Properties

Label 1224.2.bk
Level $1224$
Weight $2$
Character orbit 1224.bk
Rep. character $\chi_{1224}(239,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $0$
Newform subspaces $0$
Sturm bound $432$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.bk (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 36 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 0 \)
Sturm bound: \(432\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1224, [\chi])\).

Total New Old
Modular forms 448 0 448
Cusp forms 416 0 416
Eisenstein series 32 0 32

Decomposition of \(S_{2}^{\mathrm{old}}(1224, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1224, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(612, [\chi])\)\(^{\oplus 2}\)