Properties

Label 1224.1.n.c
Level $1224$
Weight $1$
Character orbit 1224.n
Self dual yes
Analytic conductor $0.611$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -136
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,1,Mod(883,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.883");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1224.n (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.610855575463\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.9792.1
Artin image: $D_8$
Artin field: Galois closure of 8.0.14670139392.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} - \beta q^{5} + \beta q^{7} + q^{8} - \beta q^{10} + \beta q^{14} + q^{16} - q^{17} - \beta q^{20} + \beta q^{23} + q^{25} + \beta q^{28} + \beta q^{29} - \beta q^{31} + q^{32} + \cdots + q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} + 2 q^{16} - 2 q^{17} + 2 q^{25} + 2 q^{32} - 2 q^{34} - 4 q^{35} - 4 q^{43} + 2 q^{49} + 2 q^{50} + 2 q^{64} - 2 q^{68} - 4 q^{70} - 4 q^{86} - 4 q^{89} + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
883.1
1.41421
−1.41421
1.00000 0 1.00000 −1.41421 0 1.41421 1.00000 0 −1.41421
883.2 1.00000 0 1.00000 1.41421 0 −1.41421 1.00000 0 1.41421
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
136.e odd 2 1 CM by \(\Q(\sqrt{-34}) \)
8.d odd 2 1 inner
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1224.1.n.c yes 2
3.b odd 2 1 1224.1.n.b 2
8.d odd 2 1 inner 1224.1.n.c yes 2
17.b even 2 1 inner 1224.1.n.c yes 2
24.f even 2 1 1224.1.n.b 2
51.c odd 2 1 1224.1.n.b 2
136.e odd 2 1 CM 1224.1.n.c yes 2
408.h even 2 1 1224.1.n.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1224.1.n.b 2 3.b odd 2 1
1224.1.n.b 2 24.f even 2 1
1224.1.n.b 2 51.c odd 2 1
1224.1.n.b 2 408.h even 2 1
1224.1.n.c yes 2 1.a even 1 1 trivial
1224.1.n.c yes 2 8.d odd 2 1 inner
1224.1.n.c yes 2 17.b even 2 1 inner
1224.1.n.c yes 2 136.e odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1224, [\chi])\):

\( T_{5}^{2} - 2 \) Copy content Toggle raw display
\( T_{89} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 2 \) Copy content Toggle raw display
$7$ \( T^{2} - 2 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 2 \) Copy content Toggle raw display
$29$ \( T^{2} - 2 \) Copy content Toggle raw display
$31$ \( T^{2} - 2 \) Copy content Toggle raw display
$37$ \( T^{2} - 2 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T + 2)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 2 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 2 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 2 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T + 2)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less