Properties

Label 1224.2.bj
Level 12241224
Weight 22
Character orbit 1224.bj
Rep. character χ1224(205,)\chi_{1224}(205,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 384384
Sturm bound 432432

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1224=233217 1224 = 2^{3} \cdot 3^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1224.bj (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 72 72
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 432432

Dimensions

The following table gives the dimensions of various subspaces of M2(1224,[χ])M_{2}(1224, [\chi]).

Total New Old
Modular forms 440 384 56
Cusp forms 424 384 40
Eisenstein series 16 0 16

Trace form

384q6q6+12q8+12q1222q18+14q20+24q232q24+192q2556q2656q3010q3240q3648q3824q3918q42108q4462q48+108q98+O(q100) 384 q - 6 q^{6} + 12 q^{8} + 12 q^{12} - 22 q^{18} + 14 q^{20} + 24 q^{23} - 2 q^{24} + 192 q^{25} - 56 q^{26} - 56 q^{30} - 10 q^{32} - 40 q^{36} - 48 q^{38} - 24 q^{39} - 18 q^{42} - 108 q^{44} - 62 q^{48}+ \cdots - 108 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1224,[χ])S_{2}^{\mathrm{new}}(1224, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(1224,[χ])S_{2}^{\mathrm{old}}(1224, [\chi]) into lower level spaces

S2old(1224,[χ]) S_{2}^{\mathrm{old}}(1224, [\chi]) \simeq S2new(72,[χ])S_{2}^{\mathrm{new}}(72, [\chi])2^{\oplus 2}