Properties

Label 1231.1.b.c.1230.1
Level $1231$
Weight $1$
Character 1231.1230
Self dual yes
Analytic conductor $0.614$
Analytic rank $0$
Dimension $9$
Projective image $D_{27}$
CM discriminant -1231
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1231,1,Mod(1230,1231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1231, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1231.1230");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1231 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1231.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.614349030551\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\Q(\zeta_{54})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 9x^{7} + 27x^{5} - 30x^{3} + 9x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{27}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{27} - \cdots)\)

Embedding invariants

Embedding label 1230.1
Root \(1.98648\) of defining polynomial
Character \(\chi\) \(=\) 1231.1230

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.98648 q^{2} +2.94609 q^{4} +1.53209 q^{5} -0.573606 q^{7} -3.86586 q^{8} +1.00000 q^{9} -3.04346 q^{10} -1.00000 q^{11} -0.116290 q^{13} +1.13946 q^{14} +4.73336 q^{16} -1.98648 q^{18} +1.19432 q^{19} +4.51367 q^{20} +1.98648 q^{22} +1.34730 q^{25} +0.231007 q^{26} -1.68990 q^{28} +1.78727 q^{29} -1.37248 q^{31} -5.53684 q^{32} -0.878816 q^{35} +2.94609 q^{36} +0.792160 q^{37} -2.37248 q^{38} -5.92284 q^{40} -1.87939 q^{41} +1.78727 q^{43} -2.94609 q^{44} +1.53209 q^{45} -0.670976 q^{49} -2.67637 q^{50} -0.342600 q^{52} -1.53209 q^{55} +2.21748 q^{56} -3.55036 q^{58} +2.72641 q^{62} -0.573606 q^{63} +6.26544 q^{64} -0.178166 q^{65} +1.74575 q^{70} -3.86586 q^{72} -1.57361 q^{74} +3.51857 q^{76} +0.573606 q^{77} +7.25192 q^{80} +1.00000 q^{81} +3.73336 q^{82} -3.55036 q^{86} +3.86586 q^{88} -3.04346 q^{90} +0.0667045 q^{91} +1.82980 q^{95} +1.33288 q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{4} + 9 q^{9} - 9 q^{11} + 9 q^{16} + 9 q^{25} - 9 q^{28} + 9 q^{36} - 9 q^{38} - 9 q^{40} - 9 q^{44} + 9 q^{49} + 9 q^{64} - 9 q^{70} - 9 q^{74} + 9 q^{81} - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1231\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 2.94609 2.94609
\(5\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(6\) 0 0
\(7\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(8\) −3.86586 −3.86586
\(9\) 1.00000 1.00000
\(10\) −3.04346 −3.04346
\(11\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 0 0
\(13\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(14\) 1.13946 1.13946
\(15\) 0 0
\(16\) 4.73336 4.73336
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) −1.98648 −1.98648
\(19\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(20\) 4.51367 4.51367
\(21\) 0 0
\(22\) 1.98648 1.98648
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 1.34730 1.34730
\(26\) 0.231007 0.231007
\(27\) 0 0
\(28\) −1.68990 −1.68990
\(29\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(30\) 0 0
\(31\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(32\) −5.53684 −5.53684
\(33\) 0 0
\(34\) 0 0
\(35\) −0.878816 −0.878816
\(36\) 2.94609 2.94609
\(37\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(38\) −2.37248 −2.37248
\(39\) 0 0
\(40\) −5.92284 −5.92284
\(41\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(42\) 0 0
\(43\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(44\) −2.94609 −2.94609
\(45\) 1.53209 1.53209
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) −0.670976 −0.670976
\(50\) −2.67637 −2.67637
\(51\) 0 0
\(52\) −0.342600 −0.342600
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) −1.53209 −1.53209
\(56\) 2.21748 2.21748
\(57\) 0 0
\(58\) −3.55036 −3.55036
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 2.72641 2.72641
\(63\) −0.573606 −0.573606
\(64\) 6.26544 6.26544
\(65\) −0.178166 −0.178166
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 1.74575 1.74575
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −3.86586 −3.86586
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) −1.57361 −1.57361
\(75\) 0 0
\(76\) 3.51857 3.51857
\(77\) 0.573606 0.573606
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 7.25192 7.25192
\(81\) 1.00000 1.00000
\(82\) 3.73336 3.73336
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −3.55036 −3.55036
\(87\) 0 0
\(88\) 3.86586 3.86586
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) −3.04346 −3.04346
\(91\) 0.0667045 0.0667045
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.82980 1.82980
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 1.33288 1.33288
\(99\) −1.00000 −1.00000
\(100\) 3.96926 3.96926
\(101\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0.449560 0.449560
\(105\) 0 0
\(106\) 0 0
\(107\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 3.04346 3.04346
\(111\) 0 0
\(112\) −2.71508 −2.71508
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 5.26544 5.26544
\(117\) −0.116290 −0.116290
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) −4.04346 −4.04346
\(125\) 0.532089 0.532089
\(126\) 1.13946 1.13946
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −6.90932 −6.90932
\(129\) 0 0
\(130\) 0.353923 0.353923
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) −0.685068 −0.685068
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.94609 1.94609 0.973045 0.230616i \(-0.0740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(138\) 0 0
\(139\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(140\) −2.58907 −2.58907
\(141\) 0 0
\(142\) 0 0
\(143\) 0.116290 0.116290
\(144\) 4.73336 4.73336
\(145\) 2.73825 2.73825
\(146\) 0 0
\(147\) 0 0
\(148\) 2.33377 2.33377
\(149\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(150\) 0 0
\(151\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(152\) −4.61707 −4.61707
\(153\) 0 0
\(154\) −1.13946 −1.13946
\(155\) −2.10277 −2.10277
\(156\) 0 0
\(157\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −8.48293 −8.48293
\(161\) 0 0
\(162\) −1.98648 −1.98648
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) −5.53684 −5.53684
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −0.986477 −0.986477
\(170\) 0 0
\(171\) 1.19432 1.19432
\(172\) 5.26544 5.26544
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −0.772818 −0.772818
\(176\) −4.73336 −4.73336
\(177\) 0 0
\(178\) 0 0
\(179\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(180\) 4.51367 4.51367
\(181\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(182\) −0.132507 −0.132507
\(183\) 0 0
\(184\) 0 0
\(185\) 1.21366 1.21366
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) −3.63486 −3.63486
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.97675 −1.97675
\(197\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(198\) 1.98648 1.98648
\(199\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(200\) −5.20846 −5.20846
\(201\) 0 0
\(202\) 3.31935 3.31935
\(203\) −1.02519 −1.02519
\(204\) 0 0
\(205\) −2.87939 −2.87939
\(206\) 0 0
\(207\) 0 0
\(208\) −0.550440 −0.550440
\(209\) −1.19432 −1.19432
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −0.689896 −0.689896
\(215\) 2.73825 2.73825
\(216\) 0 0
\(217\) 0.787265 0.787265
\(218\) 0 0
\(219\) 0 0
\(220\) −4.51367 −4.51367
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 3.17597 3.17597
\(225\) 1.34730 1.34730
\(226\) 0 0
\(227\) 1.94609 1.94609 0.973045 0.230616i \(-0.0740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −6.90932 −6.90932
\(233\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(234\) 0.231007 0.231007
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.02799 −1.02799
\(246\) 0 0
\(247\) −0.138887 −0.138887
\(248\) 5.30583 5.30583
\(249\) 0 0
\(250\) −1.05698 −1.05698
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −1.68990 −1.68990
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 7.45976 7.45976
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) −0.454388 −0.454388
\(260\) −0.524893 −0.524893
\(261\) 1.78727 1.78727
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.36087 1.36087
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −3.86586 −3.86586
\(275\) −1.34730 −1.34730
\(276\) 0 0
\(277\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(278\) 0.231007 0.231007
\(279\) −1.37248 −1.37248
\(280\) 3.39738 3.39738
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −0.231007 −0.231007
\(287\) 1.07803 1.07803
\(288\) −5.53684 −5.53684
\(289\) 1.00000 1.00000
\(290\) −5.43947 −5.43947
\(291\) 0 0
\(292\) 0 0
\(293\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −3.06238 −3.06238
\(297\) 0 0
\(298\) −2.37248 −2.37248
\(299\) 0 0
\(300\) 0 0
\(301\) −1.02519 −1.02519
\(302\) −1.57361 −1.57361
\(303\) 0 0
\(304\) 5.65313 5.65313
\(305\) 0 0
\(306\) 0 0
\(307\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(308\) 1.68990 1.68990
\(309\) 0 0
\(310\) 4.17710 4.17710
\(311\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 3.94609 3.94609
\(315\) −0.878816 −0.878816
\(316\) 0 0
\(317\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(318\) 0 0
\(319\) −1.78727 −1.78727
\(320\) 9.59922 9.59922
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 2.94609 2.94609
\(325\) −0.156677 −0.156677
\(326\) 0 0
\(327\) 0 0
\(328\) 7.26544 7.26544
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0.792160 0.792160
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(338\) 1.95961 1.95961
\(339\) 0 0
\(340\) 0 0
\(341\) 1.37248 1.37248
\(342\) −2.37248 −2.37248
\(343\) 0.958482 0.958482
\(344\) −6.90932 −6.90932
\(345\) 0 0
\(346\) 0 0
\(347\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 1.53518 1.53518
\(351\) 0 0
\(352\) 5.53684 5.53684
\(353\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 2.72641 2.72641
\(359\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(360\) −5.92284 −5.92284
\(361\) 0.426394 0.426394
\(362\) 1.13946 1.13946
\(363\) 0 0
\(364\) 0.196517 0.196517
\(365\) 0 0
\(366\) 0 0
\(367\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(368\) 0 0
\(369\) −1.87939 −1.87939
\(370\) −2.41090 −2.41090
\(371\) 0 0
\(372\) 0 0
\(373\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.207840 −0.207840
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 5.39076 5.39076
\(381\) 0 0
\(382\) 0 0
\(383\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(384\) 0 0
\(385\) 0.878816 0.878816
\(386\) 0 0
\(387\) 1.78727 1.78727
\(388\) 0 0
\(389\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 2.59390 2.59390
\(393\) 0 0
\(394\) −0.689896 −0.689896
\(395\) 0 0
\(396\) −2.94609 −2.94609
\(397\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) 3.94609 3.94609
\(399\) 0 0
\(400\) 6.37723 6.37723
\(401\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(402\) 0 0
\(403\) 0.159606 0.159606
\(404\) −4.92284 −4.92284
\(405\) 1.53209 1.53209
\(406\) 2.03651 2.03651
\(407\) −0.792160 −0.792160
\(408\) 0 0
\(409\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(410\) 5.71983 5.71983
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0.643877 0.643877
\(417\) 0 0
\(418\) 2.37248 2.37248
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 1.02317 1.02317
\(429\) 0 0
\(430\) −5.43947 −5.43947
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(434\) −1.56388 −1.56388
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 5.92284 5.92284
\(441\) −0.670976 −0.670976
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −3.59390 −3.59390
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −2.67637 −2.67637
\(451\) 1.87939 1.87939
\(452\) 0 0
\(453\) 0 0
\(454\) −3.86586 −3.86586
\(455\) 0.102197 0.102197
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(464\) 8.45976 8.45976
\(465\) 0 0
\(466\) 1.13946 1.13946
\(467\) 1.94609 1.94609 0.973045 0.230616i \(-0.0740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(468\) −0.342600 −0.342600
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.78727 −1.78727
\(474\) 0 0
\(475\) 1.60910 1.60910
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(480\) 0 0
\(481\) −0.0921200 −0.0921200
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 1.94609 1.94609 0.973045 0.230616i \(-0.0740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 2.04209 2.04209
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0.275895 0.275895
\(495\) −1.53209 −1.53209
\(496\) −6.49645 −6.49645
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 1.56758 1.56758
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 2.21748 2.21748
\(505\) −2.56008 −2.56008
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −7.90932 −7.90932
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0.902631 0.902631
\(519\) 0 0
\(520\) 0.688766 0.688766
\(521\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(522\) −3.55036 −3.55036
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) −2.01827 −2.01827
\(533\) 0.218553 0.218553
\(534\) 0 0
\(535\) 0.532089 0.532089
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.670976 0.670976
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) −2.37248 −2.37248
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 5.73336 5.73336
\(549\) 0 0
\(550\) 2.67637 2.67637
\(551\) 2.13456 2.13456
\(552\) 0 0
\(553\) 0 0
\(554\) 3.31935 3.31935
\(555\) 0 0
\(556\) −0.342600 −0.342600
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 2.72641 2.72641
\(559\) −0.207840 −0.207840
\(560\) −4.15975 −4.15975
\(561\) 0 0
\(562\) 0 0
\(563\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −0.573606 −0.573606
\(568\) 0 0
\(569\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(570\) 0 0
\(571\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(572\) 0.342600 0.342600
\(573\) 0 0
\(574\) −2.14148 −2.14148
\(575\) 0 0
\(576\) 6.26544 6.26544
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −1.98648 −1.98648
\(579\) 0 0
\(580\) 8.06713 8.06713
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −0.178166 −0.178166
\(586\) −0.689896 −0.689896
\(587\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(588\) 0 0
\(589\) −1.63918 −1.63918
\(590\) 0 0
\(591\) 0 0
\(592\) 3.74957 3.74957
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.51857 3.51857
\(597\) 0 0
\(598\) 0 0
\(599\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 2.03651 2.03651
\(603\) 0 0
\(604\) 2.33377 2.33377
\(605\) 0 0
\(606\) 0 0
\(607\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(608\) −6.61274 −6.61274
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 3.94609 3.94609
\(615\) 0 0
\(616\) −2.21748 −2.21748
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(620\) −6.19494 −6.19494
\(621\) 0 0
\(622\) −3.04346 −3.04346
\(623\) 0 0
\(624\) 0 0
\(625\) −0.532089 −0.532089
\(626\) 0 0
\(627\) 0 0
\(628\) −5.85234 −5.85234
\(629\) 0 0
\(630\) 1.74575 1.74575
\(631\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 3.31935 3.31935
\(635\) 0 0
\(636\) 0 0
\(637\) 0.0780275 0.0780275
\(638\) 3.55036 3.55036
\(639\) 0 0
\(640\) −10.5857 −10.5857
\(641\) 1.94609 1.94609 0.973045 0.230616i \(-0.0740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(642\) 0 0
\(643\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(648\) −3.86586 −3.86586
\(649\) 0 0
\(650\) 0.311234 0.311234
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −8.89580 −8.89580
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.04959 −1.04959
\(666\) −1.57361 −1.57361
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 2.72641 2.72641
\(675\) 0 0
\(676\) −2.90625 −2.90625
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) −2.72641 −2.72641
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 3.51857 3.51857
\(685\) 2.98158 2.98158
\(686\) −1.90400 −1.90400
\(687\) 0 0
\(688\) 8.45976 8.45976
\(689\) 0 0
\(690\) 0 0
\(691\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(692\) 0 0
\(693\) 0.573606 0.573606
\(694\) 3.73336 3.73336
\(695\) −0.178166 −0.178166
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −2.27679 −2.27679
\(701\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(702\) 0 0
\(703\) 0.946090 0.946090
\(704\) −6.26544 −6.26544
\(705\) 0 0
\(706\) −2.37248 −2.37248
\(707\) 0.958482 0.958482
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0.178166 0.178166
\(716\) −4.04346 −4.04346
\(717\) 0 0
\(718\) −0.689896 −0.689896
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 7.25192 7.25192
\(721\) 0 0
\(722\) −0.847021 −0.847021
\(723\) 0 0
\(724\) −1.68990 −1.68990
\(725\) 2.40798 2.40798
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) −0.257870 −0.257870
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) −1.57361 −1.57361
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 3.73336 3.73336
\(739\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(740\) 3.57555 3.57555
\(741\) 0 0
\(742\) 0 0
\(743\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(744\) 0 0
\(745\) 1.82980 1.82980
\(746\) 2.72641 2.72641
\(747\) 0 0
\(748\) 0 0
\(749\) −0.199211 −0.199211
\(750\) 0 0
\(751\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0.412870 0.412870
\(755\) 1.21366 1.21366
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −7.07375 −7.07375
\(761\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 3.73336 3.73336
\(767\) 0 0
\(768\) 0 0
\(769\) 1.94609 1.94609 0.973045 0.230616i \(-0.0740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(770\) −1.74575 −1.74575
\(771\) 0 0
\(772\) 0 0
\(773\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(774\) −3.55036 −3.55036
\(775\) −1.84914 −1.84914
\(776\) 0 0
\(777\) 0 0
\(778\) 3.73336 3.73336
\(779\) −2.24458 −2.24458
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −3.17597 −3.17597
\(785\) −3.04346 −3.04346
\(786\) 0 0
\(787\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(788\) 1.02317 1.02317
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 3.86586 3.86586
\(793\) 0 0
\(794\) 1.98648 1.98648
\(795\) 0 0
\(796\) −5.85234 −5.85234
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −7.45976 −7.45976
\(801\) 0 0
\(802\) 0.231007 0.231007
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −0.317053 −0.317053
\(807\) 0 0
\(808\) 6.45976 6.45976
\(809\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(810\) −3.04346 −3.04346
\(811\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(812\) −3.02029 −3.02029
\(813\) 0 0
\(814\) 1.57361 1.57361
\(815\) 0 0
\(816\) 0 0
\(817\) 2.13456 2.13456
\(818\) 2.72641 2.72641
\(819\) 0.0667045 0.0667045
\(820\) −8.48293 −8.48293
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.728606 −0.728606
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) −3.51857 −3.51857
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 2.19432 2.19432
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.51137 −1.51137
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(854\) 0 0
\(855\) 1.82980 1.82980
\(856\) −1.34260 −1.34260
\(857\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(858\) 0 0
\(859\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(860\) 8.06713 8.06713
\(861\) 0 0
\(862\) 0 0
\(863\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 3.31935 3.31935
\(867\) 0 0
\(868\) 2.31935 2.31935
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.305210 −0.305210
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −7.25192 −7.25192
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 1.33288 1.33288
\(883\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.00000 −1.00000
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −2.10277 −2.10277
\(896\) 3.96323 3.96323
\(897\) 0 0
\(898\) 0 0
\(899\) −2.45299 −2.45299
\(900\) 3.96926 3.96926
\(901\) 0 0
\(902\) −3.73336 −3.73336
\(903\) 0 0
\(904\) 0 0
\(905\) −0.878816 −0.878816
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 5.73336 5.73336
\(909\) −1.67098 −1.67098
\(910\) −0.203012 −0.203012
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1.06727 1.06727
\(926\) 1.98648 1.98648
\(927\) 0 0
\(928\) −9.89580 −9.89580
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) −0.801358 −0.801358
\(932\) −1.68990 −1.68990
\(933\) 0 0
\(934\) −3.86586 −3.86586
\(935\) 0 0
\(936\) 0.449560 0.449560
\(937\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 3.55036 3.55036
\(947\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −3.19644 −3.19644
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 3.94609 3.94609
\(959\) −1.11629 −1.11629
\(960\) 0 0
\(961\) 0.883710 0.883710
\(962\) 0.182994 0.182994
\(963\) 0.347296 0.347296
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0.0667045 0.0667045
\(974\) −3.86586 −3.86586
\(975\) 0 0
\(976\) 0 0
\(977\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −3.02856 −3.02856
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0.532089 0.532089
\(986\) 0 0
\(987\) 0 0
\(988\) −0.409173 −0.409173
\(989\) 0 0
\(990\) 3.04346 3.04346
\(991\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(992\) 7.59922 7.59922
\(993\) 0 0
\(994\) 0 0
\(995\) −3.04346 −3.04346
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1231.1.b.c.1230.1 9
1231.1230 odd 2 CM 1231.1.b.c.1230.1 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1231.1.b.c.1230.1 9 1.1 even 1 trivial
1231.1.b.c.1230.1 9 1231.1230 odd 2 CM