Properties

Label 1231.1.b.c.1230.6
Level $1231$
Weight $1$
Character 1231.1230
Self dual yes
Analytic conductor $0.614$
Analytic rank $0$
Dimension $9$
Projective image $D_{27}$
CM discriminant -1231
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1231,1,Mod(1230,1231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1231, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1231.1230");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1231 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1231.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.614349030551\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\Q(\zeta_{54})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 9x^{7} + 27x^{5} - 30x^{3} + 9x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{27}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{27} - \cdots)\)

Embedding invariants

Embedding label 1230.6
Root \(-0.792160\) of defining polynomial
Character \(\chi\) \(=\) 1231.1230

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.792160 q^{2} -0.372483 q^{4} +1.53209 q^{5} +1.94609 q^{7} -1.08723 q^{8} +1.00000 q^{9} +1.21366 q^{10} -1.00000 q^{11} -1.67098 q^{13} +1.54161 q^{14} -0.488773 q^{16} +0.792160 q^{18} -1.98648 q^{19} -0.570677 q^{20} -0.792160 q^{22} +1.34730 q^{25} -1.32368 q^{26} -0.724886 q^{28} -0.116290 q^{29} -0.573606 q^{31} +0.700040 q^{32} +2.98158 q^{35} -0.372483 q^{36} +1.19432 q^{37} -1.57361 q^{38} -1.66573 q^{40} -1.87939 q^{41} -0.116290 q^{43} +0.372483 q^{44} +1.53209 q^{45} +2.78727 q^{49} +1.06727 q^{50} +0.622410 q^{52} -1.53209 q^{55} -2.11584 q^{56} -0.0921200 q^{58} -0.454388 q^{62} +1.94609 q^{63} +1.04332 q^{64} -2.56008 q^{65} +2.36189 q^{70} -1.08723 q^{72} +0.946090 q^{74} +0.739929 q^{76} -1.94609 q^{77} -0.748844 q^{80} +1.00000 q^{81} -1.48877 q^{82} -0.0921200 q^{86} +1.08723 q^{88} +1.21366 q^{90} -3.25187 q^{91} -3.04346 q^{95} +2.20796 q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{4} + 9 q^{9} - 9 q^{11} + 9 q^{16} + 9 q^{25} - 9 q^{28} + 9 q^{36} - 9 q^{38} - 9 q^{40} - 9 q^{44} + 9 q^{49} + 9 q^{64} - 9 q^{70} - 9 q^{74} + 9 q^{81} - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1231\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) −0.372483 −0.372483
\(5\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(6\) 0 0
\(7\) 1.94609 1.94609 0.973045 0.230616i \(-0.0740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(8\) −1.08723 −1.08723
\(9\) 1.00000 1.00000
\(10\) 1.21366 1.21366
\(11\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 0 0
\(13\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(14\) 1.54161 1.54161
\(15\) 0 0
\(16\) −0.488773 −0.488773
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0.792160 0.792160
\(19\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(20\) −0.570677 −0.570677
\(21\) 0 0
\(22\) −0.792160 −0.792160
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 1.34730 1.34730
\(26\) −1.32368 −1.32368
\(27\) 0 0
\(28\) −0.724886 −0.724886
\(29\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(30\) 0 0
\(31\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(32\) 0.700040 0.700040
\(33\) 0 0
\(34\) 0 0
\(35\) 2.98158 2.98158
\(36\) −0.372483 −0.372483
\(37\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(38\) −1.57361 −1.57361
\(39\) 0 0
\(40\) −1.66573 −1.66573
\(41\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(42\) 0 0
\(43\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(44\) 0.372483 0.372483
\(45\) 1.53209 1.53209
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 2.78727 2.78727
\(50\) 1.06727 1.06727
\(51\) 0 0
\(52\) 0.622410 0.622410
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) −1.53209 −1.53209
\(56\) −2.11584 −2.11584
\(57\) 0 0
\(58\) −0.0921200 −0.0921200
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −0.454388 −0.454388
\(63\) 1.94609 1.94609
\(64\) 1.04332 1.04332
\(65\) −2.56008 −2.56008
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 2.36189 2.36189
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −1.08723 −1.08723
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0.946090 0.946090
\(75\) 0 0
\(76\) 0.739929 0.739929
\(77\) −1.94609 −1.94609
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) −0.748844 −0.748844
\(81\) 1.00000 1.00000
\(82\) −1.48877 −1.48877
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.0921200 −0.0921200
\(87\) 0 0
\(88\) 1.08723 1.08723
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 1.21366 1.21366
\(91\) −3.25187 −3.25187
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.04346 −3.04346
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 2.20796 2.20796
\(99\) −1.00000 −1.00000
\(100\) −0.501845 −0.501845
\(101\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 1.81673 1.81673
\(105\) 0 0
\(106\) 0 0
\(107\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) −1.21366 −1.21366
\(111\) 0 0
\(112\) −0.951196 −0.951196
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.0433160 0.0433160
\(117\) −1.67098 −1.67098
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0.213659 0.213659
\(125\) 0.532089 0.532089
\(126\) 1.54161 1.54161
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0.126433 0.126433
\(129\) 0 0
\(130\) −2.02799 −2.02799
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) −3.86586 −3.86586
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(138\) 0 0
\(139\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(140\) −1.11059 −1.11059
\(141\) 0 0
\(142\) 0 0
\(143\) 1.67098 1.67098
\(144\) −0.488773 −0.488773
\(145\) −0.178166 −0.178166
\(146\) 0 0
\(147\) 0 0
\(148\) −0.444863 −0.444863
\(149\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(150\) 0 0
\(151\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(152\) 2.15975 2.15975
\(153\) 0 0
\(154\) −1.54161 −1.54161
\(155\) −0.878816 −0.878816
\(156\) 0 0
\(157\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 1.07252 1.07252
\(161\) 0 0
\(162\) 0.792160 0.792160
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0.700040 0.700040
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 1.79216 1.79216
\(170\) 0 0
\(171\) −1.98648 −1.98648
\(172\) 0.0433160 0.0433160
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 2.62196 2.62196
\(176\) 0.488773 0.488773
\(177\) 0 0
\(178\) 0 0
\(179\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(180\) −0.570677 −0.570677
\(181\) 1.94609 1.94609 0.973045 0.230616i \(-0.0740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(182\) −2.57600 −2.57600
\(183\) 0 0
\(184\) 0 0
\(185\) 1.82980 1.82980
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) −2.41090 −2.41090
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.03821 −1.03821
\(197\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(198\) −0.792160 −0.792160
\(199\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(200\) −1.46482 −1.46482
\(201\) 0 0
\(202\) 1.41580 1.41580
\(203\) −0.226310 −0.226310
\(204\) 0 0
\(205\) −2.87939 −2.87939
\(206\) 0 0
\(207\) 0 0
\(208\) 0.816728 0.816728
\(209\) 1.98648 1.98648
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.275114 0.275114
\(215\) −0.178166 −0.178166
\(216\) 0 0
\(217\) −1.11629 −1.11629
\(218\) 0 0
\(219\) 0 0
\(220\) 0.570677 0.570677
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 1.36234 1.36234
\(225\) 1.34730 1.34730
\(226\) 0 0
\(227\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.126433 0.126433
\(233\) 1.94609 1.94609 0.973045 0.230616i \(-0.0740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(234\) −1.32368 −1.32368
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.27034 4.27034
\(246\) 0 0
\(247\) 3.31935 3.31935
\(248\) 0.623640 0.623640
\(249\) 0 0
\(250\) 0.421499 0.421499
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −0.724886 −0.724886
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.943161 −0.943161
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 2.32425 2.32425
\(260\) 0.953588 0.953588
\(261\) −0.116290 −0.116290
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −3.06238 −3.06238
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −1.08723 −1.08723
\(275\) −1.34730 −1.34730
\(276\) 0 0
\(277\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(278\) −1.32368 −1.32368
\(279\) −0.573606 −0.573606
\(280\) −3.24165 −3.24165
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 1.32368 1.32368
\(287\) −3.65745 −3.65745
\(288\) 0.700040 0.700040
\(289\) 1.00000 1.00000
\(290\) −0.141136 −0.141136
\(291\) 0 0
\(292\) 0 0
\(293\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.29849 −1.29849
\(297\) 0 0
\(298\) −1.57361 −1.57361
\(299\) 0 0
\(300\) 0 0
\(301\) −0.226310 −0.226310
\(302\) 0.946090 0.946090
\(303\) 0 0
\(304\) 0.970936 0.970936
\(305\) 0 0
\(306\) 0 0
\(307\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(308\) 0.724886 0.724886
\(309\) 0 0
\(310\) −0.696163 −0.696163
\(311\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0.627517 0.627517
\(315\) 2.98158 2.98158
\(316\) 0 0
\(317\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(318\) 0 0
\(319\) 0.116290 0.116290
\(320\) 1.59845 1.59845
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.372483 −0.372483
\(325\) −2.25130 −2.25130
\(326\) 0 0
\(327\) 0 0
\(328\) 2.04332 2.04332
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 1.19432 1.19432
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(338\) 1.41968 1.41968
\(339\) 0 0
\(340\) 0 0
\(341\) 0.573606 0.573606
\(342\) −1.57361 −1.57361
\(343\) 3.47818 3.47818
\(344\) 0.126433 0.126433
\(345\) 0 0
\(346\) 0 0
\(347\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 2.07701 2.07701
\(351\) 0 0
\(352\) −0.700040 −0.700040
\(353\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −0.454388 −0.454388
\(359\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(360\) −1.66573 −1.66573
\(361\) 2.94609 2.94609
\(362\) 1.54161 1.54161
\(363\) 0 0
\(364\) 1.21127 1.21127
\(365\) 0 0
\(366\) 0 0
\(367\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(368\) 0 0
\(369\) −1.87939 −1.87939
\(370\) 1.44949 1.44949
\(371\) 0 0
\(372\) 0 0
\(373\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.194317 0.194317
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 1.13364 1.13364
\(381\) 0 0
\(382\) 0 0
\(383\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(384\) 0 0
\(385\) −2.98158 −2.98158
\(386\) 0 0
\(387\) −0.116290 −0.116290
\(388\) 0 0
\(389\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −3.03039 −3.03039
\(393\) 0 0
\(394\) 0.275114 0.275114
\(395\) 0 0
\(396\) 0.372483 0.372483
\(397\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) 0.627517 0.627517
\(399\) 0 0
\(400\) −0.658522 −0.658522
\(401\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(402\) 0 0
\(403\) 0.958482 0.958482
\(404\) −0.665726 −0.665726
\(405\) 1.53209 1.53209
\(406\) −0.179274 −0.179274
\(407\) −1.19432 −1.19432
\(408\) 0 0
\(409\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(410\) −2.28093 −2.28093
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −1.16975 −1.16975
\(417\) 0 0
\(418\) 1.57361 1.57361
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −0.129362 −0.129362
\(429\) 0 0
\(430\) −0.141136 −0.141136
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(434\) −0.884279 −0.884279
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 1.66573 1.66573
\(441\) 2.78727 2.78727
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 2.03039 2.03039
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 1.06727 1.06727
\(451\) 1.87939 1.87939
\(452\) 0 0
\(453\) 0 0
\(454\) −1.08723 −1.08723
\(455\) −4.98215 −4.98215
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(464\) 0.0568392 0.0568392
\(465\) 0 0
\(466\) 1.54161 1.54161
\(467\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(468\) 0.622410 0.622410
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.116290 0.116290
\(474\) 0 0
\(475\) −2.67637 −2.67637
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(480\) 0 0
\(481\) −1.99567 −1.99567
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 3.38279 3.38279
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 2.62946 2.62946
\(495\) −1.53209 −1.53209
\(496\) 0.280363 0.280363
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) −0.198194 −0.198194
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) −2.11584 −2.11584
\(505\) 2.73825 2.73825
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.873567 −0.873567
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 1.84118 1.84118
\(519\) 0 0
\(520\) 2.78339 2.78339
\(521\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(522\) −0.0921200 −0.0921200
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 1.43997 1.43997
\(533\) 3.14041 3.14041
\(534\) 0 0
\(535\) 0.532089 0.532089
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.78727 −2.78727
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) −1.57361 −1.57361
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0.511227 0.511227
\(549\) 0 0
\(550\) −1.06727 −1.06727
\(551\) 0.231007 0.231007
\(552\) 0 0
\(553\) 0 0
\(554\) 1.41580 1.41580
\(555\) 0 0
\(556\) 0.622410 0.622410
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) −0.454388 −0.454388
\(559\) 0.194317 0.194317
\(560\) −1.45732 −1.45732
\(561\) 0 0
\(562\) 0 0
\(563\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.94609 1.94609
\(568\) 0 0
\(569\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(570\) 0 0
\(571\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(572\) −0.622410 −0.622410
\(573\) 0 0
\(574\) −2.89729 −2.89729
\(575\) 0 0
\(576\) 1.04332 1.04332
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0.792160 0.792160
\(579\) 0 0
\(580\) 0.0663639 0.0663639
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −2.56008 −2.56008
\(586\) 0.275114 0.275114
\(587\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(588\) 0 0
\(589\) 1.13946 1.13946
\(590\) 0 0
\(591\) 0 0
\(592\) −0.583750 −0.583750
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.739929 0.739929
\(597\) 0 0
\(598\) 0 0
\(599\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) −0.179274 −0.179274
\(603\) 0 0
\(604\) −0.444863 −0.444863
\(605\) 0 0
\(606\) 0 0
\(607\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(608\) −1.39061 −1.39061
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0.627517 0.627517
\(615\) 0 0
\(616\) 2.11584 2.11584
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(620\) 0.327344 0.327344
\(621\) 0 0
\(622\) 1.21366 1.21366
\(623\) 0 0
\(624\) 0 0
\(625\) −0.532089 −0.532089
\(626\) 0 0
\(627\) 0 0
\(628\) −0.295066 −0.295066
\(629\) 0 0
\(630\) 2.36189 2.36189
\(631\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 1.41580 1.41580
\(635\) 0 0
\(636\) 0 0
\(637\) −4.65745 −4.65745
\(638\) 0.0921200 0.0921200
\(639\) 0 0
\(640\) 0.193707 0.193707
\(641\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(642\) 0 0
\(643\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(648\) −1.08723 −1.08723
\(649\) 0 0
\(650\) −1.78339 −1.78339
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.918593 0.918593
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.92284 −5.92284
\(666\) 0.946090 0.946090
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) −0.454388 −0.454388
\(675\) 0 0
\(676\) −0.667549 −0.667549
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0.454388 0.454388
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0.739929 0.739929
\(685\) −2.10277 −2.10277
\(686\) 2.75527 2.75527
\(687\) 0 0
\(688\) 0.0568392 0.0568392
\(689\) 0 0
\(690\) 0 0
\(691\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(692\) 0 0
\(693\) −1.94609 −1.94609
\(694\) −1.48877 −1.48877
\(695\) −2.56008 −2.56008
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.976636 −0.976636
\(701\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(702\) 0 0
\(703\) −2.37248 −2.37248
\(704\) −1.04332 −1.04332
\(705\) 0 0
\(706\) −1.57361 −1.57361
\(707\) 3.47818 3.47818
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 2.56008 2.56008
\(716\) 0.213659 0.213659
\(717\) 0 0
\(718\) 0.275114 0.275114
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) −0.748844 −0.748844
\(721\) 0 0
\(722\) 2.33377 2.33377
\(723\) 0 0
\(724\) −0.724886 −0.724886
\(725\) −0.156677 −0.156677
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 3.53552 3.53552
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0.946090 0.946090
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −1.48877 −1.48877
\(739\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(740\) −0.681570 −0.681570
\(741\) 0 0
\(742\) 0 0
\(743\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(744\) 0 0
\(745\) −3.04346 −3.04346
\(746\) −0.454388 −0.454388
\(747\) 0 0
\(748\) 0 0
\(749\) 0.675870 0.675870
\(750\) 0 0
\(751\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0.153930 0.153930
\(755\) 1.82980 1.82980
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 3.30893 3.30893
\(761\) 1.94609 1.94609 0.973045 0.230616i \(-0.0740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −1.48877 −1.48877
\(767\) 0 0
\(768\) 0 0
\(769\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(770\) −2.36189 −2.36189
\(771\) 0 0
\(772\) 0 0
\(773\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(774\) −0.0921200 −0.0921200
\(775\) −0.772818 −0.772818
\(776\) 0 0
\(777\) 0 0
\(778\) −1.48877 −1.48877
\(779\) 3.73336 3.73336
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −1.36234 −1.36234
\(785\) 1.21366 1.21366
\(786\) 0 0
\(787\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(788\) −0.129362 −0.129362
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 1.08723 1.08723
\(793\) 0 0
\(794\) −0.792160 −0.792160
\(795\) 0 0
\(796\) −0.295066 −0.295066
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.943161 0.943161
\(801\) 0 0
\(802\) −1.32368 −1.32368
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0.759271 0.759271
\(807\) 0 0
\(808\) −1.94316 −1.94316
\(809\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(810\) 1.21366 1.21366
\(811\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(812\) 0.0842967 0.0842967
\(813\) 0 0
\(814\) −0.946090 −0.946090
\(815\) 0 0
\(816\) 0 0
\(817\) 0.231007 0.231007
\(818\) −0.454388 −0.454388
\(819\) −3.25187 −3.25187
\(820\) 1.07252 1.07252
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.74336 −1.74336
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) −0.739929 −0.739929
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −0.986477 −0.986477
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.74575 2.74575
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(854\) 0 0
\(855\) −3.04346 −3.04346
\(856\) −0.377590 −0.377590
\(857\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(858\) 0 0
\(859\) 1.94609 1.94609 0.973045 0.230616i \(-0.0740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(860\) 0.0663639 0.0663639
\(861\) 0 0
\(862\) 0 0
\(863\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1.41580 1.41580
\(867\) 0 0
\(868\) 0.415799 0.415799
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.03549 1.03549
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0.748844 0.748844
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 2.20796 2.20796
\(883\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.00000 −1.00000
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −0.878816 −0.878816
\(896\) 0.246050 0.246050
\(897\) 0 0
\(898\) 0 0
\(899\) 0.0667045 0.0667045
\(900\) −0.501845 −0.501845
\(901\) 0 0
\(902\) 1.48877 1.48877
\(903\) 0 0
\(904\) 0 0
\(905\) 2.98158 2.98158
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0.511227 0.511227
\(909\) 1.78727 1.78727
\(910\) −3.94666 −3.94666
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1.60910 1.60910
\(926\) −0.792160 −0.792160
\(927\) 0 0
\(928\) −0.0814074 −0.0814074
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) −5.53684 −5.53684
\(932\) −0.724886 −0.724886
\(933\) 0 0
\(934\) −1.08723 −1.08723
\(935\) 0 0
\(936\) 1.81673 1.81673
\(937\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0.0921200 0.0921200
\(947\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −2.12011 −2.12011
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0.627517 0.627517
\(959\) −2.67098 −2.67098
\(960\) 0 0
\(961\) −0.670976 −0.670976
\(962\) −1.58089 −1.58089
\(963\) 0.347296 0.347296
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) −3.25187 −3.25187
\(974\) −1.08723 −1.08723
\(975\) 0 0
\(976\) 0 0
\(977\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −1.59063 −1.59063
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0.532089 0.532089
\(986\) 0 0
\(987\) 0 0
\(988\) −1.23640 −1.23640
\(989\) 0 0
\(990\) −1.21366 −1.21366
\(991\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(992\) −0.401547 −0.401547
\(993\) 0 0
\(994\) 0 0
\(995\) 1.21366 1.21366
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1231.1.b.c.1230.6 9
1231.1230 odd 2 CM 1231.1.b.c.1230.6 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1231.1.b.c.1230.6 9 1.1 even 1 trivial
1231.1.b.c.1230.6 9 1231.1230 odd 2 CM