Properties

Label 1224.2.bj
Level $1224$
Weight $2$
Character orbit 1224.bj
Rep. character $\chi_{1224}(205,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $384$
Sturm bound $432$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.bj (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 72 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(432\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1224, [\chi])\).

Total New Old
Modular forms 440 384 56
Cusp forms 424 384 40
Eisenstein series 16 0 16

Trace form

\( 384 q - 6 q^{6} + 12 q^{8} + 12 q^{12} - 22 q^{18} + 14 q^{20} + 24 q^{23} - 2 q^{24} + 192 q^{25} - 56 q^{26} - 56 q^{30} - 10 q^{32} - 40 q^{36} - 48 q^{38} - 24 q^{39} - 18 q^{42} - 108 q^{44} - 62 q^{48}+ \cdots - 108 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1224, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1224, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1224, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)