Properties

Label 1224.1.n.c
Level 12241224
Weight 11
Character orbit 1224.n
Self dual yes
Analytic conductor 0.6110.611
Analytic rank 00
Dimension 22
Projective image D4D_{4}
CM discriminant -136
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,1,Mod(883,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.883");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1224=233217 1224 = 2^{3} \cdot 3^{2} \cdot 17
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1224.n (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.6108555754630.610855575463
Analytic rank: 00
Dimension: 22
Coefficient field: Q(2)\Q(\sqrt{2})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x22 x^{2} - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.0.9792.1
Artin image: D8D_8
Artin field: Galois closure of 8.0.14670139392.3

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2\beta = \sqrt{2}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+q2+q4βq5+βq7+q8βq10+βq14+q16q17βq20+βq23+q25+βq28+βq29βq31+q32++q98+O(q100) q + q^{2} + q^{4} - \beta q^{5} + \beta q^{7} + q^{8} - \beta q^{10} + \beta q^{14} + q^{16} - q^{17} - \beta q^{20} + \beta q^{23} + q^{25} + \beta q^{28} + \beta q^{29} - \beta q^{31} + q^{32} + \cdots + q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q2+2q4+2q8+2q162q17+2q25+2q322q344q354q43+2q49+2q50+2q642q684q704q864q89+2q98+O(q100) 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} + 2 q^{16} - 2 q^{17} + 2 q^{25} + 2 q^{32} - 2 q^{34} - 4 q^{35} - 4 q^{43} + 2 q^{49} + 2 q^{50} + 2 q^{64} - 2 q^{68} - 4 q^{70} - 4 q^{86} - 4 q^{89} + 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1224Z)×\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times.

nn 137137 613613 649649 919919
χ(n)\chi(n) 11 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
883.1
1.41421
−1.41421
1.00000 0 1.00000 −1.41421 0 1.41421 1.00000 0 −1.41421
883.2 1.00000 0 1.00000 1.41421 0 −1.41421 1.00000 0 1.41421
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
136.e odd 2 1 CM by Q(34)\Q(\sqrt{-34})
8.d odd 2 1 inner
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1224.1.n.c yes 2
3.b odd 2 1 1224.1.n.b 2
8.d odd 2 1 inner 1224.1.n.c yes 2
17.b even 2 1 inner 1224.1.n.c yes 2
24.f even 2 1 1224.1.n.b 2
51.c odd 2 1 1224.1.n.b 2
136.e odd 2 1 CM 1224.1.n.c yes 2
408.h even 2 1 1224.1.n.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1224.1.n.b 2 3.b odd 2 1
1224.1.n.b 2 24.f even 2 1
1224.1.n.b 2 51.c odd 2 1
1224.1.n.b 2 408.h even 2 1
1224.1.n.c yes 2 1.a even 1 1 trivial
1224.1.n.c yes 2 8.d odd 2 1 inner
1224.1.n.c yes 2 17.b even 2 1 inner
1224.1.n.c yes 2 136.e odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(1224,[χ])S_{1}^{\mathrm{new}}(1224, [\chi]):

T522 T_{5}^{2} - 2 Copy content Toggle raw display
T89+2 T_{89} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T1)2 (T - 1)^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T22 T^{2} - 2 Copy content Toggle raw display
77 T22 T^{2} - 2 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T22 T^{2} - 2 Copy content Toggle raw display
2929 T22 T^{2} - 2 Copy content Toggle raw display
3131 T22 T^{2} - 2 Copy content Toggle raw display
3737 T22 T^{2} - 2 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T22 T^{2} - 2 Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T22 T^{2} - 2 Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 T22 T^{2} - 2 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less