Defining parameters
Level: | \( N \) | \(=\) | \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1224.bk (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 36 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(432\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1224, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 448 | 0 | 448 |
Cusp forms | 416 | 0 | 416 |
Eisenstein series | 32 | 0 | 32 |
Decomposition of \(S_{2}^{\mathrm{old}}(1224, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1224, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(612, [\chi])\)\(^{\oplus 2}\)