Properties

Label 1224.2.w.j.361.1
Level $1224$
Weight $2$
Character 1224.361
Analytic conductor $9.774$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(217,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.217");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.w (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.269485056.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 8x^{3} + 81x^{2} - 72x + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 361.1
Root \(1.84885 - 1.84885i\) of defining polynomial
Character \(\chi\) \(=\) 1224.361
Dual form 1224.2.w.j.217.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.84885 + 1.84885i) q^{5} +(-1.00000 - 1.00000i) q^{7} +(0.151150 + 0.151150i) q^{11} +0.836493 q^{13} +(-3.68534 - 1.84885i) q^{17} -6.23189i q^{19} +(1.68534 + 1.68534i) q^{23} -1.83649i q^{25} +(1.83649 - 1.83649i) q^{31} +3.69770 q^{35} +(2.83649 - 2.83649i) q^{37} +(0.0123570 + 0.0123570i) q^{41} -10.2319i q^{43} +7.06839 q^{47} -5.00000i q^{49} -7.06839i q^{53} -0.558907 q^{55} -0.302300i q^{59} +(-6.23189 - 6.23189i) q^{61} +(-1.54655 + 1.54655i) q^{65} -2.32701 q^{67} +(5.86121 - 5.86121i) q^{71} +(5.23189 - 5.23189i) q^{73} -0.302300i q^{77} +(4.39540 + 4.39540i) q^{79} -3.39540i q^{83} +(10.2319 - 3.39540i) q^{85} -15.6977 q^{89} +(-0.836493 - 0.836493i) q^{91} +(11.5218 + 11.5218i) q^{95} +(-7.55891 + 7.55891i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{7} + 12 q^{11} - 6 q^{17} - 6 q^{23} + 6 q^{31} + 12 q^{37} - 6 q^{41} - 12 q^{47} + 36 q^{55} + 12 q^{61} + 24 q^{65} - 24 q^{67} + 18 q^{71} - 18 q^{73} - 18 q^{79} + 12 q^{85} - 72 q^{89}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.84885 + 1.84885i −0.826831 + 0.826831i −0.987077 0.160246i \(-0.948771\pi\)
0.160246 + 0.987077i \(0.448771\pi\)
\(6\) 0 0
\(7\) −1.00000 1.00000i −0.377964 0.377964i 0.492403 0.870367i \(-0.336119\pi\)
−0.870367 + 0.492403i \(0.836119\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.151150 + 0.151150i 0.0455734 + 0.0455734i 0.729526 0.683953i \(-0.239741\pi\)
−0.683953 + 0.729526i \(0.739741\pi\)
\(12\) 0 0
\(13\) 0.836493 0.232001 0.116001 0.993249i \(-0.462993\pi\)
0.116001 + 0.993249i \(0.462993\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.68534 1.84885i −0.893827 0.448412i
\(18\) 0 0
\(19\) 6.23189i 1.42969i −0.699281 0.714847i \(-0.746496\pi\)
0.699281 0.714847i \(-0.253504\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.68534 + 1.68534i 0.351418 + 0.351418i 0.860637 0.509219i \(-0.170066\pi\)
−0.509219 + 0.860637i \(0.670066\pi\)
\(24\) 0 0
\(25\) 1.83649i 0.367299i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(30\) 0 0
\(31\) 1.83649 1.83649i 0.329844 0.329844i −0.522683 0.852527i \(-0.675069\pi\)
0.852527 + 0.522683i \(0.175069\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.69770 0.625025
\(36\) 0 0
\(37\) 2.83649 2.83649i 0.466317 0.466317i −0.434402 0.900719i \(-0.643040\pi\)
0.900719 + 0.434402i \(0.143040\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.0123570 + 0.0123570i 0.00192984 + 0.00192984i 0.708071 0.706141i \(-0.249566\pi\)
−0.706141 + 0.708071i \(0.749566\pi\)
\(42\) 0 0
\(43\) 10.2319i 1.56035i −0.625562 0.780175i \(-0.715130\pi\)
0.625562 0.780175i \(-0.284870\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.06839 1.03103 0.515515 0.856881i \(-0.327601\pi\)
0.515515 + 0.856881i \(0.327601\pi\)
\(48\) 0 0
\(49\) 5.00000i 0.714286i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.06839i 0.970918i −0.874260 0.485459i \(-0.838653\pi\)
0.874260 0.485459i \(-0.161347\pi\)
\(54\) 0 0
\(55\) −0.558907 −0.0753630
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.302300i 0.0393561i −0.999806 0.0196780i \(-0.993736\pi\)
0.999806 0.0196780i \(-0.00626412\pi\)
\(60\) 0 0
\(61\) −6.23189 6.23189i −0.797912 0.797912i 0.184854 0.982766i \(-0.440819\pi\)
−0.982766 + 0.184854i \(0.940819\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.54655 + 1.54655i −0.191826 + 0.191826i
\(66\) 0 0
\(67\) −2.32701 −0.284290 −0.142145 0.989846i \(-0.545400\pi\)
−0.142145 + 0.989846i \(0.545400\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.86121 5.86121i 0.695597 0.695597i −0.267860 0.963458i \(-0.586317\pi\)
0.963458 + 0.267860i \(0.0863166\pi\)
\(72\) 0 0
\(73\) 5.23189 5.23189i 0.612347 0.612347i −0.331210 0.943557i \(-0.607457\pi\)
0.943557 + 0.331210i \(0.107457\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.302300i 0.0344503i
\(78\) 0 0
\(79\) 4.39540 + 4.39540i 0.494521 + 0.494521i 0.909727 0.415206i \(-0.136291\pi\)
−0.415206 + 0.909727i \(0.636291\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.39540i 0.372694i −0.982484 0.186347i \(-0.940335\pi\)
0.982484 0.186347i \(-0.0596648\pi\)
\(84\) 0 0
\(85\) 10.2319 3.39540i 1.10980 0.368283i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −15.6977 −1.66395 −0.831976 0.554811i \(-0.812791\pi\)
−0.831976 + 0.554811i \(0.812791\pi\)
\(90\) 0 0
\(91\) −0.836493 0.836493i −0.0876883 0.0876883i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 11.5218 + 11.5218i 1.18212 + 1.18212i
\(96\) 0 0
\(97\) −7.55891 + 7.55891i −0.767491 + 0.767491i −0.977664 0.210173i \(-0.932597\pi\)
0.210173 + 0.977664i \(0.432597\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.67299 −0.365476 −0.182738 0.983162i \(-0.558496\pi\)
−0.182738 + 0.983162i \(0.558496\pi\)
\(102\) 0 0
\(103\) 16.2319 1.59938 0.799688 0.600416i \(-0.204998\pi\)
0.799688 + 0.600416i \(0.204998\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.84885 + 7.84885i −0.758777 + 0.758777i −0.976100 0.217323i \(-0.930268\pi\)
0.217323 + 0.976100i \(0.430268\pi\)
\(108\) 0 0
\(109\) −6.00000 6.00000i −0.574696 0.574696i 0.358741 0.933437i \(-0.383206\pi\)
−0.933437 + 0.358741i \(0.883206\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.31466 + 4.31466i 0.405889 + 0.405889i 0.880302 0.474413i \(-0.157340\pi\)
−0.474413 + 0.880302i \(0.657340\pi\)
\(114\) 0 0
\(115\) −6.23189 −0.581127
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.83649 + 5.53419i 0.168351 + 0.507319i
\(120\) 0 0
\(121\) 10.9543i 0.995846i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −5.84885 5.84885i −0.523137 0.523137i
\(126\) 0 0
\(127\) 6.23189i 0.552991i 0.961015 + 0.276496i \(0.0891731\pi\)
−0.961015 + 0.276496i \(0.910827\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.151150 0.151150i 0.0132060 0.0132060i −0.700473 0.713679i \(-0.747028\pi\)
0.713679 + 0.700473i \(0.247028\pi\)
\(132\) 0 0
\(133\) −6.23189 + 6.23189i −0.540374 + 0.540374i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.7661 −0.919809 −0.459904 0.887968i \(-0.652116\pi\)
−0.459904 + 0.887968i \(0.652116\pi\)
\(138\) 0 0
\(139\) −0.836493 + 0.836493i −0.0709504 + 0.0709504i −0.741692 0.670741i \(-0.765976\pi\)
0.670741 + 0.741692i \(0.265976\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.126436 + 0.126436i 0.0105731 + 0.0105731i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.7661 −0.881992 −0.440996 0.897509i \(-0.645375\pi\)
−0.440996 + 0.897509i \(0.645375\pi\)
\(150\) 0 0
\(151\) 2.32701i 0.189370i 0.995507 + 0.0946849i \(0.0301843\pi\)
−0.995507 + 0.0946849i \(0.969816\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.79080i 0.545450i
\(156\) 0 0
\(157\) −0.836493 −0.0667594 −0.0333797 0.999443i \(-0.510627\pi\)
−0.0333797 + 0.999443i \(0.510627\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.37069i 0.265647i
\(162\) 0 0
\(163\) −2.32701 2.32701i −0.182266 0.182266i 0.610077 0.792342i \(-0.291139\pi\)
−0.792342 + 0.610077i \(0.791139\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.7784 12.7784i 0.988826 0.988826i −0.0111126 0.999938i \(-0.503537\pi\)
0.999938 + 0.0111126i \(0.00353733\pi\)
\(168\) 0 0
\(169\) −12.3003 −0.946175
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.54655 + 1.54655i −0.117582 + 0.117582i −0.763450 0.645867i \(-0.776496\pi\)
0.645867 + 0.763450i \(0.276496\pi\)
\(174\) 0 0
\(175\) −1.83649 + 1.83649i −0.138826 + 0.138826i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 15.3954i 1.15071i −0.817905 0.575353i \(-0.804865\pi\)
0.817905 0.575353i \(-0.195135\pi\)
\(180\) 0 0
\(181\) 8.55891 + 8.55891i 0.636179 + 0.636179i 0.949611 0.313432i \(-0.101479\pi\)
−0.313432 + 0.949611i \(0.601479\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 10.4885i 0.771130i
\(186\) 0 0
\(187\) −0.277586 0.836493i −0.0202991 0.0611704i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.76609 0.489577 0.244788 0.969577i \(-0.421282\pi\)
0.244788 + 0.969577i \(0.421282\pi\)
\(192\) 0 0
\(193\) 18.3003 + 18.3003i 1.31728 + 1.31728i 0.915918 + 0.401365i \(0.131464\pi\)
0.401365 + 0.915918i \(0.368536\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.47816 + 2.47816i 0.176562 + 0.176562i 0.789855 0.613293i \(-0.210156\pi\)
−0.613293 + 0.789855i \(0.710156\pi\)
\(198\) 0 0
\(199\) −11.2319 + 11.2319i −0.796208 + 0.796208i −0.982495 0.186287i \(-0.940354\pi\)
0.186287 + 0.982495i \(0.440354\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −0.0456926 −0.00319131
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.941950 0.941950i 0.0651561 0.0651561i
\(210\) 0 0
\(211\) 6.00000 + 6.00000i 0.413057 + 0.413057i 0.882802 0.469745i \(-0.155654\pi\)
−0.469745 + 0.882802i \(0.655654\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 18.9172 + 18.9172i 1.29014 + 1.29014i
\(216\) 0 0
\(217\) −3.67299 −0.249339
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.08276 1.54655i −0.207369 0.104032i
\(222\) 0 0
\(223\) 2.55891i 0.171357i −0.996323 0.0856785i \(-0.972694\pi\)
0.996323 0.0856785i \(-0.0273058\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.5218 11.5218i −0.764731 0.764731i 0.212442 0.977174i \(-0.431858\pi\)
−0.977174 + 0.212442i \(0.931858\pi\)
\(228\) 0 0
\(229\) 22.4638i 1.48445i 0.670151 + 0.742224i \(0.266229\pi\)
−0.670151 + 0.742224i \(0.733771\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.3830 11.3830i 0.745728 0.745728i −0.227946 0.973674i \(-0.573201\pi\)
0.973674 + 0.227946i \(0.0732009\pi\)
\(234\) 0 0
\(235\) −13.0684 + 13.0684i −0.852488 + 0.852488i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 22.4638 1.45306 0.726531 0.687134i \(-0.241131\pi\)
0.726531 + 0.687134i \(0.241131\pi\)
\(240\) 0 0
\(241\) −8.06839 + 8.06839i −0.519730 + 0.519730i −0.917490 0.397759i \(-0.869788\pi\)
0.397759 + 0.917490i \(0.369788\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 9.24425 + 9.24425i 0.590593 + 0.590593i
\(246\) 0 0
\(247\) 5.21294i 0.331691i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −22.4391 −1.41634 −0.708171 0.706041i \(-0.750479\pi\)
−0.708171 + 0.706041i \(0.750479\pi\)
\(252\) 0 0
\(253\) 0.509479i 0.0320307i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.35173i 0.520966i −0.965478 0.260483i \(-0.916118\pi\)
0.965478 0.260483i \(-0.0838819\pi\)
\(258\) 0 0
\(259\) −5.67299 −0.352502
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 11.4201i 0.704194i −0.935963 0.352097i \(-0.885469\pi\)
0.935963 0.352097i \(-0.114531\pi\)
\(264\) 0 0
\(265\) 13.0684 + 13.0684i 0.802785 + 0.802785i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.15115 6.15115i 0.375042 0.375042i −0.494268 0.869310i \(-0.664564\pi\)
0.869310 + 0.494268i \(0.164564\pi\)
\(270\) 0 0
\(271\) −17.5779 −1.06778 −0.533890 0.845554i \(-0.679270\pi\)
−0.533890 + 0.845554i \(0.679270\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.277586 0.277586i 0.0167391 0.0167391i
\(276\) 0 0
\(277\) −7.06839 + 7.06839i −0.424698 + 0.424698i −0.886818 0.462119i \(-0.847089\pi\)
0.462119 + 0.886818i \(0.347089\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 15.6977i 0.936446i −0.883610 0.468223i \(-0.844894\pi\)
0.883610 0.468223i \(-0.155106\pi\)
\(282\) 0 0
\(283\) 13.9049 + 13.9049i 0.826559 + 0.826559i 0.987039 0.160480i \(-0.0513042\pi\)
−0.160480 + 0.987039i \(0.551304\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.0247141i 0.00145883i
\(288\) 0 0
\(289\) 10.1635 + 13.6273i 0.597853 + 0.801605i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −30.7661 −1.79737 −0.898687 0.438591i \(-0.855478\pi\)
−0.898687 + 0.438591i \(0.855478\pi\)
\(294\) 0 0
\(295\) 0.558907 + 0.558907i 0.0325408 + 0.0325408i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.40978 + 1.40978i 0.0815295 + 0.0815295i
\(300\) 0 0
\(301\) −10.2319 + 10.2319i −0.589757 + 0.589757i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 23.0437 1.31948
\(306\) 0 0
\(307\) 21.1178 1.20526 0.602629 0.798022i \(-0.294120\pi\)
0.602629 + 0.798022i \(0.294120\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −17.8612 + 17.8612i −1.01282 + 1.01282i −0.0128993 + 0.999917i \(0.504106\pi\)
−0.999917 + 0.0128993i \(0.995894\pi\)
\(312\) 0 0
\(313\) −5.23189 5.23189i −0.295724 0.295724i 0.543612 0.839336i \(-0.317056\pi\)
−0.839336 + 0.543612i \(0.817056\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.4638 + 22.4638i 1.26169 + 1.26169i 0.950273 + 0.311419i \(0.100804\pi\)
0.311419 + 0.950273i \(0.399196\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −11.5218 + 22.9667i −0.641092 + 1.27790i
\(324\) 0 0
\(325\) 1.53621i 0.0852138i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.06839 7.06839i −0.389693 0.389693i
\(330\) 0 0
\(331\) 0.558907i 0.0307203i 0.999882 + 0.0153602i \(0.00488948\pi\)
−0.999882 + 0.0153602i \(0.995111\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.30230 4.30230i 0.235060 0.235060i
\(336\) 0 0
\(337\) 4.39540 4.39540i 0.239433 0.239433i −0.577182 0.816615i \(-0.695848\pi\)
0.816615 + 0.577182i \(0.195848\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.555172 0.0300642
\(342\) 0 0
\(343\) −12.0000 + 12.0000i −0.647939 + 0.647939i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −21.8345 21.8345i −1.17214 1.17214i −0.981700 0.190436i \(-0.939010\pi\)
−0.190436 0.981700i \(-0.560990\pi\)
\(348\) 0 0
\(349\) 4.37271i 0.234066i 0.993128 + 0.117033i \(0.0373383\pi\)
−0.993128 + 0.117033i \(0.962662\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8.62931 −0.459292 −0.229646 0.973274i \(-0.573757\pi\)
−0.229646 + 0.973274i \(0.573757\pi\)
\(354\) 0 0
\(355\) 21.6730i 1.15028i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 13.8345i 0.730156i 0.930977 + 0.365078i \(0.118958\pi\)
−0.930977 + 0.365078i \(0.881042\pi\)
\(360\) 0 0
\(361\) −19.8365 −1.04403
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 19.3460i 1.01261i
\(366\) 0 0
\(367\) −15.7414 15.7414i −0.821693 0.821693i 0.164658 0.986351i \(-0.447348\pi\)
−0.986351 + 0.164658i \(0.947348\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.06839 + 7.06839i −0.366972 + 0.366972i
\(372\) 0 0
\(373\) 29.8098 1.54349 0.771745 0.635932i \(-0.219384\pi\)
0.771745 + 0.635932i \(0.219384\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 2.83649 2.83649i 0.145701 0.145701i −0.630494 0.776194i \(-0.717147\pi\)
0.776194 + 0.630494i \(0.217147\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.9316i 0.865165i −0.901594 0.432583i \(-0.857602\pi\)
0.901594 0.432583i \(-0.142398\pi\)
\(384\) 0 0
\(385\) 0.558907 + 0.558907i 0.0284845 + 0.0284845i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.23391i 0.0625619i 0.999511 + 0.0312810i \(0.00995866\pi\)
−0.999511 + 0.0312810i \(0.990041\pi\)
\(390\) 0 0
\(391\) −3.09512 9.32701i −0.156527 0.471687i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −16.2529 −0.817771
\(396\) 0 0
\(397\) −17.5322 17.5322i −0.879915 0.879915i 0.113611 0.993525i \(-0.463758\pi\)
−0.993525 + 0.113611i \(0.963758\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 22.7537 + 22.7537i 1.13627 + 1.13627i 0.989114 + 0.147153i \(0.0470111\pi\)
0.147153 + 0.989114i \(0.452989\pi\)
\(402\) 0 0
\(403\) 1.53621 1.53621i 0.0765242 0.0765242i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.857472 0.0425033
\(408\) 0 0
\(409\) −17.1635 −0.848681 −0.424340 0.905503i \(-0.639494\pi\)
−0.424340 + 0.905503i \(0.639494\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.302300 + 0.302300i −0.0148752 + 0.0148752i
\(414\) 0 0
\(415\) 6.27759 + 6.27759i 0.308155 + 0.308155i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −25.2299 25.2299i −1.23256 1.23256i −0.962977 0.269583i \(-0.913114\pi\)
−0.269583 0.962977i \(-0.586886\pi\)
\(420\) 0 0
\(421\) −19.6273 −0.956576 −0.478288 0.878203i \(-0.658742\pi\)
−0.478288 + 0.878203i \(0.658742\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.39540 + 6.76811i −0.164701 + 0.328301i
\(426\) 0 0
\(427\) 12.4638i 0.603165i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.46581 2.46581i −0.118774 0.118774i 0.645222 0.763995i \(-0.276765\pi\)
−0.763995 + 0.645222i \(0.776765\pi\)
\(432\) 0 0
\(433\) 0.0456926i 0.00219585i 0.999999 + 0.00109792i \(0.000349480\pi\)
−0.999999 + 0.00109792i \(0.999651\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 10.5029 10.5029i 0.502421 0.502421i
\(438\) 0 0
\(439\) 1.83649 1.83649i 0.0876510 0.0876510i −0.661922 0.749573i \(-0.730259\pi\)
0.749573 + 0.661922i \(0.230259\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10.7414 −0.510338 −0.255169 0.966896i \(-0.582131\pi\)
−0.255169 + 0.966896i \(0.582131\pi\)
\(444\) 0 0
\(445\) 29.0227 29.0227i 1.37581 1.37581i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 19.6710 + 19.6710i 0.928330 + 0.928330i 0.997598 0.0692678i \(-0.0220663\pi\)
−0.0692678 + 0.997598i \(0.522066\pi\)
\(450\) 0 0
\(451\) 0.00373553i 0.000175899i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.09310 0.145007
\(456\) 0 0
\(457\) 14.8365i 0.694022i −0.937861 0.347011i \(-0.887197\pi\)
0.937861 0.347011i \(-0.112803\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 30.2109i 1.40706i −0.710664 0.703531i \(-0.751605\pi\)
0.710664 0.703531i \(-0.248395\pi\)
\(462\) 0 0
\(463\) 38.9276 1.80912 0.904559 0.426349i \(-0.140200\pi\)
0.904559 + 0.426349i \(0.140200\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 27.1425i 1.25601i 0.778211 + 0.628003i \(0.216128\pi\)
−0.778211 + 0.628003i \(0.783872\pi\)
\(468\) 0 0
\(469\) 2.32701 + 2.32701i 0.107452 + 0.107452i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.54655 1.54655i 0.0711105 0.0711105i
\(474\) 0 0
\(475\) −11.4448 −0.525125
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 23.2422 23.2422i 1.06196 1.06196i 0.0640157 0.997949i \(-0.479609\pi\)
0.997949 0.0640157i \(-0.0203908\pi\)
\(480\) 0 0
\(481\) 2.37271 2.37271i 0.108186 0.108186i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 27.9506i 1.26917i
\(486\) 0 0
\(487\) −12.5322 12.5322i −0.567887 0.567887i 0.363649 0.931536i \(-0.381531\pi\)
−0.931536 + 0.363649i \(0.881531\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 19.3460i 0.873071i −0.899687 0.436536i \(-0.856205\pi\)
0.899687 0.436536i \(-0.143795\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −11.7224 −0.525822
\(498\) 0 0
\(499\) 16.7414 + 16.7414i 0.749447 + 0.749447i 0.974375 0.224929i \(-0.0722149\pi\)
−0.224929 + 0.974375i \(0.572215\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21.1055 + 21.1055i 0.941046 + 0.941046i 0.998356 0.0573106i \(-0.0182525\pi\)
−0.0573106 + 0.998356i \(0.518253\pi\)
\(504\) 0 0
\(505\) 6.79080 6.79080i 0.302187 0.302187i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 41.2546 1.82858 0.914289 0.405063i \(-0.132750\pi\)
0.914289 + 0.405063i \(0.132750\pi\)
\(510\) 0 0
\(511\) −10.4638 −0.462891
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −30.0103 + 30.0103i −1.32241 + 1.32241i
\(516\) 0 0
\(517\) 1.06839 + 1.06839i 0.0469876 + 0.0469876i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4.91926 + 4.91926i 0.215517 + 0.215517i 0.806606 0.591089i \(-0.201302\pi\)
−0.591089 + 0.806606i \(0.701302\pi\)
\(522\) 0 0
\(523\) 30.6006 1.33807 0.669035 0.743231i \(-0.266708\pi\)
0.669035 + 0.743231i \(0.266708\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.1635 + 3.37271i −0.442729 + 0.146917i
\(528\) 0 0
\(529\) 17.3192i 0.753010i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.0103366 + 0.0103366i 0.000447727 + 0.000447727i
\(534\) 0 0
\(535\) 29.0227i 1.25476i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.755750 0.755750i 0.0325524 0.0325524i
\(540\) 0 0
\(541\) 0.509479 0.509479i 0.0219042 0.0219042i −0.696070 0.717974i \(-0.745070\pi\)
0.717974 + 0.696070i \(0.245070\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 22.1862 0.950352
\(546\) 0 0
\(547\) −5.49052 + 5.49052i −0.234758 + 0.234758i −0.814675 0.579917i \(-0.803085\pi\)
0.579917 + 0.814675i \(0.303085\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 8.79080i 0.373823i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.9029 0.546712 0.273356 0.961913i \(-0.411866\pi\)
0.273356 + 0.961913i \(0.411866\pi\)
\(558\) 0 0
\(559\) 8.55891i 0.362003i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 36.8781i 1.55423i −0.629360 0.777114i \(-0.716683\pi\)
0.629360 0.777114i \(-0.283317\pi\)
\(564\) 0 0
\(565\) −15.9543 −0.671203
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 13.8592i 0.581007i 0.956874 + 0.290504i \(0.0938228\pi\)
−0.956874 + 0.290504i \(0.906177\pi\)
\(570\) 0 0
\(571\) −15.3954 15.3954i −0.644277 0.644277i 0.307327 0.951604i \(-0.400566\pi\)
−0.951604 + 0.307327i \(0.900566\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.09512 3.09512i 0.129075 0.129075i
\(576\) 0 0
\(577\) 6.83649 0.284607 0.142303 0.989823i \(-0.454549\pi\)
0.142303 + 0.989823i \(0.454549\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.39540 + 3.39540i −0.140865 + 0.140865i
\(582\) 0 0
\(583\) 1.06839 1.06839i 0.0442480 0.0442480i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 46.7414i 1.92922i −0.263675 0.964611i \(-0.584935\pi\)
0.263675 0.964611i \(-0.415065\pi\)
\(588\) 0 0
\(589\) −11.4448 11.4448i −0.471576 0.471576i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 8.32701i 0.341949i −0.985275 0.170975i \(-0.945308\pi\)
0.985275 0.170975i \(-0.0546917\pi\)
\(594\) 0 0
\(595\) −13.6273 6.83649i −0.558665 0.280269i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −27.0931 −1.10699 −0.553497 0.832851i \(-0.686707\pi\)
−0.553497 + 0.832851i \(0.686707\pi\)
\(600\) 0 0
\(601\) −17.5095 17.5095i −0.714227 0.714227i 0.253190 0.967417i \(-0.418520\pi\)
−0.967417 + 0.253190i \(0.918520\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 20.2529 + 20.2529i 0.823396 + 0.823396i
\(606\) 0 0
\(607\) 22.8098 22.8098i 0.925820 0.925820i −0.0716130 0.997432i \(-0.522815\pi\)
0.997432 + 0.0716130i \(0.0228146\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.91266 0.239200
\(612\) 0 0
\(613\) −3.81753 −0.154189 −0.0770944 0.997024i \(-0.524564\pi\)
−0.0770944 + 0.997024i \(0.524564\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −25.8365 + 25.8365i −1.04014 + 1.04014i −0.0409780 + 0.999160i \(0.513047\pi\)
−0.999160 + 0.0409780i \(0.986953\pi\)
\(618\) 0 0
\(619\) −5.57787 5.57787i −0.224193 0.224193i 0.586068 0.810262i \(-0.300675\pi\)
−0.810262 + 0.586068i \(0.800675\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 15.6977 + 15.6977i 0.628915 + 0.628915i
\(624\) 0 0
\(625\) 30.8098 1.23239
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.6977 + 5.20920i −0.625908 + 0.207704i
\(630\) 0 0
\(631\) 4.78706i 0.190570i −0.995450 0.0952850i \(-0.969624\pi\)
0.995450 0.0952850i \(-0.0303762\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −11.5218 11.5218i −0.457230 0.457230i
\(636\) 0 0
\(637\) 4.18247i 0.165715i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 22.7537 22.7537i 0.898718 0.898718i −0.0966046 0.995323i \(-0.530798\pi\)
0.995323 + 0.0966046i \(0.0307982\pi\)
\(642\) 0 0
\(643\) 22.1862 22.1862i 0.874938 0.874938i −0.118067 0.993006i \(-0.537670\pi\)
0.993006 + 0.118067i \(0.0376698\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22.7661 0.895027 0.447514 0.894277i \(-0.352310\pi\)
0.447514 + 0.894277i \(0.352310\pi\)
\(648\) 0 0
\(649\) 0.0456926 0.0456926i 0.00179359 0.00179359i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14.4534 + 14.4534i 0.565607 + 0.565607i 0.930895 0.365288i \(-0.119029\pi\)
−0.365288 + 0.930895i \(0.619029\pi\)
\(654\) 0 0
\(655\) 0.558907i 0.0218383i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −43.0931 −1.67867 −0.839334 0.543615i \(-0.817055\pi\)
−0.839334 + 0.543615i \(0.817055\pi\)
\(660\) 0 0
\(661\) 20.6463i 0.803046i −0.915849 0.401523i \(-0.868481\pi\)
0.915849 0.401523i \(-0.131519\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 23.0437i 0.893595i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.88390i 0.0727272i
\(672\) 0 0
\(673\) 26.9049 + 26.9049i 1.03711 + 1.03711i 0.999284 + 0.0378224i \(0.0120421\pi\)
0.0378224 + 0.999284i \(0.487958\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −12.9172 + 12.9172i −0.496450 + 0.496450i −0.910331 0.413881i \(-0.864173\pi\)
0.413881 + 0.910331i \(0.364173\pi\)
\(678\) 0 0
\(679\) 15.1178 0.580168
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −29.6586 + 29.6586i −1.13486 + 1.13486i −0.145496 + 0.989359i \(0.546478\pi\)
−0.989359 + 0.145496i \(0.953522\pi\)
\(684\) 0 0
\(685\) 19.9049 19.9049i 0.760526 0.760526i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 5.91266i 0.225254i
\(690\) 0 0
\(691\) −32.1368 32.1368i −1.22254 1.22254i −0.966726 0.255815i \(-0.917656\pi\)
−0.255815 0.966726i \(-0.582344\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.09310i 0.117328i
\(696\) 0 0
\(697\) −0.0226936 0.0683862i −0.000859582 0.00259031i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −4.37644 −0.165296 −0.0826480 0.996579i \(-0.526338\pi\)
−0.0826480 + 0.996579i \(0.526338\pi\)
\(702\) 0 0
\(703\) −17.6767 17.6767i −0.666690 0.666690i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.67299 + 3.67299i 0.138137 + 0.138137i
\(708\) 0 0
\(709\) 9.39540 9.39540i 0.352852 0.352852i −0.508318 0.861170i \(-0.669732\pi\)
0.861170 + 0.508318i \(0.169732\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.19024 0.231826
\(714\) 0 0
\(715\) −0.467522 −0.0174843
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24.4514 + 24.4514i −0.911884 + 0.911884i −0.996420 0.0845360i \(-0.973059\pi\)
0.0845360 + 0.996420i \(0.473059\pi\)
\(720\) 0 0
\(721\) −16.2319 16.2319i −0.604507 0.604507i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −18.1368 −0.672656 −0.336328 0.941745i \(-0.609185\pi\)
−0.336328 + 0.941745i \(0.609185\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −18.9172 + 37.7080i −0.699679 + 1.39468i
\(732\) 0 0
\(733\) 10.4638i 0.386489i 0.981151 + 0.193244i \(0.0619010\pi\)
−0.981151 + 0.193244i \(0.938099\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.351728 0.351728i −0.0129561 0.0129561i
\(738\) 0 0
\(739\) 50.6957i 1.86487i −0.361337 0.932435i \(-0.617680\pi\)
0.361337 0.932435i \(-0.382320\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6.44109 6.44109i 0.236301 0.236301i −0.579016 0.815316i \(-0.696563\pi\)
0.815316 + 0.579016i \(0.196563\pi\)
\(744\) 0 0
\(745\) 19.9049 19.9049i 0.729258 0.729258i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 15.6977 0.573581
\(750\) 0 0
\(751\) −10.1635 + 10.1635i −0.370872 + 0.370872i −0.867795 0.496923i \(-0.834463\pi\)
0.496923 + 0.867795i \(0.334463\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4.30230 4.30230i −0.156577 0.156577i
\(756\) 0 0
\(757\) 38.4181i 1.39633i 0.715937 + 0.698165i \(0.246000\pi\)
−0.715937 + 0.698165i \(0.754000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −12.2776 −0.445062 −0.222531 0.974926i \(-0.571432\pi\)
−0.222531 + 0.974926i \(0.571432\pi\)
\(762\) 0 0
\(763\) 12.0000i 0.434429i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0.252872i 0.00913067i
\(768\) 0 0
\(769\) 20.9733 0.756315 0.378158 0.925741i \(-0.376558\pi\)
0.378158 + 0.925741i \(0.376558\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5.80976i 0.208962i −0.994527 0.104481i \(-0.966682\pi\)
0.994527 0.104481i \(-0.0333182\pi\)
\(774\) 0 0
\(775\) −3.37271 3.37271i −0.121151 0.121151i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.0770077 0.0770077i 0.00275909 0.00275909i
\(780\) 0 0
\(781\) 1.77184 0.0634015
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.54655 1.54655i 0.0551987 0.0551987i
\(786\) 0 0
\(787\) −16.9316 + 16.9316i −0.603547 + 0.603547i −0.941252 0.337705i \(-0.890349\pi\)
0.337705 + 0.941252i \(0.390349\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 8.62931i 0.306823i
\(792\) 0 0
\(793\) −5.21294 5.21294i −0.185117 0.185117i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 26.4144i 0.935645i 0.883823 + 0.467822i \(0.154961\pi\)
−0.883823 + 0.467822i \(0.845039\pi\)
\(798\) 0 0
\(799\) −26.0494 13.0684i −0.921563 0.462326i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.58160 0.0558135
\(804\) 0 0
\(805\) 6.23189 + 6.23189i 0.219645 + 0.219645i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5.82212 5.82212i −0.204695 0.204695i 0.597313 0.802008i \(-0.296235\pi\)
−0.802008 + 0.597313i \(0.796235\pi\)
\(810\) 0 0
\(811\) 38.6500 38.6500i 1.35718 1.35718i 0.479815 0.877370i \(-0.340704\pi\)
0.877370 0.479815i \(-0.159296\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8.60460 0.301406
\(816\) 0 0
\(817\) −63.7641 −2.23082
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −6.78046 + 6.78046i −0.236640 + 0.236640i −0.815457 0.578817i \(-0.803514\pi\)
0.578817 + 0.815457i \(0.303514\pi\)
\(822\) 0 0
\(823\) 30.5322 + 30.5322i 1.06428 + 1.06428i 0.997787 + 0.0664981i \(0.0211826\pi\)
0.0664981 + 0.997787i \(0.478817\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 4.45345 + 4.45345i 0.154862 + 0.154862i 0.780285 0.625424i \(-0.215074\pi\)
−0.625424 + 0.780285i \(0.715074\pi\)
\(828\) 0 0
\(829\) −11.0190 −0.382704 −0.191352 0.981521i \(-0.561287\pi\)
−0.191352 + 0.981521i \(0.561287\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −9.24425 + 18.4267i −0.320294 + 0.638448i
\(834\) 0 0
\(835\) 47.2509i 1.63518i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −24.5009 24.5009i −0.845864 0.845864i 0.143750 0.989614i \(-0.454084\pi\)
−0.989614 + 0.143750i \(0.954084\pi\)
\(840\) 0 0
\(841\) 29.0000i 1.00000i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 22.7414 22.7414i 0.782327 0.782327i
\(846\) 0 0
\(847\) −10.9543 + 10.9543i −0.376394 + 0.376394i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 9.56093 0.327744
\(852\) 0 0
\(853\) 27.1635 27.1635i 0.930061 0.930061i −0.0676485 0.997709i \(-0.521550\pi\)
0.997709 + 0.0676485i \(0.0215496\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −9.18247 9.18247i −0.313667 0.313667i 0.532661 0.846328i \(-0.321192\pi\)
−0.846328 + 0.532661i \(0.821192\pi\)
\(858\) 0 0
\(859\) 28.4638i 0.971172i −0.874189 0.485586i \(-0.838606\pi\)
0.874189 0.485586i \(-0.161394\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.69770 0.125871 0.0629356 0.998018i \(-0.479954\pi\)
0.0629356 + 0.998018i \(0.479954\pi\)
\(864\) 0 0
\(865\) 5.71868i 0.194441i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.32873i 0.0450740i
\(870\) 0 0
\(871\) −1.94653 −0.0659557
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 11.6977i 0.395454i
\(876\) 0 0
\(877\) 21.9049 + 21.9049i 0.739675 + 0.739675i 0.972515 0.232840i \(-0.0748018\pi\)
−0.232840 + 0.972515i \(0.574802\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 27.6710 27.6710i 0.932259 0.932259i −0.0655883 0.997847i \(-0.520892\pi\)
0.997847 + 0.0655883i \(0.0208924\pi\)
\(882\) 0 0
\(883\) 23.8135 0.801388 0.400694 0.916212i \(-0.368769\pi\)
0.400694 + 0.916212i \(0.368769\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 22.0124 22.0124i 0.739103 0.739103i −0.233302 0.972404i \(-0.574953\pi\)
0.972404 + 0.233302i \(0.0749530\pi\)
\(888\) 0 0
\(889\) 6.23189 6.23189i 0.209011 0.209011i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 44.0494i 1.47406i
\(894\) 0 0
\(895\) 28.4638 + 28.4638i 0.951439 + 0.951439i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −13.0684 + 26.0494i −0.435371 + 0.867832i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −31.6483 −1.05202
\(906\) 0 0
\(907\) −1.30028 1.30028i −0.0431751 0.0431751i 0.685190 0.728365i \(-0.259719\pi\)
−0.728365 + 0.685190i \(0.759719\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 36.1491 + 36.1491i 1.19767 + 1.19767i 0.974861 + 0.222813i \(0.0715239\pi\)
0.222813 + 0.974861i \(0.428476\pi\)
\(912\) 0 0
\(913\) 0.513215 0.513215i 0.0169849 0.0169849i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.302300 −0.00998282
\(918\) 0 0
\(919\) 41.5779 1.37153 0.685764 0.727824i \(-0.259468\pi\)
0.685764 + 0.727824i \(0.259468\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.90286 4.90286i 0.161380 0.161380i
\(924\) 0 0
\(925\) −5.20920 5.20920i −0.171277 0.171277i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 33.8468 + 33.8468i 1.11048 + 1.11048i 0.993086 + 0.117393i \(0.0374537\pi\)
0.117393 + 0.993086i \(0.462546\pi\)
\(930\) 0 0
\(931\) −31.1595 −1.02121
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.05976 + 1.03334i 0.0673615 + 0.0337937i
\(936\) 0 0
\(937\) 30.2735i 0.988994i 0.869179 + 0.494497i \(0.164648\pi\)
−0.869179 + 0.494497i \(0.835352\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4.93161 4.93161i −0.160766 0.160766i 0.622140 0.782906i \(-0.286263\pi\)
−0.782906 + 0.622140i \(0.786263\pi\)
\(942\) 0 0
\(943\) 0.0416517i 0.00135637i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 34.8155 34.8155i 1.13135 1.13135i 0.141400 0.989953i \(-0.454840\pi\)
0.989953 0.141400i \(-0.0451602\pi\)
\(948\) 0 0
\(949\) 4.37644 4.37644i 0.142065 0.142065i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −22.1862 −0.718682 −0.359341 0.933206i \(-0.616998\pi\)
−0.359341 + 0.933206i \(0.616998\pi\)
\(954\) 0 0
\(955\) −12.5095 + 12.5095i −0.404797 + 0.404797i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 10.7661 + 10.7661i 0.347655 + 0.347655i
\(960\) 0 0
\(961\) 24.2546i 0.782406i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −67.6689 −2.17834
\(966\) 0 0
\(967\) 8.69568i 0.279634i 0.990177 + 0.139817i \(0.0446515\pi\)
−0.990177 + 0.139817i \(0.955349\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.703456i 0.0225750i −0.999936 0.0112875i \(-0.996407\pi\)
0.999936 0.0112875i \(-0.00359300\pi\)
\(972\) 0 0
\(973\) 1.67299 0.0536335
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 22.1615i 0.709009i 0.935054 + 0.354504i \(0.115350\pi\)
−0.935054 + 0.354504i \(0.884650\pi\)
\(978\) 0 0
\(979\) −2.37271 2.37271i −0.0758320 0.0758320i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 34.9152 34.9152i 1.11362 1.11362i 0.120966 0.992657i \(-0.461401\pi\)
0.992657 0.120966i \(-0.0385991\pi\)
\(984\) 0 0
\(985\) −9.16351 −0.291974
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 17.2443 17.2443i 0.548335 0.548335i
\(990\) 0 0
\(991\) −37.3687 + 37.3687i −1.18705 + 1.18705i −0.209177 + 0.977878i \(0.567078\pi\)
−0.977878 + 0.209177i \(0.932922\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 41.5322i 1.31666i
\(996\) 0 0
\(997\) −28.9733 28.9733i −0.917593 0.917593i 0.0792613 0.996854i \(-0.474744\pi\)
−0.996854 + 0.0792613i \(0.974744\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.2.w.j.361.1 yes 6
3.2 odd 2 1224.2.w.i.361.3 yes 6
4.3 odd 2 2448.2.be.v.1585.1 6
12.11 even 2 2448.2.be.w.1585.3 6
17.13 even 4 inner 1224.2.w.j.217.1 yes 6
51.47 odd 4 1224.2.w.i.217.3 6
68.47 odd 4 2448.2.be.v.1441.1 6
204.47 even 4 2448.2.be.w.1441.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1224.2.w.i.217.3 6 51.47 odd 4
1224.2.w.i.361.3 yes 6 3.2 odd 2
1224.2.w.j.217.1 yes 6 17.13 even 4 inner
1224.2.w.j.361.1 yes 6 1.1 even 1 trivial
2448.2.be.v.1441.1 6 68.47 odd 4
2448.2.be.v.1585.1 6 4.3 odd 2
2448.2.be.w.1441.3 6 204.47 even 4
2448.2.be.w.1585.3 6 12.11 even 2