Properties

Label 1216.2.n.b
Level 12161216
Weight 22
Character orbit 1216.n
Analytic conductor 9.7109.710
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(255,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.255");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1216=2619 1216 = 2^{6} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1216.n (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.709808885799.70980888579
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 304)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ6+1)q3+(3ζ6+3)q5+(4ζ6+2)q7+2ζ6q9+(4ζ6+2)q11+(3ζ6+6)q133ζ6q15+(3ζ63)q17++(4ζ6+8)q99+O(q100) q + ( - \zeta_{6} + 1) q^{3} + ( - 3 \zeta_{6} + 3) q^{5} + ( - 4 \zeta_{6} + 2) q^{7} + 2 \zeta_{6} q^{9} + ( - 4 \zeta_{6} + 2) q^{11} + ( - 3 \zeta_{6} + 6) q^{13} - 3 \zeta_{6} q^{15} + (3 \zeta_{6} - 3) q^{17} + \cdots + ( - 4 \zeta_{6} + 8) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q3+3q5+2q9+9q133q153q17+8q196q219q234q25+10q2715q29+8q316q3318q35+15q4121q43+12q45++12q99+O(q100) 2 q + q^{3} + 3 q^{5} + 2 q^{9} + 9 q^{13} - 3 q^{15} - 3 q^{17} + 8 q^{19} - 6 q^{21} - 9 q^{23} - 4 q^{25} + 10 q^{27} - 15 q^{29} + 8 q^{31} - 6 q^{33} - 18 q^{35} + 15 q^{41} - 21 q^{43} + 12 q^{45}+ \cdots + 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1216Z)×\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times.

nn 191191 705705 837837
χ(n)\chi(n) 1-1 ζ6\zeta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
255.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0.500000 0.866025i 0 1.50000 2.59808i 0 3.46410i 0 1.00000 + 1.73205i 0
639.1 0 0.500000 + 0.866025i 0 1.50000 + 2.59808i 0 3.46410i 0 1.00000 1.73205i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
76.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.2.n.b 2
4.b odd 2 1 1216.2.n.a 2
8.b even 2 1 304.2.n.a 2
8.d odd 2 1 304.2.n.b yes 2
19.d odd 6 1 1216.2.n.a 2
24.f even 2 1 2736.2.bm.h 2
24.h odd 2 1 2736.2.bm.g 2
76.f even 6 1 inner 1216.2.n.b 2
152.l odd 6 1 304.2.n.b yes 2
152.o even 6 1 304.2.n.a 2
456.s odd 6 1 2736.2.bm.g 2
456.v even 6 1 2736.2.bm.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
304.2.n.a 2 8.b even 2 1
304.2.n.a 2 152.o even 6 1
304.2.n.b yes 2 8.d odd 2 1
304.2.n.b yes 2 152.l odd 6 1
1216.2.n.a 2 4.b odd 2 1
1216.2.n.a 2 19.d odd 6 1
1216.2.n.b 2 1.a even 1 1 trivial
1216.2.n.b 2 76.f even 6 1 inner
2736.2.bm.g 2 24.h odd 2 1
2736.2.bm.g 2 456.s odd 6 1
2736.2.bm.h 2 24.f even 2 1
2736.2.bm.h 2 456.v even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T32T3+1 T_{3}^{2} - T_{3} + 1 acting on S2new(1216,[χ])S_{2}^{\mathrm{new}}(1216, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
55 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
77 T2+12 T^{2} + 12 Copy content Toggle raw display
1111 T2+12 T^{2} + 12 Copy content Toggle raw display
1313 T29T+27 T^{2} - 9T + 27 Copy content Toggle raw display
1717 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
1919 T28T+19 T^{2} - 8T + 19 Copy content Toggle raw display
2323 T2+9T+27 T^{2} + 9T + 27 Copy content Toggle raw display
2929 T2+15T+75 T^{2} + 15T + 75 Copy content Toggle raw display
3131 (T4)2 (T - 4)^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T215T+75 T^{2} - 15T + 75 Copy content Toggle raw display
4343 T2+21T+147 T^{2} + 21T + 147 Copy content Toggle raw display
4747 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
5353 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
5959 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
6161 T27T+49 T^{2} - 7T + 49 Copy content Toggle raw display
6767 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
7171 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
7373 T2+7T+49 T^{2} + 7T + 49 Copy content Toggle raw display
7979 T27T+49 T^{2} - 7T + 49 Copy content Toggle raw display
8383 T2+12 T^{2} + 12 Copy content Toggle raw display
8989 T215T+75 T^{2} - 15T + 75 Copy content Toggle raw display
9797 T215T+75 T^{2} - 15T + 75 Copy content Toggle raw display
show more
show less