Properties

Label 1216.2.n.b
Level $1216$
Weight $2$
Character orbit 1216.n
Analytic conductor $9.710$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(255,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.255");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 304)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} + 1) q^{3} + ( - 3 \zeta_{6} + 3) q^{5} + ( - 4 \zeta_{6} + 2) q^{7} + 2 \zeta_{6} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{6} + 1) q^{3} + ( - 3 \zeta_{6} + 3) q^{5} + ( - 4 \zeta_{6} + 2) q^{7} + 2 \zeta_{6} q^{9} + ( - 4 \zeta_{6} + 2) q^{11} + ( - 3 \zeta_{6} + 6) q^{13} - 3 \zeta_{6} q^{15} + (3 \zeta_{6} - 3) q^{17} + (2 \zeta_{6} + 3) q^{19} + ( - 2 \zeta_{6} - 2) q^{21} + (3 \zeta_{6} - 6) q^{23} - 4 \zeta_{6} q^{25} + 5 q^{27} + (5 \zeta_{6} - 10) q^{29} + 4 q^{31} + ( - 2 \zeta_{6} - 2) q^{33} + ( - 6 \zeta_{6} - 6) q^{35} + ( - 6 \zeta_{6} + 3) q^{39} + (5 \zeta_{6} + 5) q^{41} + ( - 7 \zeta_{6} - 7) q^{43} + 6 q^{45} + ( - \zeta_{6} + 2) q^{47} - 5 q^{49} + 3 \zeta_{6} q^{51} + (\zeta_{6} - 2) q^{53} + ( - 6 \zeta_{6} - 6) q^{55} + ( - 3 \zeta_{6} + 5) q^{57} + (3 \zeta_{6} - 3) q^{59} + 7 \zeta_{6} q^{61} + ( - 4 \zeta_{6} + 8) q^{63} + ( - 18 \zeta_{6} + 9) q^{65} - 5 \zeta_{6} q^{67} + (6 \zeta_{6} - 3) q^{69} + (9 \zeta_{6} - 9) q^{71} + (7 \zeta_{6} - 7) q^{73} - 4 q^{75} - 12 q^{77} + ( - 7 \zeta_{6} + 7) q^{79} + (\zeta_{6} - 1) q^{81} + (4 \zeta_{6} - 2) q^{83} + 9 \zeta_{6} q^{85} + (10 \zeta_{6} - 5) q^{87} + ( - 5 \zeta_{6} + 10) q^{89} - 18 \zeta_{6} q^{91} + ( - 4 \zeta_{6} + 4) q^{93} + ( - 9 \zeta_{6} + 15) q^{95} + (5 \zeta_{6} + 5) q^{97} + ( - 4 \zeta_{6} + 8) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + 3 q^{5} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{3} + 3 q^{5} + 2 q^{9} + 9 q^{13} - 3 q^{15} - 3 q^{17} + 8 q^{19} - 6 q^{21} - 9 q^{23} - 4 q^{25} + 10 q^{27} - 15 q^{29} + 8 q^{31} - 6 q^{33} - 18 q^{35} + 15 q^{41} - 21 q^{43} + 12 q^{45} + 3 q^{47} - 10 q^{49} + 3 q^{51} - 3 q^{53} - 18 q^{55} + 7 q^{57} - 3 q^{59} + 7 q^{61} + 12 q^{63} - 5 q^{67} - 9 q^{71} - 7 q^{73} - 8 q^{75} - 24 q^{77} + 7 q^{79} - q^{81} + 9 q^{85} + 15 q^{89} - 18 q^{91} + 4 q^{93} + 21 q^{95} + 15 q^{97} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(-1\) \(\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
255.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0.500000 0.866025i 0 1.50000 2.59808i 0 3.46410i 0 1.00000 + 1.73205i 0
639.1 0 0.500000 + 0.866025i 0 1.50000 + 2.59808i 0 3.46410i 0 1.00000 1.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
76.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.2.n.b 2
4.b odd 2 1 1216.2.n.a 2
8.b even 2 1 304.2.n.a 2
8.d odd 2 1 304.2.n.b yes 2
19.d odd 6 1 1216.2.n.a 2
24.f even 2 1 2736.2.bm.h 2
24.h odd 2 1 2736.2.bm.g 2
76.f even 6 1 inner 1216.2.n.b 2
152.l odd 6 1 304.2.n.b yes 2
152.o even 6 1 304.2.n.a 2
456.s odd 6 1 2736.2.bm.g 2
456.v even 6 1 2736.2.bm.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
304.2.n.a 2 8.b even 2 1
304.2.n.a 2 152.o even 6 1
304.2.n.b yes 2 8.d odd 2 1
304.2.n.b yes 2 152.l odd 6 1
1216.2.n.a 2 4.b odd 2 1
1216.2.n.a 2 19.d odd 6 1
1216.2.n.b 2 1.a even 1 1 trivial
1216.2.n.b 2 76.f even 6 1 inner
2736.2.bm.g 2 24.h odd 2 1
2736.2.bm.g 2 456.s odd 6 1
2736.2.bm.h 2 24.f even 2 1
2736.2.bm.h 2 456.v even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(1216, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$7$ \( T^{2} + 12 \) Copy content Toggle raw display
$11$ \( T^{2} + 12 \) Copy content Toggle raw display
$13$ \( T^{2} - 9T + 27 \) Copy content Toggle raw display
$17$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} - 8T + 19 \) Copy content Toggle raw display
$23$ \( T^{2} + 9T + 27 \) Copy content Toggle raw display
$29$ \( T^{2} + 15T + 75 \) Copy content Toggle raw display
$31$ \( (T - 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 15T + 75 \) Copy content Toggle raw display
$43$ \( T^{2} + 21T + 147 \) Copy content Toggle raw display
$47$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$53$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$59$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$61$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$67$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$71$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$73$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$79$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$83$ \( T^{2} + 12 \) Copy content Toggle raw display
$89$ \( T^{2} - 15T + 75 \) Copy content Toggle raw display
$97$ \( T^{2} - 15T + 75 \) Copy content Toggle raw display
show more
show less