Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1232,2,Mod(111,1232)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1232, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1232.111");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1232 = 2^{4} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1232.j (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.83756952902\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
111.1 | 0 | −3.13533 | 0 | 0.346215i | 0 | 0.914125 | − | 2.48282i | 0 | 6.83028 | 0 | ||||||||||||||||
111.2 | 0 | −3.13533 | 0 | − | 0.346215i | 0 | 0.914125 | + | 2.48282i | 0 | 6.83028 | 0 | |||||||||||||||
111.3 | 0 | −2.46270 | 0 | − | 0.426276i | 0 | −2.25474 | − | 1.38425i | 0 | 3.06490 | 0 | |||||||||||||||
111.4 | 0 | −2.46270 | 0 | 0.426276i | 0 | −2.25474 | + | 1.38425i | 0 | 3.06490 | 0 | ||||||||||||||||
111.5 | 0 | −2.09096 | 0 | 4.10846i | 0 | −1.54971 | + | 2.14439i | 0 | 1.37213 | 0 | ||||||||||||||||
111.6 | 0 | −2.09096 | 0 | − | 4.10846i | 0 | −1.54971 | − | 2.14439i | 0 | 1.37213 | 0 | |||||||||||||||
111.7 | 0 | −1.03324 | 0 | 2.56834i | 0 | −0.330305 | − | 2.62505i | 0 | −1.93241 | 0 | ||||||||||||||||
111.8 | 0 | −1.03324 | 0 | − | 2.56834i | 0 | −0.330305 | + | 2.62505i | 0 | −1.93241 | 0 | |||||||||||||||
111.9 | 0 | −0.750319 | 0 | 2.20615i | 0 | 2.61623 | − | 0.394113i | 0 | −2.43702 | 0 | ||||||||||||||||
111.10 | 0 | −0.750319 | 0 | − | 2.20615i | 0 | 2.61623 | + | 0.394113i | 0 | −2.43702 | 0 | |||||||||||||||
111.11 | 0 | −0.319573 | 0 | − | 1.16428i | 0 | −2.17374 | + | 1.50826i | 0 | −2.89787 | 0 | |||||||||||||||
111.12 | 0 | −0.319573 | 0 | 1.16428i | 0 | −2.17374 | − | 1.50826i | 0 | −2.89787 | 0 | ||||||||||||||||
111.13 | 0 | 0.319573 | 0 | − | 1.16428i | 0 | 2.17374 | − | 1.50826i | 0 | −2.89787 | 0 | |||||||||||||||
111.14 | 0 | 0.319573 | 0 | 1.16428i | 0 | 2.17374 | + | 1.50826i | 0 | −2.89787 | 0 | ||||||||||||||||
111.15 | 0 | 0.750319 | 0 | 2.20615i | 0 | −2.61623 | + | 0.394113i | 0 | −2.43702 | 0 | ||||||||||||||||
111.16 | 0 | 0.750319 | 0 | − | 2.20615i | 0 | −2.61623 | − | 0.394113i | 0 | −2.43702 | 0 | |||||||||||||||
111.17 | 0 | 1.03324 | 0 | 2.56834i | 0 | 0.330305 | + | 2.62505i | 0 | −1.93241 | 0 | ||||||||||||||||
111.18 | 0 | 1.03324 | 0 | − | 2.56834i | 0 | 0.330305 | − | 2.62505i | 0 | −1.93241 | 0 | |||||||||||||||
111.19 | 0 | 2.09096 | 0 | 4.10846i | 0 | 1.54971 | − | 2.14439i | 0 | 1.37213 | 0 | ||||||||||||||||
111.20 | 0 | 2.09096 | 0 | − | 4.10846i | 0 | 1.54971 | + | 2.14439i | 0 | 1.37213 | 0 | |||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
28.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1232.2.j.b | ✓ | 24 |
4.b | odd | 2 | 1 | inner | 1232.2.j.b | ✓ | 24 |
7.b | odd | 2 | 1 | inner | 1232.2.j.b | ✓ | 24 |
28.d | even | 2 | 1 | inner | 1232.2.j.b | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1232.2.j.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
1232.2.j.b | ✓ | 24 | 4.b | odd | 2 | 1 | inner |
1232.2.j.b | ✓ | 24 | 7.b | odd | 2 | 1 | inner |
1232.2.j.b | ✓ | 24 | 28.d | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} - 22T_{3}^{10} + 165T_{3}^{8} - 500T_{3}^{6} + 552T_{3}^{4} - 208T_{3}^{2} + 16 \) acting on \(S_{2}^{\mathrm{new}}(1232, [\chi])\).