Properties

Label 1232.2.j.b
Level $1232$
Weight $2$
Character orbit 1232.j
Analytic conductor $9.838$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,2,Mod(111,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.111");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1232.j (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.83756952902\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 16 q^{9} + 20 q^{21} - 56 q^{29} + 40 q^{37} - 8 q^{49} + 16 q^{53} + 8 q^{57} - 96 q^{65} - 4 q^{77} + 40 q^{81} - 32 q^{85} + 8 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
111.1 0 −3.13533 0 0.346215i 0 0.914125 2.48282i 0 6.83028 0
111.2 0 −3.13533 0 0.346215i 0 0.914125 + 2.48282i 0 6.83028 0
111.3 0 −2.46270 0 0.426276i 0 −2.25474 1.38425i 0 3.06490 0
111.4 0 −2.46270 0 0.426276i 0 −2.25474 + 1.38425i 0 3.06490 0
111.5 0 −2.09096 0 4.10846i 0 −1.54971 + 2.14439i 0 1.37213 0
111.6 0 −2.09096 0 4.10846i 0 −1.54971 2.14439i 0 1.37213 0
111.7 0 −1.03324 0 2.56834i 0 −0.330305 2.62505i 0 −1.93241 0
111.8 0 −1.03324 0 2.56834i 0 −0.330305 + 2.62505i 0 −1.93241 0
111.9 0 −0.750319 0 2.20615i 0 2.61623 0.394113i 0 −2.43702 0
111.10 0 −0.750319 0 2.20615i 0 2.61623 + 0.394113i 0 −2.43702 0
111.11 0 −0.319573 0 1.16428i 0 −2.17374 + 1.50826i 0 −2.89787 0
111.12 0 −0.319573 0 1.16428i 0 −2.17374 1.50826i 0 −2.89787 0
111.13 0 0.319573 0 1.16428i 0 2.17374 1.50826i 0 −2.89787 0
111.14 0 0.319573 0 1.16428i 0 2.17374 + 1.50826i 0 −2.89787 0
111.15 0 0.750319 0 2.20615i 0 −2.61623 + 0.394113i 0 −2.43702 0
111.16 0 0.750319 0 2.20615i 0 −2.61623 0.394113i 0 −2.43702 0
111.17 0 1.03324 0 2.56834i 0 0.330305 + 2.62505i 0 −1.93241 0
111.18 0 1.03324 0 2.56834i 0 0.330305 2.62505i 0 −1.93241 0
111.19 0 2.09096 0 4.10846i 0 1.54971 2.14439i 0 1.37213 0
111.20 0 2.09096 0 4.10846i 0 1.54971 + 2.14439i 0 1.37213 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 111.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
7.b odd 2 1 inner
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1232.2.j.b 24
4.b odd 2 1 inner 1232.2.j.b 24
7.b odd 2 1 inner 1232.2.j.b 24
28.d even 2 1 inner 1232.2.j.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1232.2.j.b 24 1.a even 1 1 trivial
1232.2.j.b 24 4.b odd 2 1 inner
1232.2.j.b 24 7.b odd 2 1 inner
1232.2.j.b 24 28.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} - 22T_{3}^{10} + 165T_{3}^{8} - 500T_{3}^{6} + 552T_{3}^{4} - 208T_{3}^{2} + 16 \) acting on \(S_{2}^{\mathrm{new}}(1232, [\chi])\). Copy content Toggle raw display