | + | 1.29836i | 0 | 4.71096 | 0 | 6.62806i | 0 | ||||||||||||||
303.3 | 0 | −2.03444 | − | 2.03444i | 0 | 2.23466 | − | 2.23466i | 0 | 0.725567 | 0 | 5.27790i | 0 | ||||||||||||||
303.4 | 0 | −1.96469 | − | 1.96469i | 0 | −0.884107 | + | 0.884107i | 0 | 0.721104 | 0 | 4.72004i | 0 | ||||||||||||||
303.5 | 0 | −1.96187 | − | 1.96187i | 0 | −3.06749 | + | 3.06749i | 0 | −1.97168 | 0 | 4.69788i | 0 | ||||||||||||||
303.6 | 0 | −1.65943 | − | 1.65943i | 0 | −0.668279 | + | 0.668279i | 0 | −1.43332 | 0 | 2.50744i | 0 | ||||||||||||||
303.7 | 0 | −1.63122 | − | 1.63122i | 0 | 0.837183 | − | 0.837183i | 0 | −1.95985 | 0 | 2.32176i | 0 | ||||||||||||||
303.8 | 0 | −1.42780 | − | 1.42780i | 0 | 0.391081 | − | 0.391081i | 0 | 3.36082 | 0 | 1.07723i | 0 | ||||||||||||||
303.9 | 0 | −1.34292 | − | 1.34292i | 0 | 2.53450 | − | 2.53450i | 0 | 2.70706 | 0 | 0.606865i | 0 | ||||||||||||||
303.10 | 0 | −1.08919 | − | 1.08919i | 0 | −0.770023 | + | 0.770023i | 0 | −1.47744 | 0 | − | 0.627346i | 0 | |||||||||||||
303.11 | 0 | −1.07779 | − | 1.07779i | 0 | −1.37400 | + | 1.37400i | 0 | 4.00321 | 0 | − | 0.676721i | 0 | |||||||||||||
303.12 | 0 | −1.03801 | − | 1.03801i | 0 | 2.13321 | − | 2.13321i | 0 | −3.87204 | 0 | − | 0.845075i | 0 | |||||||||||||
303.13 | 0 | −1.02920 | − | 1.02920i | 0 | −2.13462 | + | 2.13462i | 0 | −4.26829 | 0 | − | 0.881504i | 0 | |||||||||||||
303.14 | 0 | −0.623611 | − | 0.623611i | 0 | 2.23509 | − | 2.23509i | 0 | 0.609161 | 0 | − | 2.22222i | 0 | |||||||||||||
303.15 | 0 | −0.599104 | − | 0.599104i | 0 | −1.69205 | + | 1.69205i | 0 | 1.26000 | 0 | − | 2.28215i | 0 | |||||||||||||
303.16 | 0 | −0.549728 | − | 0.549728i | 0 | 1.49999 | − | 1.49999i | 0 | 3.48044 | 0 | − | 2.39560i | 0 | |||||||||||||
303.17 | 0 | −0.308215 | − | 0.308215i | 0 | 0.114298 | − | 0.114298i | 0 | −4.05189 | 0 | − | 2.81001i | 0 | |||||||||||||
303.18 | 0 | −0.105438 | − | 0.105438i | 0 | 0.199404 | − | 0.199404i | 0 | −0.290770 | 0 | − | 2.97777i | 0 | |||||||||||||
303.19 | 0 | −0.101486 | − | 0.101486i | 0 | −2.62302 | + | 2.62302i | 0 | 2.14594 | 0 | − | 2.97940i | 0 | |||||||||||||
303.20 | 0 | 0.101486 | + | 0.101486i | 0 | −2.62302 | + | 2.62302i | 0 | 2.14594 | 0 | − | 2.97940i | 0 | |||||||||||||
See all 76 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
16.f | odd | 4 | 1 | inner |
19.b | odd | 2 | 1 | inner |
304.m | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1216.2.m.a | 76 | |
4.b | odd | 2 | 1 | 304.2.m.a | ✓ | 76 | |
16.e | even | 4 | 1 | 304.2.m.a | ✓ | 76 | |
16.f | odd | 4 | 1 | inner | 1216.2.m.a | 76 | |
19.b | odd | 2 | 1 | inner | 1216.2.m.a | 76 | |
76.d | even | 2 | 1 | 304.2.m.a | ✓ | 76 | |
304.j | odd | 4 | 1 | 304.2.m.a | ✓ | 76 | |
304.m | even | 4 | 1 | inner | 1216.2.m.a | 76 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
304.2.m.a | ✓ | 76 | 4.b | odd | 2 | 1 | |
304.2.m.a | ✓ | 76 | 16.e | even | 4 | 1 | |
304.2.m.a | ✓ | 76 | 76.d | even | 2 | 1 | |
304.2.m.a | ✓ | 76 | 304.j | odd | 4 | 1 | |
1216.2.m.a | 76 | 1.a | even | 1 | 1 | trivial | |
1216.2.m.a | 76 | 16.f | odd | 4 | 1 | inner | |
1216.2.m.a | 76 | 19.b | odd | 2 | 1 | inner | |
1216.2.m.a | 76 | 304.m | even | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(1216, [\chi])\).