Properties

Label 1232.2.bn.c.593.1
Level $1232$
Weight $2$
Character 1232.593
Analytic conductor $9.838$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,2,Mod(241,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.241");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1232.bn (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.83756952902\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 2x^{14} - 17x^{12} - 343x^{10} + 490x^{8} - 16807x^{6} - 40817x^{4} + 235298x^{2} + 5764801 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 7 \)
Twist minimal: no (minimal twist has level 308)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 593.1
Root \(-2.64407 + 0.0942693i\) of defining polynomial
Character \(\chi\) \(=\) 1232.593
Dual form 1232.2.bn.c.241.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.37157 + 1.36923i) q^{3} +(0.316246 + 0.182585i) q^{5} +(-2.64407 - 0.0942693i) q^{7} +(2.24957 - 3.89637i) q^{9} +(2.70717 - 1.91604i) q^{11} -4.51413 q^{13} -1.00000 q^{15} +(1.66183 + 2.87837i) q^{17} +(-1.66183 + 2.87837i) q^{19} +(6.39968 - 3.39677i) q^{21} +(2.55533 - 4.42596i) q^{23} +(-2.43333 - 4.21464i) q^{25} +4.10534i q^{27} -5.32202i q^{29} +(4.37714 - 2.52714i) q^{31} +(-3.79676 + 8.25077i) q^{33} +(-0.818964 - 0.512579i) q^{35} +(-0.305755 + 0.529584i) q^{37} +(10.7056 - 6.18087i) q^{39} +4.51413 q^{41} +7.03973i q^{43} +(1.42284 - 0.821474i) q^{45} +(-0.505569 - 0.291890i) q^{47} +(6.98223 + 0.498510i) q^{49} +(-7.88229 - 4.55084i) q^{51} +(6.87072 + 11.9004i) q^{53} +(1.20597 - 0.111652i) q^{55} -9.10169i q^{57} +(2.95431 - 1.70567i) q^{59} +(-5.72010 + 9.90750i) q^{61} +(-6.31534 + 10.0902i) q^{63} +(-1.42757 - 0.824210i) q^{65} +(5.43739 + 9.41784i) q^{67} +13.9953i q^{69} +9.37564 q^{71} +(1.56695 + 2.71404i) q^{73} +(11.5416 + 6.66356i) q^{75} +(-7.33858 + 4.81095i) q^{77} +(-10.3291 - 5.96351i) q^{79} +(1.12757 + 1.95301i) q^{81} +14.7639 q^{83} +1.21370i q^{85} +(7.28705 + 12.6215i) q^{87} +(7.38527 + 4.26389i) q^{89} +(11.9357 + 0.425544i) q^{91} +(-6.92047 + 11.9866i) q^{93} +(-1.05109 + 0.606848i) q^{95} -9.15963i q^{97} +(-1.37564 - 14.8584i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{5} + 4 q^{9} + q^{11} - 16 q^{15} + 2 q^{23} - 6 q^{25} + 12 q^{31} + 21 q^{33} + 2 q^{37} - 18 q^{45} + 12 q^{47} - 4 q^{49} + 8 q^{53} + 30 q^{59} + 18 q^{67} + 76 q^{71} - 6 q^{75} - 25 q^{77}+ \cdots + 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1232\mathbb{Z}\right)^\times\).

\(n\) \(309\) \(353\) \(463\) \(673\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.37157 + 1.36923i −1.36923 + 0.790524i −0.990829 0.135118i \(-0.956859\pi\)
−0.378399 + 0.925643i \(0.623525\pi\)
\(4\) 0 0
\(5\) 0.316246 + 0.182585i 0.141429 + 0.0816543i 0.569045 0.822306i \(-0.307313\pi\)
−0.427616 + 0.903961i \(0.640646\pi\)
\(6\) 0 0
\(7\) −2.64407 0.0942693i −0.999365 0.0356305i
\(8\) 0 0
\(9\) 2.24957 3.89637i 0.749857 1.29879i
\(10\) 0 0
\(11\) 2.70717 1.91604i 0.816243 0.577709i
\(12\) 0 0
\(13\) −4.51413 −1.25199 −0.625997 0.779826i \(-0.715308\pi\)
−0.625997 + 0.779826i \(0.715308\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 1.66183 + 2.87837i 0.403052 + 0.698107i 0.994093 0.108535i \(-0.0346159\pi\)
−0.591040 + 0.806642i \(0.701283\pi\)
\(18\) 0 0
\(19\) −1.66183 + 2.87837i −0.381249 + 0.660343i −0.991241 0.132064i \(-0.957839\pi\)
0.609992 + 0.792408i \(0.291173\pi\)
\(20\) 0 0
\(21\) 6.39968 3.39677i 1.39653 0.741236i
\(22\) 0 0
\(23\) 2.55533 4.42596i 0.532822 0.922876i −0.466443 0.884551i \(-0.654465\pi\)
0.999265 0.0383243i \(-0.0122020\pi\)
\(24\) 0 0
\(25\) −2.43333 4.21464i −0.486665 0.842929i
\(26\) 0 0
\(27\) 4.10534i 0.790073i
\(28\) 0 0
\(29\) 5.32202i 0.988274i −0.869384 0.494137i \(-0.835484\pi\)
0.869384 0.494137i \(-0.164516\pi\)
\(30\) 0 0
\(31\) 4.37714 2.52714i 0.786158 0.453888i −0.0524503 0.998624i \(-0.516703\pi\)
0.838608 + 0.544735i \(0.183370\pi\)
\(32\) 0 0
\(33\) −3.79676 + 8.25077i −0.660930 + 1.43627i
\(34\) 0 0
\(35\) −0.818964 0.512579i −0.138430 0.0866417i
\(36\) 0 0
\(37\) −0.305755 + 0.529584i −0.0502659 + 0.0870630i −0.890064 0.455836i \(-0.849340\pi\)
0.839798 + 0.542899i \(0.182674\pi\)
\(38\) 0 0
\(39\) 10.7056 6.18087i 1.71427 0.989731i
\(40\) 0 0
\(41\) 4.51413 0.704988 0.352494 0.935814i \(-0.385334\pi\)
0.352494 + 0.935814i \(0.385334\pi\)
\(42\) 0 0
\(43\) 7.03973i 1.07355i 0.843726 + 0.536774i \(0.180357\pi\)
−0.843726 + 0.536774i \(0.819643\pi\)
\(44\) 0 0
\(45\) 1.42284 0.821474i 0.212104 0.122458i
\(46\) 0 0
\(47\) −0.505569 0.291890i −0.0737448 0.0425766i 0.462674 0.886528i \(-0.346890\pi\)
−0.536419 + 0.843952i \(0.680223\pi\)
\(48\) 0 0
\(49\) 6.98223 + 0.498510i 0.997461 + 0.0712157i
\(50\) 0 0
\(51\) −7.88229 4.55084i −1.10374 0.637245i
\(52\) 0 0
\(53\) 6.87072 + 11.9004i 0.943765 + 1.63465i 0.758204 + 0.652017i \(0.226077\pi\)
0.185561 + 0.982633i \(0.440590\pi\)
\(54\) 0 0
\(55\) 1.20597 0.111652i 0.162613 0.0150552i
\(56\) 0 0
\(57\) 9.10169i 1.20555i
\(58\) 0 0
\(59\) 2.95431 1.70567i 0.384618 0.222059i −0.295208 0.955433i \(-0.595389\pi\)
0.679826 + 0.733374i \(0.262055\pi\)
\(60\) 0 0
\(61\) −5.72010 + 9.90750i −0.732384 + 1.26853i 0.223478 + 0.974709i \(0.428259\pi\)
−0.955862 + 0.293817i \(0.905074\pi\)
\(62\) 0 0
\(63\) −6.31534 + 10.0902i −0.795658 + 1.27125i
\(64\) 0 0
\(65\) −1.42757 0.824210i −0.177069 0.102231i
\(66\) 0 0
\(67\) 5.43739 + 9.41784i 0.664283 + 1.15057i 0.979479 + 0.201545i \(0.0645963\pi\)
−0.315196 + 0.949027i \(0.602070\pi\)
\(68\) 0 0
\(69\) 13.9953i 1.68484i
\(70\) 0 0
\(71\) 9.37564 1.11268 0.556342 0.830954i \(-0.312205\pi\)
0.556342 + 0.830954i \(0.312205\pi\)
\(72\) 0 0
\(73\) 1.56695 + 2.71404i 0.183398 + 0.317655i 0.943036 0.332692i \(-0.107957\pi\)
−0.759637 + 0.650347i \(0.774624\pi\)
\(74\) 0 0
\(75\) 11.5416 + 6.66356i 1.33271 + 0.769441i
\(76\) 0 0
\(77\) −7.33858 + 4.81095i −0.836309 + 0.548259i
\(78\) 0 0
\(79\) −10.3291 5.96351i −1.16211 0.670947i −0.210305 0.977636i \(-0.567446\pi\)
−0.951810 + 0.306689i \(0.900779\pi\)
\(80\) 0 0
\(81\) 1.12757 + 1.95301i 0.125286 + 0.217001i
\(82\) 0 0
\(83\) 14.7639 1.62054 0.810272 0.586054i \(-0.199319\pi\)
0.810272 + 0.586054i \(0.199319\pi\)
\(84\) 0 0
\(85\) 1.21370i 0.131644i
\(86\) 0 0
\(87\) 7.28705 + 12.6215i 0.781254 + 1.35317i
\(88\) 0 0
\(89\) 7.38527 + 4.26389i 0.782837 + 0.451971i 0.837435 0.546537i \(-0.184054\pi\)
−0.0545977 + 0.998508i \(0.517388\pi\)
\(90\) 0 0
\(91\) 11.9357 + 0.425544i 1.25120 + 0.0446091i
\(92\) 0 0
\(93\) −6.92047 + 11.9866i −0.717620 + 1.24295i
\(94\) 0 0
\(95\) −1.05109 + 0.606848i −0.107840 + 0.0622613i
\(96\) 0 0
\(97\) 9.15963i 0.930019i −0.885306 0.465010i \(-0.846051\pi\)
0.885306 0.465010i \(-0.153949\pi\)
\(98\) 0 0
\(99\) −1.37564 14.8584i −0.138257 1.49333i
\(100\) 0 0
\(101\) −6.69182 11.5906i −0.665861 1.15330i −0.979051 0.203614i \(-0.934731\pi\)
0.313190 0.949690i \(-0.398602\pi\)
\(102\) 0 0
\(103\) 5.92284 + 3.41955i 0.583594 + 0.336938i 0.762561 0.646917i \(-0.223942\pi\)
−0.178966 + 0.983855i \(0.557275\pi\)
\(104\) 0 0
\(105\) 2.64407 + 0.0942693i 0.258035 + 0.00919974i
\(106\) 0 0
\(107\) −9.65449 5.57402i −0.933335 0.538861i −0.0454701 0.998966i \(-0.514479\pi\)
−0.887865 + 0.460105i \(0.847812\pi\)
\(108\) 0 0
\(109\) 9.65449 5.57402i 0.924732 0.533895i 0.0395907 0.999216i \(-0.487395\pi\)
0.885142 + 0.465321i \(0.154061\pi\)
\(110\) 0 0
\(111\) 1.67460i 0.158946i
\(112\) 0 0
\(113\) 8.84567 0.832131 0.416065 0.909335i \(-0.363409\pi\)
0.416065 + 0.909335i \(0.363409\pi\)
\(114\) 0 0
\(115\) 1.61622 0.933127i 0.150714 0.0870145i
\(116\) 0 0
\(117\) −10.1549 + 17.5887i −0.938817 + 1.62608i
\(118\) 0 0
\(119\) −4.12265 7.76727i −0.377923 0.712025i
\(120\) 0 0
\(121\) 3.65756 10.3741i 0.332506 0.943101i
\(122\) 0 0
\(123\) −10.7056 + 6.18087i −0.965290 + 0.557310i
\(124\) 0 0
\(125\) 3.60300i 0.322262i
\(126\) 0 0
\(127\) 7.03973i 0.624675i −0.949971 0.312337i \(-0.898888\pi\)
0.949971 0.312337i \(-0.101112\pi\)
\(128\) 0 0
\(129\) −9.63899 16.6952i −0.848666 1.46993i
\(130\) 0 0
\(131\) −4.43475 + 7.68122i −0.387466 + 0.671111i −0.992108 0.125386i \(-0.959983\pi\)
0.604642 + 0.796498i \(0.293316\pi\)
\(132\) 0 0
\(133\) 4.66533 7.45396i 0.404536 0.646340i
\(134\) 0 0
\(135\) −0.749572 + 1.29830i −0.0645128 + 0.111740i
\(136\) 0 0
\(137\) −4.28798 7.42700i −0.366347 0.634532i 0.622644 0.782505i \(-0.286058\pi\)
−0.988991 + 0.147973i \(0.952725\pi\)
\(138\) 0 0
\(139\) 12.8204 1.08741 0.543707 0.839275i \(-0.317020\pi\)
0.543707 + 0.839275i \(0.317020\pi\)
\(140\) 0 0
\(141\) 1.59866 0.134631
\(142\) 0 0
\(143\) −12.2205 + 8.64926i −1.02193 + 0.723288i
\(144\) 0 0
\(145\) 0.971718 1.68307i 0.0806968 0.139771i
\(146\) 0 0
\(147\) −17.2414 + 8.37801i −1.42205 + 0.691007i
\(148\) 0 0
\(149\) 18.5879 + 10.7317i 1.52278 + 0.879176i 0.999637 + 0.0269298i \(0.00857307\pi\)
0.523141 + 0.852246i \(0.324760\pi\)
\(150\) 0 0
\(151\) 1.05109 0.606848i 0.0855367 0.0493846i −0.456622 0.889661i \(-0.650941\pi\)
0.542158 + 0.840276i \(0.317607\pi\)
\(152\) 0 0
\(153\) 14.9536 1.20893
\(154\) 0 0
\(155\) 1.84567 0.148248
\(156\) 0 0
\(157\) 13.8949 8.02223i 1.10893 0.640243i 0.170381 0.985378i \(-0.445500\pi\)
0.938553 + 0.345135i \(0.112167\pi\)
\(158\) 0 0
\(159\) −32.5888 18.8152i −2.58446 1.49214i
\(160\) 0 0
\(161\) −7.17370 + 11.4617i −0.565367 + 0.903305i
\(162\) 0 0
\(163\) −9.61878 + 16.6602i −0.753401 + 1.30493i 0.192764 + 0.981245i \(0.438255\pi\)
−0.946165 + 0.323684i \(0.895079\pi\)
\(164\) 0 0
\(165\) −2.70717 + 1.91604i −0.210753 + 0.149164i
\(166\) 0 0
\(167\) −0.189746 −0.0146830 −0.00734151 0.999973i \(-0.502337\pi\)
−0.00734151 + 0.999973i \(0.502337\pi\)
\(168\) 0 0
\(169\) 7.37735 0.567489
\(170\) 0 0
\(171\) 7.47680 + 12.9502i 0.571765 + 0.990326i
\(172\) 0 0
\(173\) −11.3008 + 19.5736i −0.859185 + 1.48815i 0.0135217 + 0.999909i \(0.495696\pi\)
−0.872707 + 0.488244i \(0.837638\pi\)
\(174\) 0 0
\(175\) 6.03658 + 11.3732i 0.456322 + 0.859734i
\(176\) 0 0
\(177\) −4.67090 + 8.09024i −0.351086 + 0.608100i
\(178\) 0 0
\(179\) −3.44231 5.96226i −0.257290 0.445640i 0.708225 0.705987i \(-0.249496\pi\)
−0.965515 + 0.260347i \(0.916163\pi\)
\(180\) 0 0
\(181\) 20.3397i 1.51184i −0.654664 0.755920i \(-0.727190\pi\)
0.654664 0.755920i \(-0.272810\pi\)
\(182\) 0 0
\(183\) 31.3285i 2.31587i
\(184\) 0 0
\(185\) −0.193388 + 0.111652i −0.0142181 + 0.00820885i
\(186\) 0 0
\(187\) 10.0139 + 4.60811i 0.732291 + 0.336978i
\(188\) 0 0
\(189\) 0.387007 10.8548i 0.0281506 0.789571i
\(190\) 0 0
\(191\) 1.50000 2.59808i 0.108536 0.187990i −0.806641 0.591041i \(-0.798717\pi\)
0.915177 + 0.403051i \(0.132050\pi\)
\(192\) 0 0
\(193\) 22.4623 12.9686i 1.61687 0.933500i 0.629145 0.777288i \(-0.283405\pi\)
0.987724 0.156212i \(-0.0499282\pi\)
\(194\) 0 0
\(195\) 4.51413 0.323263
\(196\) 0 0
\(197\) 15.7067i 1.11906i −0.828812 0.559528i \(-0.810983\pi\)
0.828812 0.559528i \(-0.189017\pi\)
\(198\) 0 0
\(199\) 1.63099 0.941651i 0.115618 0.0667519i −0.441076 0.897470i \(-0.645403\pi\)
0.556694 + 0.830718i \(0.312070\pi\)
\(200\) 0 0
\(201\) −25.7903 14.8901i −1.81911 1.05026i
\(202\) 0 0
\(203\) −0.501703 + 14.0718i −0.0352126 + 0.987646i
\(204\) 0 0
\(205\) 1.42757 + 0.824210i 0.0997061 + 0.0575653i
\(206\) 0 0
\(207\) −11.4968 19.9130i −0.799082 1.38405i
\(208\) 0 0
\(209\) 1.01623 + 10.9764i 0.0702938 + 0.759252i
\(210\) 0 0
\(211\) 11.5135i 0.792621i 0.918117 + 0.396310i \(0.129710\pi\)
−0.918117 + 0.396310i \(0.870290\pi\)
\(212\) 0 0
\(213\) −22.2350 + 12.8374i −1.52352 + 0.879603i
\(214\) 0 0
\(215\) −1.28535 + 2.22628i −0.0876598 + 0.151831i
\(216\) 0 0
\(217\) −11.8117 + 6.26932i −0.801831 + 0.425589i
\(218\) 0 0
\(219\) −7.43229 4.29104i −0.502228 0.289961i
\(220\) 0 0
\(221\) −7.50170 12.9933i −0.504619 0.874026i
\(222\) 0 0
\(223\) 0.120749i 0.00808595i −0.999992 0.00404298i \(-0.998713\pi\)
0.999992 0.00404298i \(-0.00128692\pi\)
\(224\) 0 0
\(225\) −21.8958 −1.45972
\(226\) 0 0
\(227\) 0.595236 + 1.03098i 0.0395072 + 0.0684285i 0.885103 0.465395i \(-0.154088\pi\)
−0.845596 + 0.533824i \(0.820755\pi\)
\(228\) 0 0
\(229\) −13.8401 7.99058i −0.914579 0.528032i −0.0326773 0.999466i \(-0.510403\pi\)
−0.881902 + 0.471434i \(0.843737\pi\)
\(230\) 0 0
\(231\) 10.8167 21.4577i 0.711686 1.41181i
\(232\) 0 0
\(233\) −7.14767 4.12671i −0.468260 0.270350i 0.247251 0.968951i \(-0.420473\pi\)
−0.715511 + 0.698602i \(0.753806\pi\)
\(234\) 0 0
\(235\) −0.106589 0.184618i −0.00695313 0.0120432i
\(236\) 0 0
\(237\) 32.6616 2.12160
\(238\) 0 0
\(239\) 2.89462i 0.187238i −0.995608 0.0936188i \(-0.970157\pi\)
0.995608 0.0936188i \(-0.0298435\pi\)
\(240\) 0 0
\(241\) −0.376482 0.652086i −0.0242513 0.0420045i 0.853645 0.520855i \(-0.174387\pi\)
−0.877896 + 0.478851i \(0.841054\pi\)
\(242\) 0 0
\(243\) −16.0142 9.24581i −1.02731 0.593119i
\(244\) 0 0
\(245\) 2.11708 + 1.43250i 0.135255 + 0.0915190i
\(246\) 0 0
\(247\) 7.50170 12.9933i 0.477322 0.826746i
\(248\) 0 0
\(249\) −35.0136 + 20.2151i −2.21889 + 1.28108i
\(250\) 0 0
\(251\) 3.66515i 0.231342i −0.993288 0.115671i \(-0.963098\pi\)
0.993288 0.115671i \(-0.0369018\pi\)
\(252\) 0 0
\(253\) −1.56261 16.8779i −0.0982404 1.06111i
\(254\) 0 0
\(255\) −1.66183 2.87837i −0.104068 0.180251i
\(256\) 0 0
\(257\) −3.51220 2.02777i −0.219085 0.126489i 0.386441 0.922314i \(-0.373704\pi\)
−0.605527 + 0.795825i \(0.707037\pi\)
\(258\) 0 0
\(259\) 0.858363 1.37143i 0.0533361 0.0852168i
\(260\) 0 0
\(261\) −20.7366 11.9723i −1.28356 0.741064i
\(262\) 0 0
\(263\) −7.88229 + 4.55084i −0.486043 + 0.280617i −0.722931 0.690920i \(-0.757206\pi\)
0.236888 + 0.971537i \(0.423872\pi\)
\(264\) 0 0
\(265\) 5.01795i 0.308250i
\(266\) 0 0
\(267\) −23.3529 −1.42918
\(268\) 0 0
\(269\) 5.64213 3.25748i 0.344006 0.198612i −0.318036 0.948079i \(-0.603023\pi\)
0.662042 + 0.749466i \(0.269690\pi\)
\(270\) 0 0
\(271\) 4.01376 6.95204i 0.243819 0.422307i −0.717980 0.696064i \(-0.754933\pi\)
0.961799 + 0.273757i \(0.0882664\pi\)
\(272\) 0 0
\(273\) −28.8890 + 15.3335i −1.74844 + 0.928023i
\(274\) 0 0
\(275\) −14.6629 6.74741i −0.884204 0.406884i
\(276\) 0 0
\(277\) 1.84572 1.06562i 0.110898 0.0640272i −0.443525 0.896262i \(-0.646272\pi\)
0.554423 + 0.832235i \(0.312939\pi\)
\(278\) 0 0
\(279\) 22.7400i 1.36141i
\(280\) 0 0
\(281\) 4.54304i 0.271015i −0.990776 0.135508i \(-0.956733\pi\)
0.990776 0.135508i \(-0.0432665\pi\)
\(282\) 0 0
\(283\) −15.9098 27.5566i −0.945741 1.63807i −0.754261 0.656574i \(-0.772005\pi\)
−0.191479 0.981497i \(-0.561328\pi\)
\(284\) 0 0
\(285\) 1.66183 2.87837i 0.0984382 0.170500i
\(286\) 0 0
\(287\) −11.9357 0.425544i −0.704541 0.0251191i
\(288\) 0 0
\(289\) 2.97666 5.15572i 0.175097 0.303278i
\(290\) 0 0
\(291\) 12.5416 + 21.7227i 0.735203 + 1.27341i
\(292\) 0 0
\(293\) −14.3263 −0.836954 −0.418477 0.908227i \(-0.637436\pi\)
−0.418477 + 0.908227i \(0.637436\pi\)
\(294\) 0 0
\(295\) 1.24572 0.0725284
\(296\) 0 0
\(297\) 7.86600 + 11.1139i 0.456432 + 0.644891i
\(298\) 0 0
\(299\) −11.5351 + 19.9793i −0.667090 + 1.15543i
\(300\) 0 0
\(301\) 0.663630 18.6135i 0.0382510 1.07287i
\(302\) 0 0
\(303\) 31.7403 + 18.3253i 1.82343 + 1.05276i
\(304\) 0 0
\(305\) −3.61792 + 2.08880i −0.207161 + 0.119605i
\(306\) 0 0
\(307\) 25.9253 1.47963 0.739817 0.672808i \(-0.234912\pi\)
0.739817 + 0.672808i \(0.234912\pi\)
\(308\) 0 0
\(309\) −18.7286 −1.06543
\(310\) 0 0
\(311\) 20.9162 12.0760i 1.18605 0.684766i 0.228643 0.973510i \(-0.426571\pi\)
0.957406 + 0.288745i \(0.0932379\pi\)
\(312\) 0 0
\(313\) 23.8345 + 13.7609i 1.34721 + 0.777810i 0.987853 0.155391i \(-0.0496638\pi\)
0.359354 + 0.933201i \(0.382997\pi\)
\(314\) 0 0
\(315\) −3.83952 + 2.03791i −0.216332 + 0.114823i
\(316\) 0 0
\(317\) 7.28798 12.6232i 0.409334 0.708987i −0.585481 0.810686i \(-0.699094\pi\)
0.994815 + 0.101699i \(0.0324278\pi\)
\(318\) 0 0
\(319\) −10.1972 14.4076i −0.570934 0.806672i
\(320\) 0 0
\(321\) 30.5284 1.70393
\(322\) 0 0
\(323\) −11.0467 −0.614654
\(324\) 0 0
\(325\) 10.9843 + 19.0254i 0.609302 + 1.05534i
\(326\) 0 0
\(327\) −15.2642 + 26.4384i −0.844113 + 1.46205i
\(328\) 0 0
\(329\) 1.30924 + 0.819439i 0.0721810 + 0.0451771i
\(330\) 0 0
\(331\) 12.2414 21.2028i 0.672850 1.16541i −0.304242 0.952595i \(-0.598403\pi\)
0.977092 0.212816i \(-0.0682634\pi\)
\(332\) 0 0
\(333\) 1.37564 + 2.38267i 0.0753845 + 0.130570i
\(334\) 0 0
\(335\) 3.97114i 0.216966i
\(336\) 0 0
\(337\) 4.14510i 0.225798i 0.993606 + 0.112899i \(0.0360137\pi\)
−0.993606 + 0.112899i \(0.963986\pi\)
\(338\) 0 0
\(339\) −20.9782 + 12.1117i −1.13938 + 0.657819i
\(340\) 0 0
\(341\) 7.00756 15.2282i 0.379481 0.824653i
\(342\) 0 0
\(343\) −18.4145 1.97630i −0.994290 0.106710i
\(344\) 0 0
\(345\) −2.55533 + 4.42596i −0.137574 + 0.238285i
\(346\) 0 0
\(347\) 14.6535 8.46019i 0.786640 0.454167i −0.0521382 0.998640i \(-0.516604\pi\)
0.838778 + 0.544473i \(0.183270\pi\)
\(348\) 0 0
\(349\) −19.0882 −1.02177 −0.510885 0.859649i \(-0.670682\pi\)
−0.510885 + 0.859649i \(0.670682\pi\)
\(350\) 0 0
\(351\) 18.5320i 0.989166i
\(352\) 0 0
\(353\) −19.5015 + 11.2592i −1.03796 + 0.599266i −0.919255 0.393663i \(-0.871208\pi\)
−0.118705 + 0.992930i \(0.537874\pi\)
\(354\) 0 0
\(355\) 2.96501 + 1.71185i 0.157366 + 0.0908554i
\(356\) 0 0
\(357\) 20.4123 + 12.7758i 1.08034 + 0.676168i
\(358\) 0 0
\(359\) 21.4247 + 12.3695i 1.13075 + 0.652839i 0.944124 0.329591i \(-0.106911\pi\)
0.186627 + 0.982431i \(0.440244\pi\)
\(360\) 0 0
\(361\) 3.97666 + 6.88777i 0.209298 + 0.362514i
\(362\) 0 0
\(363\) 5.53035 + 29.6110i 0.290268 + 1.55417i
\(364\) 0 0
\(365\) 1.14441i 0.0599010i
\(366\) 0 0
\(367\) −6.50706 + 3.75685i −0.339666 + 0.196106i −0.660124 0.751156i \(-0.729496\pi\)
0.320458 + 0.947263i \(0.396163\pi\)
\(368\) 0 0
\(369\) 10.1549 17.5887i 0.528641 0.915632i
\(370\) 0 0
\(371\) −17.0448 32.1133i −0.884923 1.66724i
\(372\) 0 0
\(373\) −4.29253 2.47829i −0.222259 0.128321i 0.384737 0.923026i \(-0.374292\pi\)
−0.606996 + 0.794705i \(0.707625\pi\)
\(374\) 0 0
\(375\) 4.93333 + 8.54477i 0.254756 + 0.441250i
\(376\) 0 0
\(377\) 24.0243i 1.23731i
\(378\) 0 0
\(379\) 31.3080 1.60818 0.804091 0.594506i \(-0.202652\pi\)
0.804091 + 0.594506i \(0.202652\pi\)
\(380\) 0 0
\(381\) 9.63899 + 16.6952i 0.493820 + 0.855322i
\(382\) 0 0
\(383\) 14.1421 + 8.16495i 0.722628 + 0.417210i 0.815719 0.578448i \(-0.196341\pi\)
−0.0930910 + 0.995658i \(0.529675\pi\)
\(384\) 0 0
\(385\) −3.19920 + 0.181531i −0.163046 + 0.00925167i
\(386\) 0 0
\(387\) 27.4294 + 15.8364i 1.39431 + 0.805008i
\(388\) 0 0
\(389\) −8.74465 15.1462i −0.443371 0.767942i 0.554566 0.832140i \(-0.312884\pi\)
−0.997937 + 0.0641981i \(0.979551\pi\)
\(390\) 0 0
\(391\) 16.9861 0.859022
\(392\) 0 0
\(393\) 24.2888i 1.22521i
\(394\) 0 0
\(395\) −2.17769 3.77187i −0.109571 0.189783i
\(396\) 0 0
\(397\) 19.3203 + 11.1546i 0.969658 + 0.559832i 0.899132 0.437678i \(-0.144199\pi\)
0.0705261 + 0.997510i \(0.477532\pi\)
\(398\) 0 0
\(399\) −0.858010 + 24.0655i −0.0429542 + 1.20478i
\(400\) 0 0
\(401\) −15.4179 + 26.7046i −0.769933 + 1.33356i 0.167665 + 0.985844i \(0.446377\pi\)
−0.937599 + 0.347720i \(0.886956\pi\)
\(402\) 0 0
\(403\) −19.7590 + 11.4079i −0.984265 + 0.568266i
\(404\) 0 0
\(405\) 0.823508i 0.0409204i
\(406\) 0 0
\(407\) 0.186973 + 2.01951i 0.00926789 + 0.100104i
\(408\) 0 0
\(409\) 14.6845 + 25.4343i 0.726101 + 1.25764i 0.958519 + 0.285028i \(0.0920028\pi\)
−0.232418 + 0.972616i \(0.574664\pi\)
\(410\) 0 0
\(411\) 20.3385 + 11.7425i 1.00323 + 0.579212i
\(412\) 0 0
\(413\) −7.97219 + 4.23141i −0.392286 + 0.208214i
\(414\) 0 0
\(415\) 4.66901 + 2.69565i 0.229193 + 0.132324i
\(416\) 0 0
\(417\) −30.4046 + 17.5541i −1.48892 + 0.859627i
\(418\) 0 0
\(419\) 35.2447i 1.72181i 0.508762 + 0.860907i \(0.330103\pi\)
−0.508762 + 0.860907i \(0.669897\pi\)
\(420\) 0 0
\(421\) −9.47173 −0.461624 −0.230812 0.972998i \(-0.574138\pi\)
−0.230812 + 0.972998i \(0.574138\pi\)
\(422\) 0 0
\(423\) −2.27463 + 1.31326i −0.110596 + 0.0638527i
\(424\) 0 0
\(425\) 8.08754 14.0080i 0.392303 0.679489i
\(426\) 0 0
\(427\) 16.0583 25.6569i 0.777117 1.24163i
\(428\) 0 0
\(429\) 17.1390 37.2450i 0.827481 1.79821i
\(430\) 0 0
\(431\) 22.9123 13.2284i 1.10364 0.637189i 0.166469 0.986047i \(-0.446764\pi\)
0.937176 + 0.348857i \(0.113430\pi\)
\(432\) 0 0
\(433\) 23.5184i 1.13022i 0.825015 + 0.565110i \(0.191166\pi\)
−0.825015 + 0.565110i \(0.808834\pi\)
\(434\) 0 0
\(435\) 5.32202i 0.255171i
\(436\) 0 0
\(437\) 8.49303 + 14.7104i 0.406277 + 0.703692i
\(438\) 0 0
\(439\) −12.5862 + 21.7999i −0.600705 + 1.04045i 0.392010 + 0.919961i \(0.371780\pi\)
−0.992715 + 0.120490i \(0.961553\pi\)
\(440\) 0 0
\(441\) 17.6494 26.0839i 0.840447 1.24209i
\(442\) 0 0
\(443\) −12.2936 + 21.2931i −0.584084 + 1.01166i 0.410905 + 0.911678i \(0.365213\pi\)
−0.994989 + 0.0999853i \(0.968120\pi\)
\(444\) 0 0
\(445\) 1.55704 + 2.69687i 0.0738108 + 0.127844i
\(446\) 0 0
\(447\) −58.7767 −2.78004
\(448\) 0 0
\(449\) 18.8474 0.889462 0.444731 0.895664i \(-0.353299\pi\)
0.444731 + 0.895664i \(0.353299\pi\)
\(450\) 0 0
\(451\) 12.2205 8.64926i 0.575442 0.407278i
\(452\) 0 0
\(453\) −1.66183 + 2.87837i −0.0780795 + 0.135238i
\(454\) 0 0
\(455\) 3.69691 + 2.31385i 0.173314 + 0.108475i
\(456\) 0 0
\(457\) 0.661101 + 0.381687i 0.0309250 + 0.0178546i 0.515383 0.856960i \(-0.327650\pi\)
−0.484458 + 0.874815i \(0.660983\pi\)
\(458\) 0 0
\(459\) −11.8167 + 6.82236i −0.551555 + 0.318441i
\(460\) 0 0
\(461\) 12.0034 0.559055 0.279527 0.960138i \(-0.409822\pi\)
0.279527 + 0.960138i \(0.409822\pi\)
\(462\) 0 0
\(463\) −22.8940 −1.06398 −0.531988 0.846752i \(-0.678555\pi\)
−0.531988 + 0.846752i \(0.678555\pi\)
\(464\) 0 0
\(465\) −4.37714 + 2.52714i −0.202985 + 0.117193i
\(466\) 0 0
\(467\) −31.7736 18.3445i −1.47031 0.848883i −0.470863 0.882206i \(-0.656058\pi\)
−0.999445 + 0.0333234i \(0.989391\pi\)
\(468\) 0 0
\(469\) −13.4890 25.4140i −0.622866 1.17351i
\(470\) 0 0
\(471\) −21.9685 + 38.0506i −1.01226 + 1.75328i
\(472\) 0 0
\(473\) 13.4884 + 19.0578i 0.620198 + 0.876276i
\(474\) 0 0
\(475\) 16.1751 0.742163
\(476\) 0 0
\(477\) 61.8247 2.83076
\(478\) 0 0
\(479\) −6.72668 11.6510i −0.307350 0.532346i 0.670432 0.741971i \(-0.266109\pi\)
−0.977782 + 0.209625i \(0.932776\pi\)
\(480\) 0 0
\(481\) 1.38022 2.39061i 0.0629326 0.109002i
\(482\) 0 0
\(483\) 1.31933 37.0046i 0.0600315 1.68377i
\(484\) 0 0
\(485\) 1.67241 2.89669i 0.0759401 0.131532i
\(486\) 0 0
\(487\) −15.2863 26.4766i −0.692687 1.19977i −0.970954 0.239265i \(-0.923093\pi\)
0.278267 0.960504i \(-0.410240\pi\)
\(488\) 0 0
\(489\) 52.6812i 2.38233i
\(490\) 0 0
\(491\) 40.4514i 1.82554i 0.408469 + 0.912772i \(0.366063\pi\)
−0.408469 + 0.912772i \(0.633937\pi\)
\(492\) 0 0
\(493\) 15.3187 8.84427i 0.689921 0.398326i
\(494\) 0 0
\(495\) 2.27788 4.95009i 0.102383 0.222490i
\(496\) 0 0
\(497\) −24.7899 0.883835i −1.11198 0.0396454i
\(498\) 0 0
\(499\) 8.03061 13.9094i 0.359500 0.622672i −0.628378 0.777908i \(-0.716281\pi\)
0.987877 + 0.155237i \(0.0496140\pi\)
\(500\) 0 0
\(501\) 0.449997 0.259806i 0.0201044 0.0116073i
\(502\) 0 0
\(503\) −22.2531 −0.992219 −0.496109 0.868260i \(-0.665238\pi\)
−0.496109 + 0.868260i \(0.665238\pi\)
\(504\) 0 0
\(505\) 4.88729i 0.217482i
\(506\) 0 0
\(507\) −17.4959 + 10.1013i −0.777021 + 0.448613i
\(508\) 0 0
\(509\) −22.4284 12.9490i −0.994121 0.573956i −0.0876175 0.996154i \(-0.527925\pi\)
−0.906504 + 0.422198i \(0.861259\pi\)
\(510\) 0 0
\(511\) −3.88729 7.32384i −0.171964 0.323988i
\(512\) 0 0
\(513\) −11.8167 6.82236i −0.521719 0.301215i
\(514\) 0 0
\(515\) 1.24871 + 2.16284i 0.0550249 + 0.0953060i
\(516\) 0 0
\(517\) −1.92794 + 0.178494i −0.0847906 + 0.00785016i
\(518\) 0 0
\(519\) 61.8936i 2.71683i
\(520\) 0 0
\(521\) 19.9066 11.4931i 0.872122 0.503520i 0.00406920 0.999992i \(-0.498705\pi\)
0.868053 + 0.496472i \(0.165371\pi\)
\(522\) 0 0
\(523\) 9.49961 16.4538i 0.415389 0.719475i −0.580080 0.814559i \(-0.696979\pi\)
0.995469 + 0.0950845i \(0.0303121\pi\)
\(524\) 0 0
\(525\) −29.8887 18.7069i −1.30445 0.816438i
\(526\) 0 0
\(527\) 14.5481 + 8.39936i 0.633726 + 0.365882i
\(528\) 0 0
\(529\) −1.55939 2.70095i −0.0677996 0.117432i
\(530\) 0 0
\(531\) 15.3481i 0.666051i
\(532\) 0 0
\(533\) −20.3774 −0.882641
\(534\) 0 0
\(535\) −2.03546 3.52552i −0.0880007 0.152422i
\(536\) 0 0
\(537\) 16.3274 + 9.42662i 0.704579 + 0.406789i
\(538\) 0 0
\(539\) 19.8573 12.0287i 0.855313 0.518112i
\(540\) 0 0
\(541\) −0.358135 0.206769i −0.0153974 0.00888970i 0.492282 0.870436i \(-0.336163\pi\)
−0.507679 + 0.861546i \(0.669496\pi\)
\(542\) 0 0
\(543\) 27.8497 + 48.2371i 1.19515 + 2.07005i
\(544\) 0 0
\(545\) 4.07092 0.174379
\(546\) 0 0
\(547\) 1.64842i 0.0704814i 0.999379 + 0.0352407i \(0.0112198\pi\)
−0.999379 + 0.0352407i \(0.988780\pi\)
\(548\) 0 0
\(549\) 25.7355 + 44.5753i 1.09837 + 1.90243i
\(550\) 0 0
\(551\) 15.3187 + 8.84427i 0.652600 + 0.376779i
\(552\) 0 0
\(553\) 26.7487 + 16.7417i 1.13747 + 0.711928i
\(554\) 0 0
\(555\) 0.305755 0.529584i 0.0129786 0.0224796i
\(556\) 0 0
\(557\) 28.0905 16.2181i 1.19023 0.687181i 0.231873 0.972746i \(-0.425515\pi\)
0.958359 + 0.285565i \(0.0921812\pi\)
\(558\) 0 0
\(559\) 31.7782i 1.34408i
\(560\) 0 0
\(561\) −30.0583 + 2.78289i −1.26906 + 0.117494i
\(562\) 0 0
\(563\) 12.9781 + 22.4788i 0.546964 + 0.947369i 0.998480 + 0.0551062i \(0.0175497\pi\)
−0.451517 + 0.892263i \(0.649117\pi\)
\(564\) 0 0
\(565\) 2.79741 + 1.61508i 0.117688 + 0.0679471i
\(566\) 0 0
\(567\) −2.79727 5.27019i −0.117474 0.221327i
\(568\) 0 0
\(569\) 30.0464 + 17.3473i 1.25961 + 0.727237i 0.972999 0.230810i \(-0.0741374\pi\)
0.286613 + 0.958047i \(0.407471\pi\)
\(570\) 0 0
\(571\) −29.9681 + 17.3021i −1.25412 + 0.724069i −0.971926 0.235287i \(-0.924397\pi\)
−0.282199 + 0.959356i \(0.591064\pi\)
\(572\) 0 0
\(573\) 8.21537i 0.343202i
\(574\) 0 0
\(575\) −24.8718 −1.03722
\(576\) 0 0
\(577\) 0.406054 0.234435i 0.0169042 0.00975966i −0.491524 0.870864i \(-0.663560\pi\)
0.508428 + 0.861104i \(0.330227\pi\)
\(578\) 0 0
\(579\) −35.5139 + 61.5119i −1.47591 + 2.55635i
\(580\) 0 0
\(581\) −39.0367 1.39178i −1.61951 0.0577407i
\(582\) 0 0
\(583\) 41.4019 + 19.0519i 1.71469 + 0.789050i
\(584\) 0 0
\(585\) −6.42286 + 3.70824i −0.265553 + 0.153317i
\(586\) 0 0
\(587\) 44.9718i 1.85618i −0.372352 0.928091i \(-0.621449\pi\)
0.372352 0.928091i \(-0.378551\pi\)
\(588\) 0 0
\(589\) 16.7987i 0.692179i
\(590\) 0 0
\(591\) 21.5060 + 37.2496i 0.884640 + 1.53224i
\(592\) 0 0
\(593\) −7.75841 + 13.4380i −0.318600 + 0.551831i −0.980196 0.198029i \(-0.936546\pi\)
0.661596 + 0.749860i \(0.269879\pi\)
\(594\) 0 0
\(595\) 0.114414 3.20910i 0.00469053 0.131560i
\(596\) 0 0
\(597\) −2.57867 + 4.46639i −0.105538 + 0.182797i
\(598\) 0 0
\(599\) 4.44231 + 7.69431i 0.181508 + 0.314381i 0.942394 0.334504i \(-0.108569\pi\)
−0.760886 + 0.648885i \(0.775236\pi\)
\(600\) 0 0
\(601\) 10.2497 0.418095 0.209048 0.977905i \(-0.432964\pi\)
0.209048 + 0.977905i \(0.432964\pi\)
\(602\) 0 0
\(603\) 48.9272 1.99247
\(604\) 0 0
\(605\) 3.05084 2.61296i 0.124034 0.106232i
\(606\) 0 0
\(607\) 21.5505 37.3266i 0.874710 1.51504i 0.0176380 0.999844i \(-0.494385\pi\)
0.857072 0.515197i \(-0.172281\pi\)
\(608\) 0 0
\(609\) −18.0777 34.0592i −0.732544 1.38015i
\(610\) 0 0
\(611\) 2.28220 + 1.31763i 0.0923281 + 0.0533056i
\(612\) 0 0
\(613\) 12.0830 6.97610i 0.488026 0.281762i −0.235729 0.971819i \(-0.575748\pi\)
0.723755 + 0.690057i \(0.242415\pi\)
\(614\) 0 0
\(615\) −4.51413 −0.182027
\(616\) 0 0
\(617\) −13.7915 −0.555226 −0.277613 0.960693i \(-0.589543\pi\)
−0.277613 + 0.960693i \(0.589543\pi\)
\(618\) 0 0
\(619\) 30.0553 17.3524i 1.20803 0.697454i 0.245698 0.969347i \(-0.420983\pi\)
0.962328 + 0.271893i \(0.0876496\pi\)
\(620\) 0 0
\(621\) 18.1700 + 10.4905i 0.729139 + 0.420968i
\(622\) 0 0
\(623\) −19.1252 11.9702i −0.766236 0.479577i
\(624\) 0 0
\(625\) −11.5088 + 19.9338i −0.460351 + 0.797351i
\(626\) 0 0
\(627\) −17.4392 24.6398i −0.696455 0.984020i
\(628\) 0 0
\(629\) −2.03245 −0.0810391
\(630\) 0 0
\(631\) 10.9790 0.437067 0.218533 0.975829i \(-0.429873\pi\)
0.218533 + 0.975829i \(0.429873\pi\)
\(632\) 0 0
\(633\) −15.7646 27.3051i −0.626586 1.08528i
\(634\) 0 0
\(635\) 1.28535 2.22628i 0.0510074 0.0883474i
\(636\) 0 0
\(637\) −31.5187 2.25034i −1.24881 0.0891616i
\(638\) 0 0
\(639\) 21.0912 36.5310i 0.834354 1.44514i
\(640\) 0 0
\(641\) −6.85401 11.8715i −0.270717 0.468896i 0.698329 0.715777i \(-0.253927\pi\)
−0.969046 + 0.246882i \(0.920594\pi\)
\(642\) 0 0
\(643\) 10.7909i 0.425553i 0.977101 + 0.212777i \(0.0682507\pi\)
−0.977101 + 0.212777i \(0.931749\pi\)
\(644\) 0 0
\(645\) 7.03973i 0.277189i
\(646\) 0 0
\(647\) −0.193388 + 0.111652i −0.00760286 + 0.00438951i −0.503797 0.863822i \(-0.668064\pi\)
0.496194 + 0.868212i \(0.334731\pi\)
\(648\) 0 0
\(649\) 4.72968 10.2781i 0.185656 0.403451i
\(650\) 0 0
\(651\) 19.4282 31.0411i 0.761451 1.21660i
\(652\) 0 0
\(653\) −11.8497 + 20.5243i −0.463716 + 0.803180i −0.999143 0.0414022i \(-0.986818\pi\)
0.535427 + 0.844582i \(0.320151\pi\)
\(654\) 0 0
\(655\) −2.80494 + 1.61944i −0.109598 + 0.0632766i
\(656\) 0 0
\(657\) 14.0999 0.550090
\(658\) 0 0
\(659\) 32.3521i 1.26026i −0.776490 0.630130i \(-0.783002\pi\)
0.776490 0.630130i \(-0.216998\pi\)
\(660\) 0 0
\(661\) −35.9690 + 20.7667i −1.39903 + 0.807732i −0.994291 0.106699i \(-0.965972\pi\)
−0.404742 + 0.914431i \(0.632639\pi\)
\(662\) 0 0
\(663\) 35.5817 + 20.5431i 1.38188 + 0.797827i
\(664\) 0 0
\(665\) 2.83637 1.50546i 0.109990 0.0583794i
\(666\) 0 0
\(667\) −23.5550 13.5995i −0.912054 0.526574i
\(668\) 0 0
\(669\) 0.165333 + 0.286365i 0.00639214 + 0.0110715i
\(670\) 0 0
\(671\) 3.49790 + 37.7813i 0.135035 + 1.45853i
\(672\) 0 0
\(673\) 24.8621i 0.958362i 0.877716 + 0.479181i \(0.159066\pi\)
−0.877716 + 0.479181i \(0.840934\pi\)
\(674\) 0 0
\(675\) 17.3025 9.98962i 0.665975 0.384501i
\(676\) 0 0
\(677\) 12.6335 21.8819i 0.485546 0.840990i −0.514316 0.857601i \(-0.671954\pi\)
0.999862 + 0.0166108i \(0.00528763\pi\)
\(678\) 0 0
\(679\) −0.863472 + 24.2187i −0.0331370 + 0.929429i
\(680\) 0 0
\(681\) −2.82329 1.63003i −0.108189 0.0624628i
\(682\) 0 0
\(683\) −4.64769 8.05004i −0.177839 0.308026i 0.763301 0.646043i \(-0.223577\pi\)
−0.941140 + 0.338017i \(0.890244\pi\)
\(684\) 0 0
\(685\) 3.13168i 0.119655i
\(686\) 0 0
\(687\) 43.7637 1.66969
\(688\) 0 0
\(689\) −31.0153 53.7201i −1.18159 2.04657i
\(690\) 0 0
\(691\) −14.1609 8.17577i −0.538704 0.311021i 0.205849 0.978584i \(-0.434004\pi\)
−0.744554 + 0.667563i \(0.767338\pi\)
\(692\) 0 0
\(693\) 2.23659 + 39.4164i 0.0849610 + 1.49731i
\(694\) 0 0
\(695\) 4.05440 + 2.34081i 0.153792 + 0.0887920i
\(696\) 0 0
\(697\) 7.50170 + 12.9933i 0.284147 + 0.492157i
\(698\) 0 0
\(699\) 22.6016 0.854872
\(700\) 0 0
\(701\) 42.9480i 1.62213i 0.584959 + 0.811063i \(0.301110\pi\)
−0.584959 + 0.811063i \(0.698890\pi\)
\(702\) 0 0
\(703\) −1.01623 1.76015i −0.0383277 0.0663855i
\(704\) 0 0
\(705\) 0.505569 + 0.291890i 0.0190408 + 0.0109932i
\(706\) 0 0
\(707\) 16.6010 + 31.2771i 0.624345 + 1.17630i
\(708\) 0 0
\(709\) −2.39812 + 4.15367i −0.0900634 + 0.155994i −0.907538 0.419971i \(-0.862040\pi\)
0.817474 + 0.575965i \(0.195374\pi\)
\(710\) 0 0
\(711\) −46.4721 + 26.8307i −1.74284 + 1.00623i
\(712\) 0 0
\(713\) 25.8307i 0.967368i
\(714\) 0 0
\(715\) −5.44391 + 0.504013i −0.203591 + 0.0188490i
\(716\) 0 0
\(717\) 3.96340 + 6.86481i 0.148016 + 0.256371i
\(718\) 0 0
\(719\) −2.29184 1.32319i −0.0854711 0.0493468i 0.456655 0.889644i \(-0.349047\pi\)
−0.542126 + 0.840297i \(0.682381\pi\)
\(720\) 0 0
\(721\) −15.3380 9.59988i −0.571218 0.357518i
\(722\) 0 0
\(723\) 1.78571 + 1.03098i 0.0664112 + 0.0383425i
\(724\) 0 0
\(725\) −22.4304 + 12.9502i −0.833044 + 0.480958i
\(726\) 0 0
\(727\) 17.1118i 0.634642i −0.948318 0.317321i \(-0.897217\pi\)
0.948318 0.317321i \(-0.102783\pi\)
\(728\) 0 0
\(729\) 43.8731 1.62493
\(730\) 0 0
\(731\) −20.2629 + 11.6988i −0.749452 + 0.432696i
\(732\) 0 0
\(733\) 6.17596 10.6971i 0.228114 0.395105i −0.729135 0.684370i \(-0.760077\pi\)
0.957249 + 0.289265i \(0.0934107\pi\)
\(734\) 0 0
\(735\) −6.98223 0.498510i −0.257543 0.0183878i
\(736\) 0 0
\(737\) 32.7649 + 15.0774i 1.20691 + 0.555384i
\(738\) 0 0
\(739\) −17.4903 + 10.0980i −0.643390 + 0.371462i −0.785919 0.618329i \(-0.787810\pi\)
0.142529 + 0.989791i \(0.454477\pi\)
\(740\) 0 0
\(741\) 41.0862i 1.50934i
\(742\) 0 0
\(743\) 9.44593i 0.346538i −0.984875 0.173269i \(-0.944567\pi\)
0.984875 0.173269i \(-0.0554330\pi\)
\(744\) 0 0
\(745\) 3.91889 + 6.78772i 0.143577 + 0.248683i
\(746\) 0 0
\(747\) 33.2123 57.5255i 1.21518 2.10475i
\(748\) 0 0
\(749\) 25.0017 + 15.6482i 0.913542 + 0.571774i
\(750\) 0 0
\(751\) −0.592367 + 1.02601i −0.0216158 + 0.0374397i −0.876631 0.481163i \(-0.840214\pi\)
0.855015 + 0.518603i \(0.173548\pi\)
\(752\) 0 0
\(753\) 5.01842 + 8.69216i 0.182881 + 0.316760i
\(754\) 0 0
\(755\) 0.443205 0.0161299
\(756\) 0 0
\(757\) 39.1275 1.42211 0.711057 0.703134i \(-0.248217\pi\)
0.711057 + 0.703134i \(0.248217\pi\)
\(758\) 0 0
\(759\) 26.8156 + 37.8877i 0.973344 + 1.37524i
\(760\) 0 0
\(761\) −2.17769 + 3.77187i −0.0789412 + 0.136730i −0.902793 0.430075i \(-0.858487\pi\)
0.823852 + 0.566805i \(0.191821\pi\)
\(762\) 0 0
\(763\) −26.0526 + 13.8280i −0.943168 + 0.500607i
\(764\) 0 0
\(765\) 4.72901 + 2.73030i 0.170978 + 0.0987141i
\(766\) 0 0
\(767\) −13.3361 + 7.69961i −0.481539 + 0.278017i
\(768\) 0 0
\(769\) −21.5312 −0.776434 −0.388217 0.921568i \(-0.626909\pi\)
−0.388217 + 0.921568i \(0.626909\pi\)
\(770\) 0 0
\(771\) 11.1059 0.399970
\(772\) 0 0
\(773\) 7.31569 4.22372i 0.263127 0.151917i −0.362633 0.931932i \(-0.618122\pi\)
0.625760 + 0.780015i \(0.284789\pi\)
\(774\) 0 0
\(775\) −21.3020 12.2987i −0.765191 0.441783i
\(776\) 0 0
\(777\) −0.157863 + 4.42775i −0.00566330 + 0.158845i
\(778\) 0 0
\(779\) −7.50170 + 12.9933i −0.268776 + 0.465534i
\(780\) 0 0
\(781\) 25.3815 17.9641i 0.908220 0.642807i
\(782\) 0 0
\(783\) 21.8487 0.780808
\(784\) 0 0
\(785\) 5.85894 0.209115
\(786\) 0 0
\(787\) −4.65351 8.06011i −0.165880 0.287312i 0.771088 0.636729i \(-0.219713\pi\)
−0.936967 + 0.349417i \(0.886380\pi\)
\(788\) 0 0
\(789\) 12.4623 21.5853i 0.443669 0.768457i
\(790\) 0 0
\(791\) −23.3886 0.833875i −0.831602 0.0296492i
\(792\) 0 0
\(793\) 25.8213 44.7237i 0.916940 1.58819i
\(794\) 0 0
\(795\) −6.87072 11.9004i −0.243679 0.422065i
\(796\) 0 0
\(797\) 13.1607i 0.466175i −0.972456 0.233088i \(-0.925117\pi\)
0.972456 0.233088i \(-0.0748829\pi\)
\(798\) 0 0
\(799\) 1.94029i 0.0686424i
\(800\) 0 0
\(801\) 33.2274 19.1838i 1.17403 0.677828i
\(802\) 0 0
\(803\) 9.44224 + 4.34504i 0.333209 + 0.153333i
\(804\) 0 0
\(805\) −4.36137 + 2.31489i −0.153718 + 0.0815893i
\(806\) 0 0
\(807\) −8.92047 + 15.4507i −0.314016 + 0.543891i
\(808\) 0 0
\(809\) −29.9081 + 17.2674i −1.05151 + 0.607090i −0.923072 0.384627i \(-0.874330\pi\)
−0.128439 + 0.991717i \(0.540997\pi\)
\(810\) 0 0
\(811\) 14.6941 0.515980 0.257990 0.966148i \(-0.416940\pi\)
0.257990 + 0.966148i \(0.416940\pi\)
\(812\) 0 0
\(813\) 21.9830i 0.770979i
\(814\) 0 0
\(815\) −6.08380 + 3.51248i −0.213106 + 0.123037i
\(816\) 0 0
\(817\) −20.2629 11.6988i −0.708910 0.409290i
\(818\) 0 0
\(819\) 28.5082 45.5485i 0.996158 1.59160i
\(820\) 0 0
\(821\) −28.2742 16.3241i −0.986777 0.569716i −0.0824677 0.996594i \(-0.526280\pi\)
−0.904309 + 0.426878i \(0.859613\pi\)
\(822\) 0 0
\(823\) 8.99507 + 15.5799i 0.313548 + 0.543082i 0.979128 0.203245i \(-0.0651489\pi\)
−0.665580 + 0.746327i \(0.731816\pi\)
\(824\) 0 0
\(825\) 44.0128 4.07484i 1.53233 0.141868i
\(826\) 0 0
\(827\) 46.5793i 1.61972i 0.586623 + 0.809860i \(0.300457\pi\)
−0.586623 + 0.809860i \(0.699543\pi\)
\(828\) 0 0
\(829\) −22.4802 + 12.9789i −0.780769 + 0.450777i −0.836703 0.547657i \(-0.815520\pi\)
0.0559338 + 0.998434i \(0.482186\pi\)
\(830\) 0 0
\(831\) −2.91817 + 5.05441i −0.101230 + 0.175336i
\(832\) 0 0
\(833\) 10.1684 + 20.9259i 0.352313 + 0.725038i
\(834\) 0 0
\(835\) −0.0600065 0.0346448i −0.00207661 0.00119893i
\(836\) 0 0
\(837\) 10.3748 + 17.9696i 0.358605 + 0.621122i
\(838\) 0 0
\(839\) 16.9653i 0.585707i 0.956157 + 0.292854i \(0.0946049\pi\)
−0.956157 + 0.292854i \(0.905395\pi\)
\(840\) 0 0
\(841\) 0.676145 0.0233154
\(842\) 0 0
\(843\) 6.22046 + 10.7742i 0.214244 + 0.371082i
\(844\) 0 0
\(845\) 2.33306 + 1.34699i 0.0802596 + 0.0463379i
\(846\) 0 0
\(847\) −10.6488 + 27.0851i −0.365898 + 0.930655i
\(848\) 0 0
\(849\) 75.4626 + 43.5683i 2.58987 + 1.49526i
\(850\) 0 0
\(851\) 1.56261 + 2.70652i 0.0535656 + 0.0927783i
\(852\) 0 0
\(853\) 10.5342 0.360684 0.180342 0.983604i \(-0.442280\pi\)
0.180342 + 0.983604i \(0.442280\pi\)
\(854\) 0 0
\(855\) 5.46060i 0.186748i
\(856\) 0 0
\(857\) −19.5122 33.7962i −0.666525 1.15446i −0.978869 0.204487i \(-0.934448\pi\)
0.312344 0.949969i \(-0.398886\pi\)
\(858\) 0 0
\(859\) 7.84673 + 4.53031i 0.267727 + 0.154572i 0.627854 0.778331i \(-0.283933\pi\)
−0.360127 + 0.932903i \(0.617267\pi\)
\(860\) 0 0
\(861\) 28.8890 15.3335i 0.984534 0.522563i
\(862\) 0 0
\(863\) −13.4590 + 23.3117i −0.458150 + 0.793540i −0.998863 0.0476675i \(-0.984821\pi\)
0.540713 + 0.841207i \(0.318155\pi\)
\(864\) 0 0
\(865\) −7.14767 + 4.12671i −0.243028 + 0.140312i
\(866\) 0 0
\(867\) 16.3029i 0.553675i
\(868\) 0 0
\(869\) −39.3890 + 3.64675i −1.33618 + 0.123708i
\(870\) 0 0
\(871\) −24.5451 42.5133i −0.831678 1.44051i
\(872\) 0 0
\(873\) −35.6893 20.6052i −1.20790 0.697382i
\(874\) 0 0
\(875\) −0.339652 + 9.52658i −0.0114823 + 0.322057i
\(876\) 0 0
\(877\) −16.1411 9.31905i −0.545045 0.314682i 0.202076 0.979370i \(-0.435231\pi\)
−0.747121 + 0.664688i \(0.768564\pi\)
\(878\) 0 0
\(879\) 33.9760 19.6160i 1.14598 0.661633i
\(880\) 0 0
\(881\) 17.4946i 0.589408i 0.955589 + 0.294704i \(0.0952211\pi\)
−0.955589 + 0.294704i \(0.904779\pi\)
\(882\) 0 0
\(883\) −27.8846 −0.938392 −0.469196 0.883094i \(-0.655456\pi\)
−0.469196 + 0.883094i \(0.655456\pi\)
\(884\) 0 0
\(885\) −2.95431 + 1.70567i −0.0993079 + 0.0573355i
\(886\) 0 0
\(887\) 16.3947 28.3964i 0.550480 0.953459i −0.447760 0.894154i \(-0.647778\pi\)
0.998240 0.0593050i \(-0.0188885\pi\)
\(888\) 0 0
\(889\) −0.663630 + 18.6135i −0.0222574 + 0.624278i
\(890\) 0 0
\(891\) 6.79458 + 3.12666i 0.227627 + 0.104747i
\(892\) 0 0
\(893\) 1.68034 0.970143i 0.0562304 0.0324646i
\(894\) 0 0
\(895\) 2.51405i 0.0840355i
\(896\) 0 0
\(897\) 63.1766i 2.10940i
\(898\) 0 0
\(899\) −13.4495 23.2952i −0.448566 0.776939i
\(900\) 0 0
\(901\) −22.8359 + 39.5529i −0.760774 + 1.31770i
\(902\) 0 0
\(903\) 23.9123 + 45.0520i 0.795753 + 1.49924i
\(904\) 0 0
\(905\) 3.71372 6.43235i 0.123448 0.213819i
\(906\) 0 0
\(907\) 3.27698 + 5.67589i 0.108810 + 0.188465i 0.915289 0.402799i \(-0.131963\pi\)
−0.806478 + 0.591264i \(0.798629\pi\)
\(908\) 0 0
\(909\) −60.2149 −1.99720
\(910\) 0 0
\(911\) 32.4216 1.07418 0.537088 0.843526i \(-0.319524\pi\)
0.537088 + 0.843526i \(0.319524\pi\)
\(912\) 0 0
\(913\) 39.9683 28.2882i 1.32276 0.936202i
\(914\) 0 0
\(915\) 5.72010 9.90750i 0.189101 0.327532i
\(916\) 0 0
\(917\) 12.4499 19.8916i 0.411132 0.656880i
\(918\) 0 0
\(919\) −5.04549 2.91301i −0.166435 0.0960915i 0.414469 0.910064i \(-0.363967\pi\)
−0.580904 + 0.813972i \(0.697301\pi\)
\(920\) 0 0
\(921\) −61.4837 + 35.4976i −2.02596 + 1.16969i
\(922\) 0 0
\(923\) −42.3228 −1.39307
\(924\) 0 0
\(925\) 2.97601 0.0978506
\(926\) 0 0
\(927\) 26.6477 15.3850i 0.875225 0.505311i
\(928\) 0 0
\(929\) 14.6675 + 8.46828i 0.481225 + 0.277835i 0.720927 0.693011i \(-0.243716\pi\)
−0.239702 + 0.970847i \(0.577050\pi\)
\(930\) 0 0
\(931\) −13.0382 + 19.2690i −0.427308 + 0.631516i
\(932\) 0 0
\(933\) −33.0695 + 57.2781i −1.08265 + 1.87520i
\(934\) 0 0
\(935\) 2.32549 + 3.28569i 0.0760518 + 0.107453i
\(936\) 0 0
\(937\) 8.52101 0.278369 0.139185 0.990266i \(-0.455552\pi\)
0.139185 + 0.990266i \(0.455552\pi\)
\(938\) 0 0
\(939\) −75.3671 −2.45951
\(940\) 0 0
\(941\) −2.94717 5.10465i −0.0960751 0.166407i 0.813982 0.580891i \(-0.197296\pi\)
−0.910057 + 0.414484i \(0.863962\pi\)
\(942\) 0 0
\(943\) 11.5351 19.9793i 0.375634 0.650617i
\(944\) 0 0
\(945\) 2.10431 3.36213i 0.0684532 0.109370i
\(946\) 0 0
\(947\) 2.16363 3.74752i 0.0703085 0.121778i −0.828728 0.559652i \(-0.810935\pi\)
0.899037 + 0.437874i \(0.144268\pi\)
\(948\) 0 0
\(949\) −7.07343 12.2515i −0.229613 0.397702i
\(950\) 0 0
\(951\) 39.9156i 1.29435i
\(952\) 0 0
\(953\) 42.1267i 1.36462i −0.731064 0.682309i \(-0.760976\pi\)
0.731064 0.682309i \(-0.239024\pi\)
\(954\) 0 0
\(955\) 0.948737 0.547754i 0.0307004 0.0177249i
\(956\) 0 0
\(957\) 43.9107 + 20.2064i 1.41943 + 0.653180i
\(958\) 0 0
\(959\) 10.6376 + 20.0417i 0.343506 + 0.647182i
\(960\) 0 0
\(961\) −2.72709 + 4.72345i −0.0879705 + 0.152369i
\(962\) 0 0
\(963\) −43.4369 + 25.0783i −1.39974 + 0.808138i
\(964\) 0 0
\(965\) 9.47146 0.304897
\(966\) 0 0
\(967\) 3.74288i 0.120363i 0.998187 + 0.0601815i \(0.0191680\pi\)
−0.998187 + 0.0601815i \(0.980832\pi\)
\(968\) 0 0
\(969\) 26.1980 15.1254i 0.841602 0.485899i
\(970\) 0 0
\(971\) −33.7126 19.4640i −1.08189 0.624630i −0.150485 0.988612i \(-0.548083\pi\)
−0.931406 + 0.363983i \(0.881417\pi\)
\(972\) 0 0
\(973\) −33.8981 1.20857i −1.08672 0.0387450i
\(974\) 0 0
\(975\) −52.1003 30.0801i −1.66855 0.963336i
\(976\) 0 0
\(977\) −14.2664 24.7100i −0.456421 0.790544i 0.542348 0.840154i \(-0.317536\pi\)
−0.998769 + 0.0496097i \(0.984202\pi\)
\(978\) 0 0
\(979\) 28.1630 2.60741i 0.900093 0.0833333i
\(980\) 0 0
\(981\) 50.1567i 1.60138i
\(982\) 0 0
\(983\) −19.0264 + 10.9849i −0.606848 + 0.350364i −0.771731 0.635949i \(-0.780609\pi\)
0.164883 + 0.986313i \(0.447275\pi\)
\(984\) 0 0
\(985\) 2.86780 4.96717i 0.0913757 0.158267i
\(986\) 0 0
\(987\) −4.22697 0.150704i −0.134546 0.00479698i
\(988\) 0 0
\(989\) 31.1575 + 17.9888i 0.990751 + 0.572011i
\(990\) 0 0
\(991\) 13.9739 + 24.2035i 0.443895 + 0.768849i 0.997975 0.0636148i \(-0.0202629\pi\)
−0.554079 + 0.832464i \(0.686930\pi\)
\(992\) 0 0
\(993\) 67.0453i 2.12762i
\(994\) 0 0
\(995\) 0.687724 0.0218023
\(996\) 0 0
\(997\) 22.7410 + 39.3886i 0.720215 + 1.24745i 0.960913 + 0.276849i \(0.0892903\pi\)
−0.240698 + 0.970600i \(0.577376\pi\)
\(998\) 0 0
\(999\) −2.17412 1.25523i −0.0687861 0.0397137i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.2.bn.c.593.1 16
4.3 odd 2 308.2.q.a.285.8 yes 16
7.3 odd 6 inner 1232.2.bn.c.241.2 16
11.10 odd 2 inner 1232.2.bn.c.593.2 16
12.11 even 2 2772.2.cs.a.901.4 16
28.3 even 6 308.2.q.a.241.7 16
28.11 odd 6 2156.2.q.c.2089.2 16
28.19 even 6 2156.2.c.c.1077.1 16
28.23 odd 6 2156.2.c.c.1077.15 16
28.27 even 2 2156.2.q.c.901.1 16
44.43 even 2 308.2.q.a.285.7 yes 16
77.10 even 6 inner 1232.2.bn.c.241.1 16
84.59 odd 6 2772.2.cs.a.2089.3 16
132.131 odd 2 2772.2.cs.a.901.3 16
308.87 odd 6 308.2.q.a.241.8 yes 16
308.131 odd 6 2156.2.c.c.1077.2 16
308.219 even 6 2156.2.c.c.1077.16 16
308.263 even 6 2156.2.q.c.2089.1 16
308.307 odd 2 2156.2.q.c.901.2 16
924.395 even 6 2772.2.cs.a.2089.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.2.q.a.241.7 16 28.3 even 6
308.2.q.a.241.8 yes 16 308.87 odd 6
308.2.q.a.285.7 yes 16 44.43 even 2
308.2.q.a.285.8 yes 16 4.3 odd 2
1232.2.bn.c.241.1 16 77.10 even 6 inner
1232.2.bn.c.241.2 16 7.3 odd 6 inner
1232.2.bn.c.593.1 16 1.1 even 1 trivial
1232.2.bn.c.593.2 16 11.10 odd 2 inner
2156.2.c.c.1077.1 16 28.19 even 6
2156.2.c.c.1077.2 16 308.131 odd 6
2156.2.c.c.1077.15 16 28.23 odd 6
2156.2.c.c.1077.16 16 308.219 even 6
2156.2.q.c.901.1 16 28.27 even 2
2156.2.q.c.901.2 16 308.307 odd 2
2156.2.q.c.2089.1 16 308.263 even 6
2156.2.q.c.2089.2 16 28.11 odd 6
2772.2.cs.a.901.3 16 132.131 odd 2
2772.2.cs.a.901.4 16 12.11 even 2
2772.2.cs.a.2089.3 16 84.59 odd 6
2772.2.cs.a.2089.4 16 924.395 even 6