Properties

Label 1216.3.e.b
Level 12161216
Weight 33
Character orbit 1216.e
Self dual yes
Analytic conductor 33.13433.134
Analytic rank 00
Dimension 11
CM discriminant -19
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,3,Mod(1025,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.1025");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 1216=2619 1216 = 2^{6} \cdot 19
Weight: k k == 3 3
Character orbit: [χ][\chi] == 1216.e (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 33.133600146233.1336001462
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 19)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+9q5+5q7+9q9+3q11+15q1719q19+30q23+56q25+45q3585q43+81q4575q4724q49+27q55103q61+45q6325q73+15q77++27q99+O(q100) q + 9 q^{5} + 5 q^{7} + 9 q^{9} + 3 q^{11} + 15 q^{17} - 19 q^{19} + 30 q^{23} + 56 q^{25} + 45 q^{35} - 85 q^{43} + 81 q^{45} - 75 q^{47} - 24 q^{49} + 27 q^{55} - 103 q^{61} + 45 q^{63} - 25 q^{73} + 15 q^{77}+ \cdots + 27 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1216Z)×\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times.

nn 191191 705705 837837
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1025.1
0
0 0 0 9.00000 0 5.00000 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by Q(19)\Q(\sqrt{-19})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.3.e.b 1
4.b odd 2 1 1216.3.e.a 1
8.b even 2 1 304.3.e.a 1
8.d odd 2 1 19.3.b.a 1
19.b odd 2 1 CM 1216.3.e.b 1
24.f even 2 1 171.3.c.a 1
24.h odd 2 1 2736.3.o.a 1
40.e odd 2 1 475.3.c.a 1
40.k even 4 2 475.3.d.a 2
76.d even 2 1 1216.3.e.a 1
152.b even 2 1 19.3.b.a 1
152.g odd 2 1 304.3.e.a 1
152.k odd 6 2 361.3.d.a 2
152.o even 6 2 361.3.d.a 2
152.u odd 18 6 361.3.f.a 6
152.v even 18 6 361.3.f.a 6
456.l odd 2 1 171.3.c.a 1
456.p even 2 1 2736.3.o.a 1
760.p even 2 1 475.3.c.a 1
760.y odd 4 2 475.3.d.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
19.3.b.a 1 8.d odd 2 1
19.3.b.a 1 152.b even 2 1
171.3.c.a 1 24.f even 2 1
171.3.c.a 1 456.l odd 2 1
304.3.e.a 1 8.b even 2 1
304.3.e.a 1 152.g odd 2 1
361.3.d.a 2 152.k odd 6 2
361.3.d.a 2 152.o even 6 2
361.3.f.a 6 152.u odd 18 6
361.3.f.a 6 152.v even 18 6
475.3.c.a 1 40.e odd 2 1
475.3.c.a 1 760.p even 2 1
475.3.d.a 2 40.k even 4 2
475.3.d.a 2 760.y odd 4 2
1216.3.e.a 1 4.b odd 2 1
1216.3.e.a 1 76.d even 2 1
1216.3.e.b 1 1.a even 1 1 trivial
1216.3.e.b 1 19.b odd 2 1 CM
2736.3.o.a 1 24.h odd 2 1
2736.3.o.a 1 456.p even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(1216,[χ])S_{3}^{\mathrm{new}}(1216, [\chi]):

T3 T_{3} Copy content Toggle raw display
T59 T_{5} - 9 Copy content Toggle raw display
T75 T_{7} - 5 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T9 T - 9 Copy content Toggle raw display
77 T5 T - 5 Copy content Toggle raw display
1111 T3 T - 3 Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T15 T - 15 Copy content Toggle raw display
1919 T+19 T + 19 Copy content Toggle raw display
2323 T30 T - 30 Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T+85 T + 85 Copy content Toggle raw display
4747 T+75 T + 75 Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T+103 T + 103 Copy content Toggle raw display
6767 T T Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T+25 T + 25 Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T90 T - 90 Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less