Properties

Label 1232.2.q.d.529.1
Level $1232$
Weight $2$
Character 1232.529
Analytic conductor $9.838$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,2,Mod(177,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.177");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1232.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.83756952902\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 154)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 529.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1232.529
Dual form 1232.2.q.d.177.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{3} +(0.500000 - 2.59808i) q^{7} +(1.00000 + 1.73205i) q^{9} +(-0.500000 + 0.866025i) q^{11} -1.00000 q^{13} +(3.00000 - 5.19615i) q^{17} +(1.00000 + 1.73205i) q^{19} +(-2.00000 - 1.73205i) q^{21} +(-3.00000 - 5.19615i) q^{23} +(2.50000 - 4.33013i) q^{25} +5.00000 q^{27} +9.00000 q^{29} +(-2.00000 + 3.46410i) q^{31} +(0.500000 + 0.866025i) q^{33} +(-1.00000 - 1.73205i) q^{37} +(-0.500000 + 0.866025i) q^{39} -6.00000 q^{41} +4.00000 q^{43} +(-3.00000 - 5.19615i) q^{47} +(-6.50000 - 2.59808i) q^{49} +(-3.00000 - 5.19615i) q^{51} +2.00000 q^{57} +(-1.50000 + 2.59808i) q^{59} +(-5.50000 - 9.52628i) q^{61} +(5.00000 - 1.73205i) q^{63} +(5.50000 - 9.52628i) q^{67} -6.00000 q^{69} +(-1.00000 + 1.73205i) q^{73} +(-2.50000 - 4.33013i) q^{75} +(2.00000 + 1.73205i) q^{77} +(2.50000 + 4.33013i) q^{79} +(-0.500000 + 0.866025i) q^{81} +6.00000 q^{83} +(4.50000 - 7.79423i) q^{87} +(9.00000 + 15.5885i) q^{89} +(-0.500000 + 2.59808i) q^{91} +(2.00000 + 3.46410i) q^{93} -13.0000 q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + q^{7} + 2 q^{9} - q^{11} - 2 q^{13} + 6 q^{17} + 2 q^{19} - 4 q^{21} - 6 q^{23} + 5 q^{25} + 10 q^{27} + 18 q^{29} - 4 q^{31} + q^{33} - 2 q^{37} - q^{39} - 12 q^{41} + 8 q^{43} - 6 q^{47}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1232\mathbb{Z}\right)^\times\).

\(n\) \(309\) \(353\) \(463\) \(673\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 0.866025i 0.288675 0.500000i −0.684819 0.728714i \(-0.740119\pi\)
0.973494 + 0.228714i \(0.0734519\pi\)
\(4\) 0 0
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0 0
\(7\) 0.500000 2.59808i 0.188982 0.981981i
\(8\) 0 0
\(9\) 1.00000 + 1.73205i 0.333333 + 0.577350i
\(10\) 0 0
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 5.19615i 0.727607 1.26025i −0.230285 0.973123i \(-0.573966\pi\)
0.957892 0.287129i \(-0.0927008\pi\)
\(18\) 0 0
\(19\) 1.00000 + 1.73205i 0.229416 + 0.397360i 0.957635 0.287984i \(-0.0929851\pi\)
−0.728219 + 0.685344i \(0.759652\pi\)
\(20\) 0 0
\(21\) −2.00000 1.73205i −0.436436 0.377964i
\(22\) 0 0
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.500000 0.866025i
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 0 0
\(31\) −2.00000 + 3.46410i −0.359211 + 0.622171i −0.987829 0.155543i \(-0.950287\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 0 0
\(33\) 0.500000 + 0.866025i 0.0870388 + 0.150756i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 1.73205i −0.164399 0.284747i 0.772043 0.635571i \(-0.219235\pi\)
−0.936442 + 0.350823i \(0.885902\pi\)
\(38\) 0 0
\(39\) −0.500000 + 0.866025i −0.0800641 + 0.138675i
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.00000 5.19615i −0.437595 0.757937i 0.559908 0.828554i \(-0.310836\pi\)
−0.997503 + 0.0706177i \(0.977503\pi\)
\(48\) 0 0
\(49\) −6.50000 2.59808i −0.928571 0.371154i
\(50\) 0 0
\(51\) −3.00000 5.19615i −0.420084 0.727607i
\(52\) 0 0
\(53\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 0 0
\(59\) −1.50000 + 2.59808i −0.195283 + 0.338241i −0.946993 0.321253i \(-0.895896\pi\)
0.751710 + 0.659494i \(0.229229\pi\)
\(60\) 0 0
\(61\) −5.50000 9.52628i −0.704203 1.21972i −0.966978 0.254858i \(-0.917971\pi\)
0.262776 0.964857i \(-0.415362\pi\)
\(62\) 0 0
\(63\) 5.00000 1.73205i 0.629941 0.218218i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.50000 9.52628i 0.671932 1.16382i −0.305424 0.952217i \(-0.598798\pi\)
0.977356 0.211604i \(-0.0678686\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −1.00000 + 1.73205i −0.117041 + 0.202721i −0.918594 0.395203i \(-0.870674\pi\)
0.801553 + 0.597924i \(0.204008\pi\)
\(74\) 0 0
\(75\) −2.50000 4.33013i −0.288675 0.500000i
\(76\) 0 0
\(77\) 2.00000 + 1.73205i 0.227921 + 0.197386i
\(78\) 0 0
\(79\) 2.50000 + 4.33013i 0.281272 + 0.487177i 0.971698 0.236225i \(-0.0759104\pi\)
−0.690426 + 0.723403i \(0.742577\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 4.50000 7.79423i 0.482451 0.835629i
\(88\) 0 0
\(89\) 9.00000 + 15.5885i 0.953998 + 1.65237i 0.736644 + 0.676280i \(0.236409\pi\)
0.217354 + 0.976093i \(0.430258\pi\)
\(90\) 0 0
\(91\) −0.500000 + 2.59808i −0.0524142 + 0.272352i
\(92\) 0 0
\(93\) 2.00000 + 3.46410i 0.207390 + 0.359211i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −13.0000 −1.31995 −0.659975 0.751288i \(-0.729433\pi\)
−0.659975 + 0.751288i \(0.729433\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) 7.50000 12.9904i 0.746278 1.29259i −0.203317 0.979113i \(-0.565172\pi\)
0.949595 0.313478i \(-0.101494\pi\)
\(102\) 0 0
\(103\) −8.00000 13.8564i −0.788263 1.36531i −0.927030 0.374987i \(-0.877647\pi\)
0.138767 0.990325i \(-0.455686\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000 + 10.3923i 0.580042 + 1.00466i 0.995474 + 0.0950377i \(0.0302972\pi\)
−0.415432 + 0.909624i \(0.636370\pi\)
\(108\) 0 0
\(109\) −1.00000 + 1.73205i −0.0957826 + 0.165900i −0.909935 0.414751i \(-0.863869\pi\)
0.814152 + 0.580651i \(0.197202\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) 0 0
\(113\) 9.00000 0.846649 0.423324 0.905978i \(-0.360863\pi\)
0.423324 + 0.905978i \(0.360863\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.00000 1.73205i −0.0924500 0.160128i
\(118\) 0 0
\(119\) −12.0000 10.3923i −1.10004 0.952661i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 0 0
\(123\) −3.00000 + 5.19615i −0.270501 + 0.468521i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 7.00000 0.621150 0.310575 0.950549i \(-0.399478\pi\)
0.310575 + 0.950549i \(0.399478\pi\)
\(128\) 0 0
\(129\) 2.00000 3.46410i 0.176090 0.304997i
\(130\) 0 0
\(131\) 9.00000 + 15.5885i 0.786334 + 1.36197i 0.928199 + 0.372084i \(0.121357\pi\)
−0.141865 + 0.989886i \(0.545310\pi\)
\(132\) 0 0
\(133\) 5.00000 1.73205i 0.433555 0.150188i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.50000 7.79423i 0.384461 0.665906i −0.607233 0.794524i \(-0.707721\pi\)
0.991694 + 0.128618i \(0.0410540\pi\)
\(138\) 0 0
\(139\) −8.00000 −0.678551 −0.339276 0.940687i \(-0.610182\pi\)
−0.339276 + 0.940687i \(0.610182\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 0 0
\(143\) 0.500000 0.866025i 0.0418121 0.0724207i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −5.50000 + 4.33013i −0.453632 + 0.357143i
\(148\) 0 0
\(149\) −3.00000 5.19615i −0.245770 0.425685i 0.716578 0.697507i \(-0.245707\pi\)
−0.962348 + 0.271821i \(0.912374\pi\)
\(150\) 0 0
\(151\) −9.50000 + 16.4545i −0.773099 + 1.33905i 0.162758 + 0.986666i \(0.447961\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(152\) 0 0
\(153\) 12.0000 0.970143
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.00000 3.46410i 0.159617 0.276465i −0.775113 0.631822i \(-0.782307\pi\)
0.934731 + 0.355357i \(0.115641\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −15.0000 + 5.19615i −1.18217 + 0.409514i
\(162\) 0 0
\(163\) 8.50000 + 14.7224i 0.665771 + 1.15315i 0.979076 + 0.203497i \(0.0652307\pi\)
−0.313304 + 0.949653i \(0.601436\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.00000 −0.232147 −0.116073 0.993241i \(-0.537031\pi\)
−0.116073 + 0.993241i \(0.537031\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) −2.00000 + 3.46410i −0.152944 + 0.264906i
\(172\) 0 0
\(173\) 10.5000 + 18.1865i 0.798300 + 1.38270i 0.920722 + 0.390218i \(0.127601\pi\)
−0.122422 + 0.992478i \(0.539066\pi\)
\(174\) 0 0
\(175\) −10.0000 8.66025i −0.755929 0.654654i
\(176\) 0 0
\(177\) 1.50000 + 2.59808i 0.112747 + 0.195283i
\(178\) 0 0
\(179\) −7.50000 + 12.9904i −0.560576 + 0.970947i 0.436870 + 0.899525i \(0.356087\pi\)
−0.997446 + 0.0714220i \(0.977246\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) −11.0000 −0.813143
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.00000 + 5.19615i 0.219382 + 0.379980i
\(188\) 0 0
\(189\) 2.50000 12.9904i 0.181848 0.944911i
\(190\) 0 0
\(191\) 3.00000 + 5.19615i 0.217072 + 0.375980i 0.953912 0.300088i \(-0.0970159\pi\)
−0.736839 + 0.676068i \(0.763683\pi\)
\(192\) 0 0
\(193\) −7.00000 + 12.1244i −0.503871 + 0.872730i 0.496119 + 0.868255i \(0.334758\pi\)
−0.999990 + 0.00447566i \(0.998575\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.00000 −0.213741 −0.106871 0.994273i \(-0.534083\pi\)
−0.106871 + 0.994273i \(0.534083\pi\)
\(198\) 0 0
\(199\) 7.00000 12.1244i 0.496217 0.859473i −0.503774 0.863836i \(-0.668055\pi\)
0.999990 + 0.00436292i \(0.00138876\pi\)
\(200\) 0 0
\(201\) −5.50000 9.52628i −0.387940 0.671932i
\(202\) 0 0
\(203\) 4.50000 23.3827i 0.315838 1.64114i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.00000 10.3923i 0.417029 0.722315i
\(208\) 0 0
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) 10.0000 0.688428 0.344214 0.938891i \(-0.388145\pi\)
0.344214 + 0.938891i \(0.388145\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 8.00000 + 6.92820i 0.543075 + 0.470317i
\(218\) 0 0
\(219\) 1.00000 + 1.73205i 0.0675737 + 0.117041i
\(220\) 0 0
\(221\) −3.00000 + 5.19615i −0.201802 + 0.349531i
\(222\) 0 0
\(223\) −26.0000 −1.74109 −0.870544 0.492090i \(-0.836233\pi\)
−0.870544 + 0.492090i \(0.836233\pi\)
\(224\) 0 0
\(225\) 10.0000 0.666667
\(226\) 0 0
\(227\) 9.00000 15.5885i 0.597351 1.03464i −0.395860 0.918311i \(-0.629553\pi\)
0.993210 0.116331i \(-0.0371134\pi\)
\(228\) 0 0
\(229\) 8.00000 + 13.8564i 0.528655 + 0.915657i 0.999442 + 0.0334101i \(0.0106368\pi\)
−0.470787 + 0.882247i \(0.656030\pi\)
\(230\) 0 0
\(231\) 2.50000 0.866025i 0.164488 0.0569803i
\(232\) 0 0
\(233\) 3.00000 + 5.19615i 0.196537 + 0.340411i 0.947403 0.320043i \(-0.103697\pi\)
−0.750867 + 0.660454i \(0.770364\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 5.00000 0.324785
\(238\) 0 0
\(239\) 9.00000 0.582162 0.291081 0.956698i \(-0.405985\pi\)
0.291081 + 0.956698i \(0.405985\pi\)
\(240\) 0 0
\(241\) −13.0000 + 22.5167i −0.837404 + 1.45043i 0.0546547 + 0.998505i \(0.482594\pi\)
−0.892058 + 0.451920i \(0.850739\pi\)
\(242\) 0 0
\(243\) 8.00000 + 13.8564i 0.513200 + 0.888889i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.00000 1.73205i −0.0636285 0.110208i
\(248\) 0 0
\(249\) 3.00000 5.19615i 0.190117 0.329293i
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.50000 2.59808i −0.0935674 0.162064i 0.815442 0.578838i \(-0.196494\pi\)
−0.909010 + 0.416775i \(0.863160\pi\)
\(258\) 0 0
\(259\) −5.00000 + 1.73205i −0.310685 + 0.107624i
\(260\) 0 0
\(261\) 9.00000 + 15.5885i 0.557086 + 0.964901i
\(262\) 0 0
\(263\) −4.50000 + 7.79423i −0.277482 + 0.480613i −0.970758 0.240059i \(-0.922833\pi\)
0.693276 + 0.720672i \(0.256167\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 18.0000 1.10158
\(268\) 0 0
\(269\) −6.00000 + 10.3923i −0.365826 + 0.633630i −0.988908 0.148527i \(-0.952547\pi\)
0.623082 + 0.782157i \(0.285880\pi\)
\(270\) 0 0
\(271\) 14.5000 + 25.1147i 0.880812 + 1.52561i 0.850439 + 0.526073i \(0.176336\pi\)
0.0303728 + 0.999539i \(0.490331\pi\)
\(272\) 0 0
\(273\) 2.00000 + 1.73205i 0.121046 + 0.104828i
\(274\) 0 0
\(275\) 2.50000 + 4.33013i 0.150756 + 0.261116i
\(276\) 0 0
\(277\) −14.5000 + 25.1147i −0.871221 + 1.50900i −0.0104855 + 0.999945i \(0.503338\pi\)
−0.860735 + 0.509053i \(0.829996\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) −5.00000 + 8.66025i −0.297219 + 0.514799i −0.975499 0.220005i \(-0.929393\pi\)
0.678280 + 0.734804i \(0.262726\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.00000 + 15.5885i −0.177084 + 0.920158i
\(288\) 0 0
\(289\) −9.50000 16.4545i −0.558824 0.967911i
\(290\) 0 0
\(291\) −6.50000 + 11.2583i −0.381037 + 0.659975i
\(292\) 0 0
\(293\) −30.0000 −1.75262 −0.876309 0.481749i \(-0.840002\pi\)
−0.876309 + 0.481749i \(0.840002\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −2.50000 + 4.33013i −0.145065 + 0.251259i
\(298\) 0 0
\(299\) 3.00000 + 5.19615i 0.173494 + 0.300501i
\(300\) 0 0
\(301\) 2.00000 10.3923i 0.115278 0.599002i
\(302\) 0 0
\(303\) −7.50000 12.9904i −0.430864 0.746278i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) −16.0000 −0.910208
\(310\) 0 0
\(311\) 12.0000 20.7846i 0.680458 1.17859i −0.294384 0.955687i \(-0.595114\pi\)
0.974841 0.222900i \(-0.0715523\pi\)
\(312\) 0 0
\(313\) −8.50000 14.7224i −0.480448 0.832161i 0.519300 0.854592i \(-0.326193\pi\)
−0.999748 + 0.0224310i \(0.992859\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.00000 10.3923i −0.336994 0.583690i 0.646872 0.762598i \(-0.276077\pi\)
−0.983866 + 0.178908i \(0.942743\pi\)
\(318\) 0 0
\(319\) −4.50000 + 7.79423i −0.251952 + 0.436393i
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 12.0000 0.667698
\(324\) 0 0
\(325\) −2.50000 + 4.33013i −0.138675 + 0.240192i
\(326\) 0 0
\(327\) 1.00000 + 1.73205i 0.0553001 + 0.0957826i
\(328\) 0 0
\(329\) −15.0000 + 5.19615i −0.826977 + 0.286473i
\(330\) 0 0
\(331\) 17.5000 + 30.3109i 0.961887 + 1.66604i 0.717756 + 0.696295i \(0.245169\pi\)
0.244131 + 0.969742i \(0.421497\pi\)
\(332\) 0 0
\(333\) 2.00000 3.46410i 0.109599 0.189832i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) 4.50000 7.79423i 0.244406 0.423324i
\(340\) 0 0
\(341\) −2.00000 3.46410i −0.108306 0.187592i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) 0 0
\(353\) 9.00000 15.5885i 0.479022 0.829690i −0.520689 0.853746i \(-0.674325\pi\)
0.999711 + 0.0240566i \(0.00765819\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −15.0000 + 5.19615i −0.793884 + 0.275010i
\(358\) 0 0
\(359\) −1.50000 2.59808i −0.0791670 0.137121i 0.823724 0.566991i \(-0.191893\pi\)
−0.902891 + 0.429870i \(0.858559\pi\)
\(360\) 0 0
\(361\) 7.50000 12.9904i 0.394737 0.683704i
\(362\) 0 0
\(363\) −1.00000 −0.0524864
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −5.00000 + 8.66025i −0.260998 + 0.452062i −0.966507 0.256639i \(-0.917385\pi\)
0.705509 + 0.708700i \(0.250718\pi\)
\(368\) 0 0
\(369\) −6.00000 10.3923i −0.312348 0.541002i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 15.5000 + 26.8468i 0.802560 + 1.39007i 0.917926 + 0.396751i \(0.129862\pi\)
−0.115367 + 0.993323i \(0.536804\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −9.00000 −0.463524
\(378\) 0 0
\(379\) −23.0000 −1.18143 −0.590715 0.806880i \(-0.701154\pi\)
−0.590715 + 0.806880i \(0.701154\pi\)
\(380\) 0 0
\(381\) 3.50000 6.06218i 0.179310 0.310575i
\(382\) 0 0
\(383\) −18.0000 31.1769i −0.919757 1.59307i −0.799783 0.600289i \(-0.795052\pi\)
−0.119974 0.992777i \(-0.538281\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.00000 + 6.92820i 0.203331 + 0.352180i
\(388\) 0 0
\(389\) −6.00000 + 10.3923i −0.304212 + 0.526911i −0.977086 0.212847i \(-0.931726\pi\)
0.672874 + 0.739758i \(0.265060\pi\)
\(390\) 0 0
\(391\) −36.0000 −1.82060
\(392\) 0 0
\(393\) 18.0000 0.907980
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 11.0000 + 19.0526i 0.552074 + 0.956221i 0.998125 + 0.0612128i \(0.0194968\pi\)
−0.446051 + 0.895008i \(0.647170\pi\)
\(398\) 0 0
\(399\) 1.00000 5.19615i 0.0500626 0.260133i
\(400\) 0 0
\(401\) 16.5000 + 28.5788i 0.823971 + 1.42716i 0.902703 + 0.430263i \(0.141579\pi\)
−0.0787327 + 0.996896i \(0.525087\pi\)
\(402\) 0 0
\(403\) 2.00000 3.46410i 0.0996271 0.172559i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.00000 0.0991363
\(408\) 0 0
\(409\) 2.00000 3.46410i 0.0988936 0.171289i −0.812333 0.583193i \(-0.801803\pi\)
0.911227 + 0.411905i \(0.135136\pi\)
\(410\) 0 0
\(411\) −4.50000 7.79423i −0.221969 0.384461i
\(412\) 0 0
\(413\) 6.00000 + 5.19615i 0.295241 + 0.255686i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −4.00000 + 6.92820i −0.195881 + 0.339276i
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −28.0000 −1.36464 −0.682318 0.731055i \(-0.739028\pi\)
−0.682318 + 0.731055i \(0.739028\pi\)
\(422\) 0 0
\(423\) 6.00000 10.3923i 0.291730 0.505291i
\(424\) 0 0
\(425\) −15.0000 25.9808i −0.727607 1.26025i
\(426\) 0 0
\(427\) −27.5000 + 9.52628i −1.33082 + 0.461009i
\(428\) 0 0
\(429\) −0.500000 0.866025i −0.0241402 0.0418121i
\(430\) 0 0
\(431\) −1.50000 + 2.59808i −0.0722525 + 0.125145i −0.899888 0.436121i \(-0.856352\pi\)
0.827636 + 0.561266i \(0.189685\pi\)
\(432\) 0 0
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.00000 10.3923i 0.287019 0.497131i
\(438\) 0 0
\(439\) −0.500000 0.866025i −0.0238637 0.0413331i 0.853847 0.520524i \(-0.174263\pi\)
−0.877711 + 0.479191i \(0.840930\pi\)
\(440\) 0 0
\(441\) −2.00000 13.8564i −0.0952381 0.659829i
\(442\) 0 0
\(443\) 6.00000 + 10.3923i 0.285069 + 0.493753i 0.972626 0.232377i \(-0.0746503\pi\)
−0.687557 + 0.726130i \(0.741317\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −6.00000 −0.283790
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 3.00000 5.19615i 0.141264 0.244677i
\(452\) 0 0
\(453\) 9.50000 + 16.4545i 0.446349 + 0.773099i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.0000 + 19.0526i 0.514558 + 0.891241i 0.999857 + 0.0168929i \(0.00537742\pi\)
−0.485299 + 0.874348i \(0.661289\pi\)
\(458\) 0 0
\(459\) 15.0000 25.9808i 0.700140 1.21268i
\(460\) 0 0
\(461\) 21.0000 0.978068 0.489034 0.872265i \(-0.337349\pi\)
0.489034 + 0.872265i \(0.337349\pi\)
\(462\) 0 0
\(463\) 22.0000 1.02243 0.511213 0.859454i \(-0.329196\pi\)
0.511213 + 0.859454i \(0.329196\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6.00000 + 10.3923i 0.277647 + 0.480899i 0.970799 0.239892i \(-0.0771121\pi\)
−0.693153 + 0.720791i \(0.743779\pi\)
\(468\) 0 0
\(469\) −22.0000 19.0526i −1.01587 0.879765i
\(470\) 0 0
\(471\) −2.00000 3.46410i −0.0921551 0.159617i
\(472\) 0 0
\(473\) −2.00000 + 3.46410i −0.0919601 + 0.159280i
\(474\) 0 0
\(475\) 10.0000 0.458831
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.50000 12.9904i 0.342684 0.593546i −0.642246 0.766498i \(-0.721997\pi\)
0.984930 + 0.172953i \(0.0553307\pi\)
\(480\) 0 0
\(481\) 1.00000 + 1.73205i 0.0455961 + 0.0789747i
\(482\) 0 0
\(483\) −3.00000 + 15.5885i −0.136505 + 0.709299i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 10.0000 17.3205i 0.453143 0.784867i −0.545436 0.838152i \(-0.683636\pi\)
0.998579 + 0.0532853i \(0.0169693\pi\)
\(488\) 0 0
\(489\) 17.0000 0.768767
\(490\) 0 0
\(491\) −42.0000 −1.89543 −0.947717 0.319113i \(-0.896615\pi\)
−0.947717 + 0.319113i \(0.896615\pi\)
\(492\) 0 0
\(493\) 27.0000 46.7654i 1.21602 2.10621i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −20.0000 34.6410i −0.895323 1.55074i −0.833404 0.552664i \(-0.813611\pi\)
−0.0619186 0.998081i \(-0.519722\pi\)
\(500\) 0 0
\(501\) −1.50000 + 2.59808i −0.0670151 + 0.116073i
\(502\) 0 0
\(503\) 33.0000 1.47140 0.735699 0.677309i \(-0.236854\pi\)
0.735699 + 0.677309i \(0.236854\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −6.00000 + 10.3923i −0.266469 + 0.461538i
\(508\) 0 0
\(509\) 3.00000 + 5.19615i 0.132973 + 0.230315i 0.924821 0.380402i \(-0.124214\pi\)
−0.791849 + 0.610718i \(0.790881\pi\)
\(510\) 0 0
\(511\) 4.00000 + 3.46410i 0.176950 + 0.153243i
\(512\) 0 0
\(513\) 5.00000 + 8.66025i 0.220755 + 0.382360i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 6.00000 0.263880
\(518\) 0 0
\(519\) 21.0000 0.921798
\(520\) 0 0
\(521\) 21.0000 36.3731i 0.920027 1.59353i 0.120656 0.992694i \(-0.461500\pi\)
0.799370 0.600839i \(-0.205167\pi\)
\(522\) 0 0
\(523\) −8.00000 13.8564i −0.349816 0.605898i 0.636401 0.771358i \(-0.280422\pi\)
−0.986216 + 0.165460i \(0.947089\pi\)
\(524\) 0 0
\(525\) −12.5000 + 4.33013i −0.545545 + 0.188982i
\(526\) 0 0
\(527\) 12.0000 + 20.7846i 0.522728 + 0.905392i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) 0 0
\(533\) 6.00000 0.259889
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 7.50000 + 12.9904i 0.323649 + 0.560576i
\(538\) 0 0
\(539\) 5.50000 4.33013i 0.236902 0.186512i
\(540\) 0 0
\(541\) 12.5000 + 21.6506i 0.537417 + 0.930834i 0.999042 + 0.0437584i \(0.0139332\pi\)
−0.461625 + 0.887075i \(0.652733\pi\)
\(542\) 0 0
\(543\) 1.00000 1.73205i 0.0429141 0.0743294i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 0 0
\(549\) 11.0000 19.0526i 0.469469 0.813143i
\(550\) 0 0
\(551\) 9.00000 + 15.5885i 0.383413 + 0.664091i
\(552\) 0 0
\(553\) 12.5000 4.33013i 0.531554 0.184136i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.00000 15.5885i 0.381342 0.660504i −0.609912 0.792469i \(-0.708795\pi\)
0.991254 + 0.131965i \(0.0421286\pi\)
\(558\) 0 0
\(559\) −4.00000 −0.169182
\(560\) 0 0
\(561\) 6.00000 0.253320
\(562\) 0 0
\(563\) −9.00000 + 15.5885i −0.379305 + 0.656975i −0.990961 0.134148i \(-0.957170\pi\)
0.611656 + 0.791123i \(0.290503\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2.00000 + 1.73205i 0.0839921 + 0.0727393i
\(568\) 0 0
\(569\) 18.0000 + 31.1769i 0.754599 + 1.30700i 0.945573 + 0.325409i \(0.105502\pi\)
−0.190974 + 0.981595i \(0.561165\pi\)
\(570\) 0 0
\(571\) 16.0000 27.7128i 0.669579 1.15975i −0.308443 0.951243i \(-0.599808\pi\)
0.978022 0.208502i \(-0.0668588\pi\)
\(572\) 0 0
\(573\) 6.00000 0.250654
\(574\) 0 0
\(575\) −30.0000 −1.25109
\(576\) 0 0
\(577\) 3.50000 6.06218i 0.145707 0.252372i −0.783930 0.620850i \(-0.786788\pi\)
0.929636 + 0.368478i \(0.120121\pi\)
\(578\) 0 0
\(579\) 7.00000 + 12.1244i 0.290910 + 0.503871i
\(580\) 0 0
\(581\) 3.00000 15.5885i 0.124461 0.646718i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.00000 −0.371470 −0.185735 0.982600i \(-0.559467\pi\)
−0.185735 + 0.982600i \(0.559467\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) −1.50000 + 2.59808i −0.0617018 + 0.106871i
\(592\) 0 0
\(593\) −18.0000 31.1769i −0.739171 1.28028i −0.952869 0.303383i \(-0.901884\pi\)
0.213697 0.976900i \(-0.431449\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −7.00000 12.1244i −0.286491 0.496217i
\(598\) 0 0
\(599\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) 22.0000 0.895909
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −20.0000 34.6410i −0.811775 1.40604i −0.911621 0.411033i \(-0.865168\pi\)
0.0998457 0.995003i \(-0.468165\pi\)
\(608\) 0 0
\(609\) −18.0000 15.5885i −0.729397 0.631676i
\(610\) 0 0
\(611\) 3.00000 + 5.19615i 0.121367 + 0.210214i
\(612\) 0 0
\(613\) 5.00000 8.66025i 0.201948 0.349784i −0.747208 0.664590i \(-0.768606\pi\)
0.949156 + 0.314806i \(0.101939\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 21.0000 0.845428 0.422714 0.906263i \(-0.361077\pi\)
0.422714 + 0.906263i \(0.361077\pi\)
\(618\) 0 0
\(619\) 10.0000 17.3205i 0.401934 0.696170i −0.592025 0.805919i \(-0.701671\pi\)
0.993959 + 0.109749i \(0.0350048\pi\)
\(620\) 0 0
\(621\) −15.0000 25.9808i −0.601929 1.04257i
\(622\) 0 0
\(623\) 45.0000 15.5885i 1.80289 0.624538i
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) 0 0
\(627\) −1.00000 + 1.73205i −0.0399362 + 0.0691714i
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −20.0000 −0.796187 −0.398094 0.917345i \(-0.630328\pi\)
−0.398094 + 0.917345i \(0.630328\pi\)
\(632\) 0 0
\(633\) 5.00000 8.66025i 0.198732 0.344214i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 6.50000 + 2.59808i 0.257539 + 0.102940i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −4.50000 + 7.79423i −0.177739 + 0.307854i −0.941106 0.338112i \(-0.890212\pi\)
0.763367 + 0.645966i \(0.223545\pi\)
\(642\) 0 0
\(643\) −5.00000 −0.197181 −0.0985904 0.995128i \(-0.531433\pi\)
−0.0985904 + 0.995128i \(0.531433\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.00000 + 10.3923i −0.235884 + 0.408564i −0.959529 0.281609i \(-0.909132\pi\)
0.723645 + 0.690172i \(0.242465\pi\)
\(648\) 0 0
\(649\) −1.50000 2.59808i −0.0588802 0.101983i
\(650\) 0 0
\(651\) 10.0000 3.46410i 0.391931 0.135769i
\(652\) 0 0
\(653\) −9.00000 15.5885i −0.352197 0.610023i 0.634437 0.772975i \(-0.281232\pi\)
−0.986634 + 0.162951i \(0.947899\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −4.00000 −0.156055
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −7.00000 + 12.1244i −0.272268 + 0.471583i −0.969442 0.245319i \(-0.921107\pi\)
0.697174 + 0.716902i \(0.254441\pi\)
\(662\) 0 0
\(663\) 3.00000 + 5.19615i 0.116510 + 0.201802i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −27.0000 46.7654i −1.04544 1.81076i
\(668\) 0 0
\(669\) −13.0000 + 22.5167i −0.502609 + 0.870544i
\(670\) 0 0
\(671\) 11.0000 0.424650
\(672\) 0 0
\(673\) −28.0000 −1.07932 −0.539660 0.841883i \(-0.681447\pi\)
−0.539660 + 0.841883i \(0.681447\pi\)
\(674\) 0 0
\(675\) 12.5000 21.6506i 0.481125 0.833333i
\(676\) 0 0
\(677\) −3.00000 5.19615i −0.115299 0.199704i 0.802600 0.596518i \(-0.203449\pi\)
−0.917899 + 0.396813i \(0.870116\pi\)
\(678\) 0 0
\(679\) −6.50000 + 33.7750i −0.249447 + 1.29617i
\(680\) 0 0
\(681\) −9.00000 15.5885i −0.344881 0.597351i
\(682\) 0 0
\(683\) −10.5000 + 18.1865i −0.401771 + 0.695888i −0.993940 0.109926i \(-0.964939\pi\)
0.592168 + 0.805814i \(0.298272\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 16.0000 0.610438
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 5.50000 + 9.52628i 0.209230 + 0.362397i 0.951472 0.307735i \(-0.0995710\pi\)
−0.742242 + 0.670132i \(0.766238\pi\)
\(692\) 0 0
\(693\) −1.00000 + 5.19615i −0.0379869 + 0.197386i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −18.0000 + 31.1769i −0.681799 + 1.18091i
\(698\) 0 0
\(699\) 6.00000 0.226941
\(700\) 0 0
\(701\) 39.0000 1.47301 0.736505 0.676432i \(-0.236475\pi\)
0.736505 + 0.676432i \(0.236475\pi\)
\(702\) 0 0
\(703\) 2.00000 3.46410i 0.0754314 0.130651i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −30.0000 25.9808i −1.12827 0.977107i
\(708\) 0 0
\(709\) −13.0000 22.5167i −0.488225 0.845631i 0.511683 0.859174i \(-0.329022\pi\)
−0.999908 + 0.0135434i \(0.995689\pi\)
\(710\) 0 0
\(711\) −5.00000 + 8.66025i −0.187515 + 0.324785i
\(712\) 0 0
\(713\) 24.0000 0.898807
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4.50000 7.79423i 0.168056 0.291081i
\(718\) 0 0
\(719\) −21.0000 36.3731i −0.783168 1.35649i −0.930087 0.367338i \(-0.880269\pi\)
0.146920 0.989148i \(-0.453064\pi\)
\(720\) 0 0
\(721\) −40.0000 + 13.8564i −1.48968 + 0.516040i
\(722\) 0 0
\(723\) 13.0000 + 22.5167i 0.483475 + 0.837404i
\(724\) 0 0
\(725\) 22.5000 38.9711i 0.835629 1.44735i
\(726\) 0 0
\(727\) −14.0000 −0.519231 −0.259616 0.965712i \(-0.583596\pi\)
−0.259616 + 0.965712i \(0.583596\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 12.0000 20.7846i 0.443836 0.768747i
\(732\) 0 0
\(733\) 12.5000 + 21.6506i 0.461698 + 0.799684i 0.999046 0.0436764i \(-0.0139070\pi\)
−0.537348 + 0.843361i \(0.680574\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.50000 + 9.52628i 0.202595 + 0.350905i
\(738\) 0 0
\(739\) 25.0000 43.3013i 0.919640 1.59286i 0.119677 0.992813i \(-0.461814\pi\)
0.799962 0.600050i \(-0.204853\pi\)
\(740\) 0 0
\(741\) −2.00000 −0.0734718
\(742\) 0 0
\(743\) 36.0000 1.32071 0.660356 0.750953i \(-0.270405\pi\)
0.660356 + 0.750953i \(0.270405\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6.00000 + 10.3923i 0.219529 + 0.380235i
\(748\) 0 0
\(749\) 30.0000 10.3923i 1.09618 0.379727i
\(750\) 0 0
\(751\) −2.00000 3.46410i −0.0729810 0.126407i 0.827225 0.561870i \(-0.189918\pi\)
−0.900207 + 0.435463i \(0.856585\pi\)
\(752\) 0 0
\(753\) 6.00000 10.3923i 0.218652 0.378717i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −46.0000 −1.67190 −0.835949 0.548807i \(-0.815082\pi\)
−0.835949 + 0.548807i \(0.815082\pi\)
\(758\) 0 0
\(759\) 3.00000 5.19615i 0.108893 0.188608i
\(760\) 0 0
\(761\) 9.00000 + 15.5885i 0.326250 + 0.565081i 0.981764 0.190101i \(-0.0608816\pi\)
−0.655515 + 0.755182i \(0.727548\pi\)
\(762\) 0 0
\(763\) 4.00000 + 3.46410i 0.144810 + 0.125409i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.50000 2.59808i 0.0541619 0.0938111i
\(768\) 0 0
\(769\) −22.0000 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 0 0
\(771\) −3.00000 −0.108042
\(772\) 0 0
\(773\) −12.0000 + 20.7846i −0.431610 + 0.747570i −0.997012 0.0772449i \(-0.975388\pi\)
0.565402 + 0.824815i \(0.308721\pi\)
\(774\) 0 0
\(775\) 10.0000 + 17.3205i 0.359211 + 0.622171i
\(776\) 0 0
\(777\) −1.00000 + 5.19615i −0.0358748 + 0.186411i
\(778\) 0 0
\(779\) −6.00000 10.3923i −0.214972 0.372343i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 45.0000 1.60817
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 7.00000 12.1244i 0.249523 0.432187i −0.713871 0.700278i \(-0.753059\pi\)
0.963394 + 0.268091i \(0.0863928\pi\)
\(788\) 0 0
\(789\) 4.50000 + 7.79423i 0.160204 + 0.277482i
\(790\) 0 0
\(791\) 4.50000 23.3827i 0.160002 0.831393i
\(792\) 0 0
\(793\) 5.50000 + 9.52628i 0.195311 + 0.338288i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) 0 0
\(799\) −36.0000 −1.27359
\(800\) 0 0
\(801\) −18.0000 + 31.1769i −0.635999 + 1.10158i
\(802\) 0 0
\(803\) −1.00000 1.73205i −0.0352892 0.0611227i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 6.00000 + 10.3923i 0.211210 + 0.365826i
\(808\) 0 0
\(809\) 24.0000 41.5692i 0.843795 1.46150i −0.0428684 0.999081i \(-0.513650\pi\)
0.886664 0.462415i \(-0.153017\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) 29.0000 1.01707
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 4.00000 + 6.92820i 0.139942 + 0.242387i
\(818\) 0 0
\(819\) −5.00000 + 1.73205i −0.174714 + 0.0605228i
\(820\) 0 0
\(821\) 7.50000 + 12.9904i 0.261752 + 0.453367i 0.966708 0.255884i \(-0.0823665\pi\)
−0.704956 + 0.709251i \(0.749033\pi\)
\(822\) 0 0
\(823\) −5.00000 + 8.66025i −0.174289 + 0.301877i −0.939915 0.341409i \(-0.889096\pi\)
0.765626 + 0.643286i \(0.222429\pi\)
\(824\) 0 0
\(825\) 5.00000 0.174078
\(826\) 0 0
\(827\) −30.0000 −1.04320 −0.521601 0.853189i \(-0.674665\pi\)
−0.521601 + 0.853189i \(0.674665\pi\)
\(828\) 0 0
\(829\) 26.0000 45.0333i 0.903017 1.56407i 0.0794606 0.996838i \(-0.474680\pi\)
0.823557 0.567234i \(-0.191986\pi\)
\(830\) 0 0
\(831\) 14.5000 + 25.1147i 0.502999 + 0.871221i
\(832\) 0 0
\(833\) −33.0000 + 25.9808i −1.14338 + 0.900180i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −10.0000 + 17.3205i −0.345651 + 0.598684i
\(838\) 0 0
\(839\) −6.00000 −0.207143 −0.103572 0.994622i \(-0.533027\pi\)
−0.103572 + 0.994622i \(0.533027\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 0 0
\(843\) 9.00000 15.5885i 0.309976 0.536895i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −2.50000 + 0.866025i −0.0859010 + 0.0297570i
\(848\) 0 0
\(849\) 5.00000 + 8.66025i 0.171600 + 0.297219i
\(850\) 0 0
\(851\) −6.00000 + 10.3923i −0.205677 + 0.356244i
\(852\) 0 0
\(853\) −46.0000 −1.57501 −0.787505 0.616308i \(-0.788628\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −18.0000 + 31.1769i −0.614868 + 1.06498i 0.375539 + 0.926806i \(0.377458\pi\)
−0.990408 + 0.138177i \(0.955876\pi\)
\(858\) 0 0
\(859\) −18.5000 32.0429i −0.631212 1.09329i −0.987304 0.158840i \(-0.949225\pi\)
0.356092 0.934451i \(-0.384109\pi\)
\(860\) 0 0
\(861\) 12.0000 + 10.3923i 0.408959 + 0.354169i
\(862\) 0 0
\(863\) 15.0000 + 25.9808i 0.510606 + 0.884395i 0.999924 + 0.0122903i \(0.00391222\pi\)
−0.489319 + 0.872105i \(0.662754\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −19.0000 −0.645274
\(868\) 0 0
\(869\) −5.00000 −0.169613
\(870\) 0 0
\(871\) −5.50000 + 9.52628i −0.186360 + 0.322786i
\(872\) 0 0
\(873\) −13.0000 22.5167i −0.439983 0.762073i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −8.50000 14.7224i −0.287025 0.497141i 0.686074 0.727532i \(-0.259333\pi\)
−0.973098 + 0.230391i \(0.925999\pi\)
\(878\) 0 0
\(879\) −15.0000 + 25.9808i −0.505937 + 0.876309i
\(880\) 0 0
\(881\) 33.0000 1.11180 0.555899 0.831250i \(-0.312374\pi\)
0.555899 + 0.831250i \(0.312374\pi\)
\(882\) 0 0
\(883\) −29.0000 −0.975928 −0.487964 0.872864i \(-0.662260\pi\)
−0.487964 + 0.872864i \(0.662260\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.50000 + 2.59808i 0.0503651 + 0.0872349i 0.890109 0.455748i \(-0.150628\pi\)
−0.839744 + 0.542983i \(0.817295\pi\)
\(888\) 0 0
\(889\) 3.50000 18.1865i 0.117386 0.609957i
\(890\) 0 0
\(891\) −0.500000 0.866025i −0.0167506 0.0290129i
\(892\) 0 0
\(893\) 6.00000 10.3923i 0.200782 0.347765i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 6.00000 0.200334
\(898\) 0 0
\(899\) −18.0000 + 31.1769i −0.600334 + 1.03981i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −8.00000 6.92820i −0.266223 0.230556i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −14.0000 + 24.2487i −0.464862 + 0.805165i −0.999195 0.0401089i \(-0.987230\pi\)
0.534333 + 0.845274i \(0.320563\pi\)
\(908\) 0 0
\(909\) 30.0000 0.995037
\(910\) 0 0
\(911\) 6.00000 0.198789 0.0993944 0.995048i \(-0.468309\pi\)
0.0993944 + 0.995048i \(0.468309\pi\)
\(912\) 0 0
\(913\) −3.00000 + 5.19615i −0.0992855 + 0.171968i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 45.0000 15.5885i 1.48603 0.514776i
\(918\) 0 0
\(919\) 16.0000 + 27.7128i 0.527791 + 0.914161i 0.999475 + 0.0323936i \(0.0103130\pi\)
−0.471684 + 0.881768i \(0.656354\pi\)
\(920\) 0 0
\(921\) −10.0000 + 17.3205i −0.329511 + 0.570730i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −10.0000 −0.328798
\(926\) 0 0
\(927\) 16.0000 27.7128i 0.525509 0.910208i
\(928\) 0 0
\(929\) −19.5000 33.7750i −0.639774 1.10812i −0.985482 0.169779i \(-0.945695\pi\)
0.345708 0.938342i \(-0.387639\pi\)
\(930\) 0 0
\(931\) −2.00000 13.8564i −0.0655474 0.454125i
\(932\) 0 0
\(933\) −12.0000 20.7846i −0.392862 0.680458i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 8.00000 0.261349 0.130674 0.991425i \(-0.458286\pi\)
0.130674 + 0.991425i \(0.458286\pi\)
\(938\) 0 0
\(939\) −17.0000 −0.554774
\(940\) 0 0
\(941\) −7.50000 + 12.9904i −0.244493 + 0.423474i −0.961989 0.273088i \(-0.911955\pi\)
0.717496 + 0.696563i \(0.245288\pi\)
\(942\) 0 0
\(943\) 18.0000 + 31.1769i 0.586161 + 1.01526i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.0000 + 20.7846i 0.389948 + 0.675409i 0.992442 0.122714i \(-0.0391598\pi\)
−0.602494 + 0.798123i \(0.705826\pi\)
\(948\) 0 0
\(949\) 1.00000 1.73205i 0.0324614 0.0562247i
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) 0 0
\(953\) −36.0000 −1.16615 −0.583077 0.812417i \(-0.698151\pi\)
−0.583077 + 0.812417i \(0.698151\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 4.50000 + 7.79423i 0.145464 + 0.251952i
\(958\) 0 0
\(959\) −18.0000 15.5885i −0.581250 0.503378i
\(960\) 0 0
\(961\) 7.50000 + 12.9904i 0.241935 + 0.419045i
\(962\) 0 0
\(963\) −12.0000 + 20.7846i −0.386695 + 0.669775i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 40.0000 1.28631 0.643157 0.765735i \(-0.277624\pi\)
0.643157 + 0.765735i \(0.277624\pi\)
\(968\) 0 0
\(969\) 6.00000 10.3923i 0.192748 0.333849i
\(970\) 0 0
\(971\) 7.50000 + 12.9904i 0.240686 + 0.416881i 0.960910 0.276861i \(-0.0892941\pi\)
−0.720224 + 0.693742i \(0.755961\pi\)
\(972\) 0 0
\(973\) −4.00000 + 20.7846i −0.128234 + 0.666324i
\(974\) 0 0
\(975\) 2.50000 + 4.33013i 0.0800641 + 0.138675i
\(976\) 0 0
\(977\) 9.00000 15.5885i 0.287936 0.498719i −0.685381 0.728184i \(-0.740364\pi\)
0.973317 + 0.229465i \(0.0736978\pi\)
\(978\) 0 0
\(979\) −18.0000 −0.575282
\(980\) 0 0
\(981\) −4.00000 −0.127710
\(982\) 0 0
\(983\) −3.00000 + 5.19615i −0.0956851 + 0.165732i −0.909894 0.414840i \(-0.863838\pi\)
0.814209 + 0.580572i \(0.197171\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −3.00000 + 15.5885i −0.0954911 + 0.496186i
\(988\) 0 0
\(989\) −12.0000 20.7846i −0.381578 0.660912i
\(990\) 0 0
\(991\) −20.0000 + 34.6410i −0.635321 + 1.10041i 0.351126 + 0.936328i \(0.385799\pi\)
−0.986447 + 0.164080i \(0.947534\pi\)
\(992\) 0 0
\(993\) 35.0000 1.11069
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 17.0000 29.4449i 0.538395 0.932528i −0.460595 0.887610i \(-0.652364\pi\)
0.998991 0.0449179i \(-0.0143026\pi\)
\(998\) 0 0
\(999\) −5.00000 8.66025i −0.158193 0.273998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.2.q.d.529.1 2
4.3 odd 2 154.2.e.c.67.1 yes 2
7.2 even 3 inner 1232.2.q.d.177.1 2
7.3 odd 6 8624.2.a.u.1.1 1
7.4 even 3 8624.2.a.k.1.1 1
12.11 even 2 1386.2.k.e.991.1 2
28.3 even 6 1078.2.a.c.1.1 1
28.11 odd 6 1078.2.a.e.1.1 1
28.19 even 6 1078.2.e.k.177.1 2
28.23 odd 6 154.2.e.c.23.1 2
28.27 even 2 1078.2.e.k.67.1 2
84.11 even 6 9702.2.a.br.1.1 1
84.23 even 6 1386.2.k.e.793.1 2
84.59 odd 6 9702.2.a.bs.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
154.2.e.c.23.1 2 28.23 odd 6
154.2.e.c.67.1 yes 2 4.3 odd 2
1078.2.a.c.1.1 1 28.3 even 6
1078.2.a.e.1.1 1 28.11 odd 6
1078.2.e.k.67.1 2 28.27 even 2
1078.2.e.k.177.1 2 28.19 even 6
1232.2.q.d.177.1 2 7.2 even 3 inner
1232.2.q.d.529.1 2 1.1 even 1 trivial
1386.2.k.e.793.1 2 84.23 even 6
1386.2.k.e.991.1 2 12.11 even 2
8624.2.a.k.1.1 1 7.4 even 3
8624.2.a.u.1.1 1 7.3 odd 6
9702.2.a.br.1.1 1 84.11 even 6
9702.2.a.bs.1.1 1 84.59 odd 6