Properties

Label 1232.4.a.bb.1.6
Level $1232$
Weight $4$
Character 1232.1
Self dual yes
Analytic conductor $72.690$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,4,Mod(1,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1232.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.6903531271\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 47x^{4} + 10x^{3} + 612x^{2} + 240x - 1440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 5 \)
Twist minimal: no (minimal twist has level 616)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-2.26862\) of defining polynomial
Character \(\chi\) \(=\) 1232.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.70461 q^{3} -11.2312 q^{5} -7.00000 q^{7} +48.7703 q^{9} +11.0000 q^{11} -70.7822 q^{13} -97.7636 q^{15} -22.6075 q^{17} +150.276 q^{19} -60.9323 q^{21} +39.7508 q^{23} +1.14064 q^{25} +189.502 q^{27} -171.699 q^{29} +48.8411 q^{31} +95.7508 q^{33} +78.6186 q^{35} -253.496 q^{37} -616.132 q^{39} -208.433 q^{41} -346.157 q^{43} -547.751 q^{45} -42.2758 q^{47} +49.0000 q^{49} -196.789 q^{51} -300.206 q^{53} -123.544 q^{55} +1308.10 q^{57} +412.500 q^{59} +781.931 q^{61} -341.392 q^{63} +794.972 q^{65} -359.574 q^{67} +346.016 q^{69} -665.468 q^{71} -1146.92 q^{73} +9.92879 q^{75} -77.0000 q^{77} -1145.57 q^{79} +332.745 q^{81} -606.927 q^{83} +253.910 q^{85} -1494.58 q^{87} -177.318 q^{89} +495.476 q^{91} +425.143 q^{93} -1687.79 q^{95} -463.156 q^{97} +536.473 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{5} - 42 q^{7} + 60 q^{9} + 66 q^{11} - 6 q^{13} - 126 q^{15} - 14 q^{17} - 80 q^{19} - 254 q^{23} + 220 q^{25} - 90 q^{27} + 132 q^{29} + 52 q^{31} - 14 q^{35} - 518 q^{37} - 332 q^{39} + 486 q^{41}+ \cdots + 660 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.70461 1.67520 0.837602 0.546281i \(-0.183957\pi\)
0.837602 + 0.546281i \(0.183957\pi\)
\(4\) 0 0
\(5\) −11.2312 −1.00455 −0.502276 0.864707i \(-0.667504\pi\)
−0.502276 + 0.864707i \(0.667504\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 48.7703 1.80631
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −70.7822 −1.51011 −0.755056 0.655660i \(-0.772390\pi\)
−0.755056 + 0.655660i \(0.772390\pi\)
\(14\) 0 0
\(15\) −97.7636 −1.68283
\(16\) 0 0
\(17\) −22.6075 −0.322536 −0.161268 0.986911i \(-0.551558\pi\)
−0.161268 + 0.986911i \(0.551558\pi\)
\(18\) 0 0
\(19\) 150.276 1.81451 0.907256 0.420578i \(-0.138173\pi\)
0.907256 + 0.420578i \(0.138173\pi\)
\(20\) 0 0
\(21\) −60.9323 −0.633168
\(22\) 0 0
\(23\) 39.7508 0.360375 0.180187 0.983632i \(-0.442330\pi\)
0.180187 + 0.983632i \(0.442330\pi\)
\(24\) 0 0
\(25\) 1.14064 0.00912508
\(26\) 0 0
\(27\) 189.502 1.35073
\(28\) 0 0
\(29\) −171.699 −1.09944 −0.549721 0.835349i \(-0.685266\pi\)
−0.549721 + 0.835349i \(0.685266\pi\)
\(30\) 0 0
\(31\) 48.8411 0.282972 0.141486 0.989940i \(-0.454812\pi\)
0.141486 + 0.989940i \(0.454812\pi\)
\(32\) 0 0
\(33\) 95.7508 0.505093
\(34\) 0 0
\(35\) 78.6186 0.379685
\(36\) 0 0
\(37\) −253.496 −1.12634 −0.563169 0.826342i \(-0.690418\pi\)
−0.563169 + 0.826342i \(0.690418\pi\)
\(38\) 0 0
\(39\) −616.132 −2.52975
\(40\) 0 0
\(41\) −208.433 −0.793946 −0.396973 0.917830i \(-0.629939\pi\)
−0.396973 + 0.917830i \(0.629939\pi\)
\(42\) 0 0
\(43\) −346.157 −1.22764 −0.613819 0.789447i \(-0.710367\pi\)
−0.613819 + 0.789447i \(0.710367\pi\)
\(44\) 0 0
\(45\) −547.751 −1.81453
\(46\) 0 0
\(47\) −42.2758 −0.131203 −0.0656017 0.997846i \(-0.520897\pi\)
−0.0656017 + 0.997846i \(0.520897\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −196.789 −0.540314
\(52\) 0 0
\(53\) −300.206 −0.778047 −0.389023 0.921228i \(-0.627187\pi\)
−0.389023 + 0.921228i \(0.627187\pi\)
\(54\) 0 0
\(55\) −123.544 −0.302884
\(56\) 0 0
\(57\) 1308.10 3.03968
\(58\) 0 0
\(59\) 412.500 0.910220 0.455110 0.890435i \(-0.349600\pi\)
0.455110 + 0.890435i \(0.349600\pi\)
\(60\) 0 0
\(61\) 781.931 1.64125 0.820623 0.571470i \(-0.193627\pi\)
0.820623 + 0.571470i \(0.193627\pi\)
\(62\) 0 0
\(63\) −341.392 −0.682720
\(64\) 0 0
\(65\) 794.972 1.51699
\(66\) 0 0
\(67\) −359.574 −0.655656 −0.327828 0.944737i \(-0.606317\pi\)
−0.327828 + 0.944737i \(0.606317\pi\)
\(68\) 0 0
\(69\) 346.016 0.603701
\(70\) 0 0
\(71\) −665.468 −1.11235 −0.556173 0.831067i \(-0.687731\pi\)
−0.556173 + 0.831067i \(0.687731\pi\)
\(72\) 0 0
\(73\) −1146.92 −1.83885 −0.919426 0.393262i \(-0.871347\pi\)
−0.919426 + 0.393262i \(0.871347\pi\)
\(74\) 0 0
\(75\) 9.92879 0.0152864
\(76\) 0 0
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −1145.57 −1.63148 −0.815741 0.578417i \(-0.803671\pi\)
−0.815741 + 0.578417i \(0.803671\pi\)
\(80\) 0 0
\(81\) 332.745 0.456440
\(82\) 0 0
\(83\) −606.927 −0.802638 −0.401319 0.915938i \(-0.631448\pi\)
−0.401319 + 0.915938i \(0.631448\pi\)
\(84\) 0 0
\(85\) 253.910 0.324004
\(86\) 0 0
\(87\) −1494.58 −1.84179
\(88\) 0 0
\(89\) −177.318 −0.211187 −0.105594 0.994409i \(-0.533674\pi\)
−0.105594 + 0.994409i \(0.533674\pi\)
\(90\) 0 0
\(91\) 495.476 0.570769
\(92\) 0 0
\(93\) 425.143 0.474036
\(94\) 0 0
\(95\) −1687.79 −1.82277
\(96\) 0 0
\(97\) −463.156 −0.484808 −0.242404 0.970175i \(-0.577936\pi\)
−0.242404 + 0.970175i \(0.577936\pi\)
\(98\) 0 0
\(99\) 536.473 0.544622
\(100\) 0 0
\(101\) −464.045 −0.457171 −0.228585 0.973524i \(-0.573410\pi\)
−0.228585 + 0.973524i \(0.573410\pi\)
\(102\) 0 0
\(103\) 304.396 0.291195 0.145597 0.989344i \(-0.453490\pi\)
0.145597 + 0.989344i \(0.453490\pi\)
\(104\) 0 0
\(105\) 684.345 0.636050
\(106\) 0 0
\(107\) 833.013 0.752621 0.376310 0.926494i \(-0.377193\pi\)
0.376310 + 0.926494i \(0.377193\pi\)
\(108\) 0 0
\(109\) −1496.01 −1.31460 −0.657302 0.753627i \(-0.728302\pi\)
−0.657302 + 0.753627i \(0.728302\pi\)
\(110\) 0 0
\(111\) −2206.58 −1.88684
\(112\) 0 0
\(113\) 247.726 0.206231 0.103115 0.994669i \(-0.467119\pi\)
0.103115 + 0.994669i \(0.467119\pi\)
\(114\) 0 0
\(115\) −446.451 −0.362015
\(116\) 0 0
\(117\) −3452.07 −2.72773
\(118\) 0 0
\(119\) 158.252 0.121907
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) −1814.33 −1.33002
\(124\) 0 0
\(125\) 1391.09 0.995386
\(126\) 0 0
\(127\) 1374.43 0.960322 0.480161 0.877180i \(-0.340578\pi\)
0.480161 + 0.877180i \(0.340578\pi\)
\(128\) 0 0
\(129\) −3013.16 −2.05654
\(130\) 0 0
\(131\) −1771.68 −1.18162 −0.590809 0.806811i \(-0.701191\pi\)
−0.590809 + 0.806811i \(0.701191\pi\)
\(132\) 0 0
\(133\) −1051.93 −0.685821
\(134\) 0 0
\(135\) −2128.34 −1.35688
\(136\) 0 0
\(137\) 506.645 0.315953 0.157977 0.987443i \(-0.449503\pi\)
0.157977 + 0.987443i \(0.449503\pi\)
\(138\) 0 0
\(139\) −1929.96 −1.17768 −0.588839 0.808251i \(-0.700415\pi\)
−0.588839 + 0.808251i \(0.700415\pi\)
\(140\) 0 0
\(141\) −367.994 −0.219792
\(142\) 0 0
\(143\) −778.605 −0.455316
\(144\) 0 0
\(145\) 1928.40 1.10445
\(146\) 0 0
\(147\) 426.526 0.239315
\(148\) 0 0
\(149\) 3393.29 1.86570 0.932850 0.360266i \(-0.117314\pi\)
0.932850 + 0.360266i \(0.117314\pi\)
\(150\) 0 0
\(151\) 1574.74 0.848679 0.424339 0.905503i \(-0.360506\pi\)
0.424339 + 0.905503i \(0.360506\pi\)
\(152\) 0 0
\(153\) −1102.57 −0.582600
\(154\) 0 0
\(155\) −548.546 −0.284260
\(156\) 0 0
\(157\) 2310.54 1.17453 0.587265 0.809394i \(-0.300204\pi\)
0.587265 + 0.809394i \(0.300204\pi\)
\(158\) 0 0
\(159\) −2613.18 −1.30339
\(160\) 0 0
\(161\) −278.256 −0.136209
\(162\) 0 0
\(163\) 1658.35 0.796883 0.398442 0.917194i \(-0.369551\pi\)
0.398442 + 0.917194i \(0.369551\pi\)
\(164\) 0 0
\(165\) −1075.40 −0.507392
\(166\) 0 0
\(167\) −831.741 −0.385402 −0.192701 0.981258i \(-0.561725\pi\)
−0.192701 + 0.981258i \(0.561725\pi\)
\(168\) 0 0
\(169\) 2813.13 1.28044
\(170\) 0 0
\(171\) 7329.02 3.27757
\(172\) 0 0
\(173\) −1573.66 −0.691578 −0.345789 0.938312i \(-0.612389\pi\)
−0.345789 + 0.938312i \(0.612389\pi\)
\(174\) 0 0
\(175\) −7.98445 −0.00344896
\(176\) 0 0
\(177\) 3590.66 1.52480
\(178\) 0 0
\(179\) −1101.85 −0.460088 −0.230044 0.973180i \(-0.573887\pi\)
−0.230044 + 0.973180i \(0.573887\pi\)
\(180\) 0 0
\(181\) −3036.38 −1.24692 −0.623459 0.781856i \(-0.714273\pi\)
−0.623459 + 0.781856i \(0.714273\pi\)
\(182\) 0 0
\(183\) 6806.40 2.74942
\(184\) 0 0
\(185\) 2847.07 1.13146
\(186\) 0 0
\(187\) −248.682 −0.0972483
\(188\) 0 0
\(189\) −1326.51 −0.510528
\(190\) 0 0
\(191\) −731.342 −0.277058 −0.138529 0.990358i \(-0.544237\pi\)
−0.138529 + 0.990358i \(0.544237\pi\)
\(192\) 0 0
\(193\) −3142.83 −1.17215 −0.586077 0.810256i \(-0.699328\pi\)
−0.586077 + 0.810256i \(0.699328\pi\)
\(194\) 0 0
\(195\) 6919.92 2.54126
\(196\) 0 0
\(197\) 501.362 0.181323 0.0906614 0.995882i \(-0.471102\pi\)
0.0906614 + 0.995882i \(0.471102\pi\)
\(198\) 0 0
\(199\) 4570.12 1.62798 0.813988 0.580881i \(-0.197292\pi\)
0.813988 + 0.580881i \(0.197292\pi\)
\(200\) 0 0
\(201\) −3129.95 −1.09836
\(202\) 0 0
\(203\) 1201.90 0.415550
\(204\) 0 0
\(205\) 2340.96 0.797560
\(206\) 0 0
\(207\) 1938.66 0.650948
\(208\) 0 0
\(209\) 1653.04 0.547096
\(210\) 0 0
\(211\) 4396.54 1.43446 0.717228 0.696839i \(-0.245411\pi\)
0.717228 + 0.696839i \(0.245411\pi\)
\(212\) 0 0
\(213\) −5792.64 −1.86340
\(214\) 0 0
\(215\) 3887.77 1.23323
\(216\) 0 0
\(217\) −341.888 −0.106953
\(218\) 0 0
\(219\) −9983.45 −3.08045
\(220\) 0 0
\(221\) 1600.21 0.487066
\(222\) 0 0
\(223\) 1681.25 0.504864 0.252432 0.967615i \(-0.418770\pi\)
0.252432 + 0.967615i \(0.418770\pi\)
\(224\) 0 0
\(225\) 55.6291 0.0164827
\(226\) 0 0
\(227\) −2563.22 −0.749456 −0.374728 0.927135i \(-0.622264\pi\)
−0.374728 + 0.927135i \(0.622264\pi\)
\(228\) 0 0
\(229\) 2637.97 0.761230 0.380615 0.924734i \(-0.375712\pi\)
0.380615 + 0.924734i \(0.375712\pi\)
\(230\) 0 0
\(231\) −670.255 −0.190907
\(232\) 0 0
\(233\) 4900.60 1.37789 0.688946 0.724812i \(-0.258074\pi\)
0.688946 + 0.724812i \(0.258074\pi\)
\(234\) 0 0
\(235\) 474.809 0.131801
\(236\) 0 0
\(237\) −9971.78 −2.73307
\(238\) 0 0
\(239\) −4627.72 −1.25248 −0.626239 0.779631i \(-0.715407\pi\)
−0.626239 + 0.779631i \(0.715407\pi\)
\(240\) 0 0
\(241\) 3550.08 0.948884 0.474442 0.880287i \(-0.342650\pi\)
0.474442 + 0.880287i \(0.342650\pi\)
\(242\) 0 0
\(243\) −2220.14 −0.586100
\(244\) 0 0
\(245\) −550.331 −0.143507
\(246\) 0 0
\(247\) −10636.9 −2.74012
\(248\) 0 0
\(249\) −5283.07 −1.34458
\(250\) 0 0
\(251\) −3425.23 −0.861350 −0.430675 0.902507i \(-0.641724\pi\)
−0.430675 + 0.902507i \(0.641724\pi\)
\(252\) 0 0
\(253\) 437.259 0.108657
\(254\) 0 0
\(255\) 2210.19 0.542774
\(256\) 0 0
\(257\) −5631.21 −1.36679 −0.683396 0.730048i \(-0.739498\pi\)
−0.683396 + 0.730048i \(0.739498\pi\)
\(258\) 0 0
\(259\) 1774.47 0.425716
\(260\) 0 0
\(261\) −8373.84 −1.98593
\(262\) 0 0
\(263\) 6642.14 1.55731 0.778654 0.627453i \(-0.215903\pi\)
0.778654 + 0.627453i \(0.215903\pi\)
\(264\) 0 0
\(265\) 3371.68 0.781588
\(266\) 0 0
\(267\) −1543.48 −0.353782
\(268\) 0 0
\(269\) 7906.39 1.79205 0.896025 0.444004i \(-0.146442\pi\)
0.896025 + 0.444004i \(0.146442\pi\)
\(270\) 0 0
\(271\) −2843.85 −0.637461 −0.318730 0.947845i \(-0.603256\pi\)
−0.318730 + 0.947845i \(0.603256\pi\)
\(272\) 0 0
\(273\) 4312.92 0.956154
\(274\) 0 0
\(275\) 12.5470 0.00275132
\(276\) 0 0
\(277\) −6339.22 −1.37504 −0.687521 0.726164i \(-0.741301\pi\)
−0.687521 + 0.726164i \(0.741301\pi\)
\(278\) 0 0
\(279\) 2382.00 0.511134
\(280\) 0 0
\(281\) 7249.42 1.53902 0.769510 0.638635i \(-0.220501\pi\)
0.769510 + 0.638635i \(0.220501\pi\)
\(282\) 0 0
\(283\) 4074.64 0.855873 0.427937 0.903809i \(-0.359241\pi\)
0.427937 + 0.903809i \(0.359241\pi\)
\(284\) 0 0
\(285\) −14691.5 −3.05352
\(286\) 0 0
\(287\) 1459.03 0.300083
\(288\) 0 0
\(289\) −4401.90 −0.895970
\(290\) 0 0
\(291\) −4031.59 −0.812152
\(292\) 0 0
\(293\) −9631.88 −1.92048 −0.960239 0.279178i \(-0.909938\pi\)
−0.960239 + 0.279178i \(0.909938\pi\)
\(294\) 0 0
\(295\) −4632.89 −0.914363
\(296\) 0 0
\(297\) 2084.52 0.407260
\(298\) 0 0
\(299\) −2813.65 −0.544207
\(300\) 0 0
\(301\) 2423.10 0.464003
\(302\) 0 0
\(303\) −4039.34 −0.765854
\(304\) 0 0
\(305\) −8782.05 −1.64872
\(306\) 0 0
\(307\) −6205.69 −1.15367 −0.576836 0.816860i \(-0.695713\pi\)
−0.576836 + 0.816860i \(0.695713\pi\)
\(308\) 0 0
\(309\) 2649.65 0.487811
\(310\) 0 0
\(311\) 5691.60 1.03775 0.518876 0.854849i \(-0.326351\pi\)
0.518876 + 0.854849i \(0.326351\pi\)
\(312\) 0 0
\(313\) 2423.14 0.437584 0.218792 0.975772i \(-0.429788\pi\)
0.218792 + 0.975772i \(0.429788\pi\)
\(314\) 0 0
\(315\) 3834.26 0.685828
\(316\) 0 0
\(317\) 5217.54 0.924437 0.462218 0.886766i \(-0.347054\pi\)
0.462218 + 0.886766i \(0.347054\pi\)
\(318\) 0 0
\(319\) −1888.69 −0.331494
\(320\) 0 0
\(321\) 7251.06 1.26079
\(322\) 0 0
\(323\) −3397.37 −0.585246
\(324\) 0 0
\(325\) −80.7367 −0.0137799
\(326\) 0 0
\(327\) −13022.2 −2.20223
\(328\) 0 0
\(329\) 295.930 0.0495902
\(330\) 0 0
\(331\) 10929.7 1.81496 0.907480 0.420095i \(-0.138003\pi\)
0.907480 + 0.420095i \(0.138003\pi\)
\(332\) 0 0
\(333\) −12363.1 −2.03451
\(334\) 0 0
\(335\) 4038.46 0.658641
\(336\) 0 0
\(337\) −690.641 −0.111637 −0.0558184 0.998441i \(-0.517777\pi\)
−0.0558184 + 0.998441i \(0.517777\pi\)
\(338\) 0 0
\(339\) 2156.36 0.345479
\(340\) 0 0
\(341\) 537.253 0.0853192
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −3886.18 −0.606450
\(346\) 0 0
\(347\) 2451.12 0.379203 0.189601 0.981861i \(-0.439280\pi\)
0.189601 + 0.981861i \(0.439280\pi\)
\(348\) 0 0
\(349\) 3773.64 0.578792 0.289396 0.957209i \(-0.406546\pi\)
0.289396 + 0.957209i \(0.406546\pi\)
\(350\) 0 0
\(351\) −13413.4 −2.03975
\(352\) 0 0
\(353\) −9417.40 −1.41994 −0.709968 0.704234i \(-0.751291\pi\)
−0.709968 + 0.704234i \(0.751291\pi\)
\(354\) 0 0
\(355\) 7474.03 1.11741
\(356\) 0 0
\(357\) 1377.52 0.204219
\(358\) 0 0
\(359\) −3802.27 −0.558986 −0.279493 0.960148i \(-0.590166\pi\)
−0.279493 + 0.960148i \(0.590166\pi\)
\(360\) 0 0
\(361\) 15724.0 2.29246
\(362\) 0 0
\(363\) 1053.26 0.152291
\(364\) 0 0
\(365\) 12881.3 1.84722
\(366\) 0 0
\(367\) −4463.46 −0.634852 −0.317426 0.948283i \(-0.602819\pi\)
−0.317426 + 0.948283i \(0.602819\pi\)
\(368\) 0 0
\(369\) −10165.3 −1.43411
\(370\) 0 0
\(371\) 2101.44 0.294074
\(372\) 0 0
\(373\) −8157.05 −1.13232 −0.566161 0.824295i \(-0.691572\pi\)
−0.566161 + 0.824295i \(0.691572\pi\)
\(374\) 0 0
\(375\) 12108.9 1.66747
\(376\) 0 0
\(377\) 12153.3 1.66028
\(378\) 0 0
\(379\) −2071.65 −0.280775 −0.140387 0.990097i \(-0.544835\pi\)
−0.140387 + 0.990097i \(0.544835\pi\)
\(380\) 0 0
\(381\) 11963.9 1.60874
\(382\) 0 0
\(383\) 4114.19 0.548891 0.274445 0.961603i \(-0.411506\pi\)
0.274445 + 0.961603i \(0.411506\pi\)
\(384\) 0 0
\(385\) 864.805 0.114479
\(386\) 0 0
\(387\) −16882.2 −2.21749
\(388\) 0 0
\(389\) 5446.31 0.709869 0.354934 0.934891i \(-0.384503\pi\)
0.354934 + 0.934891i \(0.384503\pi\)
\(390\) 0 0
\(391\) −898.666 −0.116234
\(392\) 0 0
\(393\) −15421.8 −1.97945
\(394\) 0 0
\(395\) 12866.2 1.63891
\(396\) 0 0
\(397\) −10643.5 −1.34554 −0.672772 0.739850i \(-0.734897\pi\)
−0.672772 + 0.739850i \(0.734897\pi\)
\(398\) 0 0
\(399\) −9156.68 −1.14889
\(400\) 0 0
\(401\) 6260.83 0.779678 0.389839 0.920883i \(-0.372531\pi\)
0.389839 + 0.920883i \(0.372531\pi\)
\(402\) 0 0
\(403\) −3457.09 −0.427319
\(404\) 0 0
\(405\) −3737.13 −0.458518
\(406\) 0 0
\(407\) −2788.46 −0.339603
\(408\) 0 0
\(409\) −9348.20 −1.13017 −0.565084 0.825033i \(-0.691156\pi\)
−0.565084 + 0.825033i \(0.691156\pi\)
\(410\) 0 0
\(411\) 4410.15 0.529286
\(412\) 0 0
\(413\) −2887.50 −0.344031
\(414\) 0 0
\(415\) 6816.54 0.806291
\(416\) 0 0
\(417\) −16799.6 −1.97285
\(418\) 0 0
\(419\) 9749.81 1.13678 0.568388 0.822760i \(-0.307567\pi\)
0.568388 + 0.822760i \(0.307567\pi\)
\(420\) 0 0
\(421\) −6947.22 −0.804244 −0.402122 0.915586i \(-0.631727\pi\)
−0.402122 + 0.915586i \(0.631727\pi\)
\(422\) 0 0
\(423\) −2061.80 −0.236994
\(424\) 0 0
\(425\) −25.7869 −0.00294317
\(426\) 0 0
\(427\) −5473.51 −0.620332
\(428\) 0 0
\(429\) −6777.45 −0.762747
\(430\) 0 0
\(431\) −9675.10 −1.08128 −0.540642 0.841253i \(-0.681818\pi\)
−0.540642 + 0.841253i \(0.681818\pi\)
\(432\) 0 0
\(433\) −9378.86 −1.04092 −0.520461 0.853885i \(-0.674240\pi\)
−0.520461 + 0.853885i \(0.674240\pi\)
\(434\) 0 0
\(435\) 16786.0 1.85017
\(436\) 0 0
\(437\) 5973.61 0.653905
\(438\) 0 0
\(439\) −14786.6 −1.60758 −0.803788 0.594916i \(-0.797185\pi\)
−0.803788 + 0.594916i \(0.797185\pi\)
\(440\) 0 0
\(441\) 2389.75 0.258044
\(442\) 0 0
\(443\) 1618.90 0.173626 0.0868132 0.996225i \(-0.472332\pi\)
0.0868132 + 0.996225i \(0.472332\pi\)
\(444\) 0 0
\(445\) 1991.50 0.212149
\(446\) 0 0
\(447\) 29537.3 3.12543
\(448\) 0 0
\(449\) 14229.7 1.49564 0.747820 0.663901i \(-0.231100\pi\)
0.747820 + 0.663901i \(0.231100\pi\)
\(450\) 0 0
\(451\) −2292.76 −0.239384
\(452\) 0 0
\(453\) 13707.5 1.42171
\(454\) 0 0
\(455\) −5564.80 −0.573367
\(456\) 0 0
\(457\) −4324.02 −0.442602 −0.221301 0.975206i \(-0.571030\pi\)
−0.221301 + 0.975206i \(0.571030\pi\)
\(458\) 0 0
\(459\) −4284.16 −0.435659
\(460\) 0 0
\(461\) 12979.5 1.31131 0.655657 0.755059i \(-0.272392\pi\)
0.655657 + 0.755059i \(0.272392\pi\)
\(462\) 0 0
\(463\) −8306.05 −0.833725 −0.416863 0.908970i \(-0.636870\pi\)
−0.416863 + 0.908970i \(0.636870\pi\)
\(464\) 0 0
\(465\) −4774.88 −0.476193
\(466\) 0 0
\(467\) −6343.79 −0.628599 −0.314299 0.949324i \(-0.601770\pi\)
−0.314299 + 0.949324i \(0.601770\pi\)
\(468\) 0 0
\(469\) 2517.02 0.247815
\(470\) 0 0
\(471\) 20112.4 1.96758
\(472\) 0 0
\(473\) −3807.72 −0.370147
\(474\) 0 0
\(475\) 171.410 0.0165576
\(476\) 0 0
\(477\) −14641.1 −1.40539
\(478\) 0 0
\(479\) 12501.9 1.19254 0.596272 0.802783i \(-0.296648\pi\)
0.596272 + 0.802783i \(0.296648\pi\)
\(480\) 0 0
\(481\) 17943.0 1.70090
\(482\) 0 0
\(483\) −2422.11 −0.228178
\(484\) 0 0
\(485\) 5201.81 0.487015
\(486\) 0 0
\(487\) 3604.74 0.335413 0.167707 0.985837i \(-0.446364\pi\)
0.167707 + 0.985837i \(0.446364\pi\)
\(488\) 0 0
\(489\) 14435.3 1.33494
\(490\) 0 0
\(491\) 20506.8 1.88484 0.942420 0.334430i \(-0.108544\pi\)
0.942420 + 0.334430i \(0.108544\pi\)
\(492\) 0 0
\(493\) 3881.69 0.354610
\(494\) 0 0
\(495\) −6025.26 −0.547101
\(496\) 0 0
\(497\) 4658.27 0.420427
\(498\) 0 0
\(499\) −15075.2 −1.35242 −0.676209 0.736710i \(-0.736378\pi\)
−0.676209 + 0.736710i \(0.736378\pi\)
\(500\) 0 0
\(501\) −7239.99 −0.645626
\(502\) 0 0
\(503\) −1366.43 −0.121126 −0.0605629 0.998164i \(-0.519290\pi\)
−0.0605629 + 0.998164i \(0.519290\pi\)
\(504\) 0 0
\(505\) 5211.80 0.459252
\(506\) 0 0
\(507\) 24487.2 2.14500
\(508\) 0 0
\(509\) 12219.6 1.06409 0.532046 0.846715i \(-0.321423\pi\)
0.532046 + 0.846715i \(0.321423\pi\)
\(510\) 0 0
\(511\) 8028.41 0.695021
\(512\) 0 0
\(513\) 28477.7 2.45092
\(514\) 0 0
\(515\) −3418.75 −0.292521
\(516\) 0 0
\(517\) −465.034 −0.0395593
\(518\) 0 0
\(519\) −13698.1 −1.15853
\(520\) 0 0
\(521\) −14153.7 −1.19018 −0.595092 0.803658i \(-0.702884\pi\)
−0.595092 + 0.803658i \(0.702884\pi\)
\(522\) 0 0
\(523\) 13454.2 1.12488 0.562438 0.826839i \(-0.309863\pi\)
0.562438 + 0.826839i \(0.309863\pi\)
\(524\) 0 0
\(525\) −69.5015 −0.00577771
\(526\) 0 0
\(527\) −1104.17 −0.0912687
\(528\) 0 0
\(529\) −10586.9 −0.870130
\(530\) 0 0
\(531\) 20117.8 1.64414
\(532\) 0 0
\(533\) 14753.4 1.19895
\(534\) 0 0
\(535\) −9355.77 −0.756047
\(536\) 0 0
\(537\) −9591.14 −0.770742
\(538\) 0 0
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −4252.71 −0.337964 −0.168982 0.985619i \(-0.554048\pi\)
−0.168982 + 0.985619i \(0.554048\pi\)
\(542\) 0 0
\(543\) −26430.5 −2.08884
\(544\) 0 0
\(545\) 16802.1 1.32059
\(546\) 0 0
\(547\) −12313.4 −0.962493 −0.481247 0.876585i \(-0.659816\pi\)
−0.481247 + 0.876585i \(0.659816\pi\)
\(548\) 0 0
\(549\) 38135.0 2.96459
\(550\) 0 0
\(551\) −25802.4 −1.99495
\(552\) 0 0
\(553\) 8019.02 0.616643
\(554\) 0 0
\(555\) 24782.7 1.89543
\(556\) 0 0
\(557\) −2161.87 −0.164455 −0.0822273 0.996614i \(-0.526203\pi\)
−0.0822273 + 0.996614i \(0.526203\pi\)
\(558\) 0 0
\(559\) 24501.7 1.85387
\(560\) 0 0
\(561\) −2164.68 −0.162911
\(562\) 0 0
\(563\) −8823.05 −0.660475 −0.330237 0.943898i \(-0.607129\pi\)
−0.330237 + 0.943898i \(0.607129\pi\)
\(564\) 0 0
\(565\) −2782.27 −0.207170
\(566\) 0 0
\(567\) −2329.21 −0.172518
\(568\) 0 0
\(569\) −11914.5 −0.877820 −0.438910 0.898531i \(-0.644635\pi\)
−0.438910 + 0.898531i \(0.644635\pi\)
\(570\) 0 0
\(571\) 2313.34 0.169545 0.0847727 0.996400i \(-0.472984\pi\)
0.0847727 + 0.996400i \(0.472984\pi\)
\(572\) 0 0
\(573\) −6366.05 −0.464129
\(574\) 0 0
\(575\) 45.3412 0.00328845
\(576\) 0 0
\(577\) 9307.61 0.671544 0.335772 0.941943i \(-0.391003\pi\)
0.335772 + 0.941943i \(0.391003\pi\)
\(578\) 0 0
\(579\) −27357.1 −1.96360
\(580\) 0 0
\(581\) 4248.49 0.303369
\(582\) 0 0
\(583\) −3302.27 −0.234590
\(584\) 0 0
\(585\) 38771.0 2.74014
\(586\) 0 0
\(587\) −2306.12 −0.162153 −0.0810764 0.996708i \(-0.525836\pi\)
−0.0810764 + 0.996708i \(0.525836\pi\)
\(588\) 0 0
\(589\) 7339.66 0.513456
\(590\) 0 0
\(591\) 4364.17 0.303753
\(592\) 0 0
\(593\) −3588.27 −0.248487 −0.124243 0.992252i \(-0.539650\pi\)
−0.124243 + 0.992252i \(0.539650\pi\)
\(594\) 0 0
\(595\) −1777.37 −0.122462
\(596\) 0 0
\(597\) 39781.1 2.72719
\(598\) 0 0
\(599\) 5178.56 0.353239 0.176620 0.984279i \(-0.443484\pi\)
0.176620 + 0.984279i \(0.443484\pi\)
\(600\) 0 0
\(601\) −5631.19 −0.382198 −0.191099 0.981571i \(-0.561205\pi\)
−0.191099 + 0.981571i \(0.561205\pi\)
\(602\) 0 0
\(603\) −17536.5 −1.18432
\(604\) 0 0
\(605\) −1358.98 −0.0913229
\(606\) 0 0
\(607\) −17843.8 −1.19318 −0.596589 0.802547i \(-0.703478\pi\)
−0.596589 + 0.802547i \(0.703478\pi\)
\(608\) 0 0
\(609\) 10462.0 0.696130
\(610\) 0 0
\(611\) 2992.37 0.198132
\(612\) 0 0
\(613\) 5561.75 0.366455 0.183228 0.983071i \(-0.441345\pi\)
0.183228 + 0.983071i \(0.441345\pi\)
\(614\) 0 0
\(615\) 20377.2 1.33608
\(616\) 0 0
\(617\) 27284.0 1.78025 0.890124 0.455718i \(-0.150618\pi\)
0.890124 + 0.455718i \(0.150618\pi\)
\(618\) 0 0
\(619\) −10717.3 −0.695903 −0.347951 0.937513i \(-0.613123\pi\)
−0.347951 + 0.937513i \(0.613123\pi\)
\(620\) 0 0
\(621\) 7532.87 0.486769
\(622\) 0 0
\(623\) 1241.23 0.0798213
\(624\) 0 0
\(625\) −15766.3 −1.00904
\(626\) 0 0
\(627\) 14389.1 0.916497
\(628\) 0 0
\(629\) 5730.90 0.363285
\(630\) 0 0
\(631\) 15607.9 0.984690 0.492345 0.870400i \(-0.336140\pi\)
0.492345 + 0.870400i \(0.336140\pi\)
\(632\) 0 0
\(633\) 38270.1 2.40300
\(634\) 0 0
\(635\) −15436.5 −0.964694
\(636\) 0 0
\(637\) −3468.33 −0.215730
\(638\) 0 0
\(639\) −32455.1 −2.00924
\(640\) 0 0
\(641\) −25322.3 −1.56033 −0.780163 0.625576i \(-0.784864\pi\)
−0.780163 + 0.625576i \(0.784864\pi\)
\(642\) 0 0
\(643\) 26251.3 1.61003 0.805016 0.593253i \(-0.202157\pi\)
0.805016 + 0.593253i \(0.202157\pi\)
\(644\) 0 0
\(645\) 33841.5 2.06590
\(646\) 0 0
\(647\) −21488.0 −1.30569 −0.652843 0.757493i \(-0.726424\pi\)
−0.652843 + 0.757493i \(0.726424\pi\)
\(648\) 0 0
\(649\) 4537.50 0.274442
\(650\) 0 0
\(651\) −2976.00 −0.179169
\(652\) 0 0
\(653\) 17090.3 1.02419 0.512096 0.858928i \(-0.328869\pi\)
0.512096 + 0.858928i \(0.328869\pi\)
\(654\) 0 0
\(655\) 19898.1 1.18700
\(656\) 0 0
\(657\) −55935.4 −3.32153
\(658\) 0 0
\(659\) −3405.83 −0.201324 −0.100662 0.994921i \(-0.532096\pi\)
−0.100662 + 0.994921i \(0.532096\pi\)
\(660\) 0 0
\(661\) 17772.4 1.04579 0.522895 0.852397i \(-0.324852\pi\)
0.522895 + 0.852397i \(0.324852\pi\)
\(662\) 0 0
\(663\) 13929.2 0.815935
\(664\) 0 0
\(665\) 11814.5 0.688943
\(666\) 0 0
\(667\) −6825.20 −0.396211
\(668\) 0 0
\(669\) 14634.6 0.845751
\(670\) 0 0
\(671\) 8601.24 0.494854
\(672\) 0 0
\(673\) 20376.8 1.16712 0.583558 0.812072i \(-0.301660\pi\)
0.583558 + 0.812072i \(0.301660\pi\)
\(674\) 0 0
\(675\) 216.153 0.0123255
\(676\) 0 0
\(677\) −3662.84 −0.207938 −0.103969 0.994581i \(-0.533154\pi\)
−0.103969 + 0.994581i \(0.533154\pi\)
\(678\) 0 0
\(679\) 3242.09 0.183240
\(680\) 0 0
\(681\) −22311.8 −1.25549
\(682\) 0 0
\(683\) 31485.1 1.76390 0.881951 0.471341i \(-0.156230\pi\)
0.881951 + 0.471341i \(0.156230\pi\)
\(684\) 0 0
\(685\) −5690.25 −0.317392
\(686\) 0 0
\(687\) 22962.5 1.27522
\(688\) 0 0
\(689\) 21249.3 1.17494
\(690\) 0 0
\(691\) 15073.2 0.829829 0.414915 0.909860i \(-0.363811\pi\)
0.414915 + 0.909860i \(0.363811\pi\)
\(692\) 0 0
\(693\) −3755.31 −0.205848
\(694\) 0 0
\(695\) 21675.8 1.18304
\(696\) 0 0
\(697\) 4712.14 0.256076
\(698\) 0 0
\(699\) 42657.8 2.30825
\(700\) 0 0
\(701\) −20958.4 −1.12922 −0.564612 0.825356i \(-0.690974\pi\)
−0.564612 + 0.825356i \(0.690974\pi\)
\(702\) 0 0
\(703\) −38094.4 −2.04375
\(704\) 0 0
\(705\) 4133.03 0.220793
\(706\) 0 0
\(707\) 3248.32 0.172794
\(708\) 0 0
\(709\) 11805.1 0.625316 0.312658 0.949866i \(-0.398781\pi\)
0.312658 + 0.949866i \(0.398781\pi\)
\(710\) 0 0
\(711\) −55870.0 −2.94696
\(712\) 0 0
\(713\) 1941.48 0.101976
\(714\) 0 0
\(715\) 8744.69 0.457389
\(716\) 0 0
\(717\) −40282.5 −2.09816
\(718\) 0 0
\(719\) 4294.47 0.222749 0.111375 0.993778i \(-0.464475\pi\)
0.111375 + 0.993778i \(0.464475\pi\)
\(720\) 0 0
\(721\) −2130.78 −0.110061
\(722\) 0 0
\(723\) 30902.1 1.58957
\(724\) 0 0
\(725\) −195.847 −0.0100325
\(726\) 0 0
\(727\) 5916.37 0.301824 0.150912 0.988547i \(-0.451779\pi\)
0.150912 + 0.988547i \(0.451779\pi\)
\(728\) 0 0
\(729\) −28309.6 −1.43828
\(730\) 0 0
\(731\) 7825.73 0.395958
\(732\) 0 0
\(733\) 617.535 0.0311176 0.0155588 0.999879i \(-0.495047\pi\)
0.0155588 + 0.999879i \(0.495047\pi\)
\(734\) 0 0
\(735\) −4790.41 −0.240404
\(736\) 0 0
\(737\) −3955.31 −0.197688
\(738\) 0 0
\(739\) 29262.1 1.45660 0.728298 0.685261i \(-0.240312\pi\)
0.728298 + 0.685261i \(0.240312\pi\)
\(740\) 0 0
\(741\) −92590.0 −4.59026
\(742\) 0 0
\(743\) 32266.2 1.59318 0.796591 0.604519i \(-0.206635\pi\)
0.796591 + 0.604519i \(0.206635\pi\)
\(744\) 0 0
\(745\) −38110.8 −1.87419
\(746\) 0 0
\(747\) −29600.0 −1.44981
\(748\) 0 0
\(749\) −5831.09 −0.284464
\(750\) 0 0
\(751\) 25365.3 1.23248 0.616240 0.787558i \(-0.288655\pi\)
0.616240 + 0.787558i \(0.288655\pi\)
\(752\) 0 0
\(753\) −29815.3 −1.44294
\(754\) 0 0
\(755\) −17686.3 −0.852542
\(756\) 0 0
\(757\) −32910.6 −1.58012 −0.790062 0.613026i \(-0.789952\pi\)
−0.790062 + 0.613026i \(0.789952\pi\)
\(758\) 0 0
\(759\) 3806.17 0.182023
\(760\) 0 0
\(761\) 14386.3 0.685287 0.342644 0.939465i \(-0.388678\pi\)
0.342644 + 0.939465i \(0.388678\pi\)
\(762\) 0 0
\(763\) 10472.1 0.496874
\(764\) 0 0
\(765\) 12383.3 0.585252
\(766\) 0 0
\(767\) −29197.7 −1.37453
\(768\) 0 0
\(769\) −17200.1 −0.806568 −0.403284 0.915075i \(-0.632131\pi\)
−0.403284 + 0.915075i \(0.632131\pi\)
\(770\) 0 0
\(771\) −49017.5 −2.28965
\(772\) 0 0
\(773\) 34246.3 1.59347 0.796735 0.604329i \(-0.206559\pi\)
0.796735 + 0.604329i \(0.206559\pi\)
\(774\) 0 0
\(775\) 55.7099 0.00258214
\(776\) 0 0
\(777\) 15446.1 0.713160
\(778\) 0 0
\(779\) −31322.5 −1.44062
\(780\) 0 0
\(781\) −7320.15 −0.335385
\(782\) 0 0
\(783\) −32537.4 −1.48505
\(784\) 0 0
\(785\) −25950.2 −1.17988
\(786\) 0 0
\(787\) 13692.9 0.620203 0.310101 0.950703i \(-0.399637\pi\)
0.310101 + 0.950703i \(0.399637\pi\)
\(788\) 0 0
\(789\) 57817.3 2.60881
\(790\) 0 0
\(791\) −1734.08 −0.0779479
\(792\) 0 0
\(793\) −55346.8 −2.47846
\(794\) 0 0
\(795\) 29349.2 1.30932
\(796\) 0 0
\(797\) 6141.98 0.272974 0.136487 0.990642i \(-0.456419\pi\)
0.136487 + 0.990642i \(0.456419\pi\)
\(798\) 0 0
\(799\) 955.748 0.0423178
\(800\) 0 0
\(801\) −8647.85 −0.381469
\(802\) 0 0
\(803\) −12616.1 −0.554435
\(804\) 0 0
\(805\) 3125.16 0.136829
\(806\) 0 0
\(807\) 68822.1 3.00205
\(808\) 0 0
\(809\) 12690.4 0.551509 0.275754 0.961228i \(-0.411072\pi\)
0.275754 + 0.961228i \(0.411072\pi\)
\(810\) 0 0
\(811\) −23397.1 −1.01305 −0.506525 0.862225i \(-0.669070\pi\)
−0.506525 + 0.862225i \(0.669070\pi\)
\(812\) 0 0
\(813\) −24754.7 −1.06788
\(814\) 0 0
\(815\) −18625.3 −0.800511
\(816\) 0 0
\(817\) −52019.1 −2.22756
\(818\) 0 0
\(819\) 24164.5 1.03098
\(820\) 0 0
\(821\) 10759.8 0.457395 0.228697 0.973498i \(-0.426553\pi\)
0.228697 + 0.973498i \(0.426553\pi\)
\(822\) 0 0
\(823\) 9489.09 0.401906 0.200953 0.979601i \(-0.435596\pi\)
0.200953 + 0.979601i \(0.435596\pi\)
\(824\) 0 0
\(825\) 109.217 0.00460902
\(826\) 0 0
\(827\) 25988.4 1.09275 0.546375 0.837540i \(-0.316007\pi\)
0.546375 + 0.837540i \(0.316007\pi\)
\(828\) 0 0
\(829\) 1723.25 0.0721965 0.0360982 0.999348i \(-0.488507\pi\)
0.0360982 + 0.999348i \(0.488507\pi\)
\(830\) 0 0
\(831\) −55180.4 −2.30348
\(832\) 0 0
\(833\) −1107.77 −0.0460766
\(834\) 0 0
\(835\) 9341.48 0.387156
\(836\) 0 0
\(837\) 9255.50 0.382219
\(838\) 0 0
\(839\) −8950.36 −0.368296 −0.184148 0.982898i \(-0.558953\pi\)
−0.184148 + 0.982898i \(0.558953\pi\)
\(840\) 0 0
\(841\) 5091.71 0.208771
\(842\) 0 0
\(843\) 63103.4 2.57817
\(844\) 0 0
\(845\) −31594.9 −1.28627
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 0 0
\(849\) 35468.2 1.43376
\(850\) 0 0
\(851\) −10076.7 −0.405904
\(852\) 0 0
\(853\) −5985.68 −0.240265 −0.120132 0.992758i \(-0.538332\pi\)
−0.120132 + 0.992758i \(0.538332\pi\)
\(854\) 0 0
\(855\) −82313.9 −3.29249
\(856\) 0 0
\(857\) −18380.8 −0.732645 −0.366323 0.930488i \(-0.619383\pi\)
−0.366323 + 0.930488i \(0.619383\pi\)
\(858\) 0 0
\(859\) 24625.6 0.978133 0.489066 0.872247i \(-0.337338\pi\)
0.489066 + 0.872247i \(0.337338\pi\)
\(860\) 0 0
\(861\) 12700.3 0.502701
\(862\) 0 0
\(863\) −22569.6 −0.890243 −0.445121 0.895470i \(-0.646839\pi\)
−0.445121 + 0.895470i \(0.646839\pi\)
\(864\) 0 0
\(865\) 17674.1 0.694727
\(866\) 0 0
\(867\) −38316.9 −1.50093
\(868\) 0 0
\(869\) −12601.3 −0.491911
\(870\) 0 0
\(871\) 25451.4 0.990114
\(872\) 0 0
\(873\) −22588.3 −0.875712
\(874\) 0 0
\(875\) −9737.66 −0.376220
\(876\) 0 0
\(877\) 22763.4 0.876473 0.438237 0.898860i \(-0.355603\pi\)
0.438237 + 0.898860i \(0.355603\pi\)
\(878\) 0 0
\(879\) −83841.8 −3.21719
\(880\) 0 0
\(881\) −29753.1 −1.13781 −0.568903 0.822405i \(-0.692632\pi\)
−0.568903 + 0.822405i \(0.692632\pi\)
\(882\) 0 0
\(883\) −17862.0 −0.680752 −0.340376 0.940289i \(-0.610554\pi\)
−0.340376 + 0.940289i \(0.610554\pi\)
\(884\) 0 0
\(885\) −40327.5 −1.53174
\(886\) 0 0
\(887\) 25953.9 0.982464 0.491232 0.871029i \(-0.336547\pi\)
0.491232 + 0.871029i \(0.336547\pi\)
\(888\) 0 0
\(889\) −9621.01 −0.362968
\(890\) 0 0
\(891\) 3660.19 0.137622
\(892\) 0 0
\(893\) −6353.05 −0.238070
\(894\) 0 0
\(895\) 12375.1 0.462183
\(896\) 0 0
\(897\) −24491.8 −0.911657
\(898\) 0 0
\(899\) −8386.00 −0.311111
\(900\) 0 0
\(901\) 6786.90 0.250948
\(902\) 0 0
\(903\) 21092.1 0.777300
\(904\) 0 0
\(905\) 34102.2 1.25259
\(906\) 0 0
\(907\) 46572.1 1.70496 0.852481 0.522758i \(-0.175097\pi\)
0.852481 + 0.522758i \(0.175097\pi\)
\(908\) 0 0
\(909\) −22631.6 −0.825791
\(910\) 0 0
\(911\) −13240.4 −0.481532 −0.240766 0.970583i \(-0.577399\pi\)
−0.240766 + 0.970583i \(0.577399\pi\)
\(912\) 0 0
\(913\) −6676.20 −0.242004
\(914\) 0 0
\(915\) −76444.3 −2.76194
\(916\) 0 0
\(917\) 12401.7 0.446610
\(918\) 0 0
\(919\) 5210.60 0.187031 0.0935156 0.995618i \(-0.470189\pi\)
0.0935156 + 0.995618i \(0.470189\pi\)
\(920\) 0 0
\(921\) −54018.1 −1.93264
\(922\) 0 0
\(923\) 47103.3 1.67977
\(924\) 0 0
\(925\) −289.146 −0.0102779
\(926\) 0 0
\(927\) 14845.5 0.525988
\(928\) 0 0
\(929\) −41924.2 −1.48061 −0.740305 0.672271i \(-0.765319\pi\)
−0.740305 + 0.672271i \(0.765319\pi\)
\(930\) 0 0
\(931\) 7363.54 0.259216
\(932\) 0 0
\(933\) 49543.2 1.73845
\(934\) 0 0
\(935\) 2793.01 0.0976910
\(936\) 0 0
\(937\) −48975.6 −1.70754 −0.853768 0.520653i \(-0.825688\pi\)
−0.853768 + 0.520653i \(0.825688\pi\)
\(938\) 0 0
\(939\) 21092.5 0.733042
\(940\) 0 0
\(941\) −18223.0 −0.631298 −0.315649 0.948876i \(-0.602222\pi\)
−0.315649 + 0.948876i \(0.602222\pi\)
\(942\) 0 0
\(943\) −8285.39 −0.286118
\(944\) 0 0
\(945\) 14898.4 0.512852
\(946\) 0 0
\(947\) 33873.6 1.16235 0.581174 0.813779i \(-0.302594\pi\)
0.581174 + 0.813779i \(0.302594\pi\)
\(948\) 0 0
\(949\) 81181.2 2.77687
\(950\) 0 0
\(951\) 45416.7 1.54862
\(952\) 0 0
\(953\) −41893.1 −1.42398 −0.711990 0.702190i \(-0.752206\pi\)
−0.711990 + 0.702190i \(0.752206\pi\)
\(954\) 0 0
\(955\) 8213.88 0.278319
\(956\) 0 0
\(957\) −16440.4 −0.555320
\(958\) 0 0
\(959\) −3546.51 −0.119419
\(960\) 0 0
\(961\) −27405.5 −0.919927
\(962\) 0 0
\(963\) 40626.3 1.35947
\(964\) 0 0
\(965\) 35297.8 1.17749
\(966\) 0 0
\(967\) −45599.6 −1.51643 −0.758213 0.652007i \(-0.773927\pi\)
−0.758213 + 0.652007i \(0.773927\pi\)
\(968\) 0 0
\(969\) −29572.8 −0.980406
\(970\) 0 0
\(971\) 11781.9 0.389392 0.194696 0.980864i \(-0.437628\pi\)
0.194696 + 0.980864i \(0.437628\pi\)
\(972\) 0 0
\(973\) 13509.7 0.445120
\(974\) 0 0
\(975\) −702.782 −0.0230841
\(976\) 0 0
\(977\) 33583.6 1.09973 0.549864 0.835254i \(-0.314680\pi\)
0.549864 + 0.835254i \(0.314680\pi\)
\(978\) 0 0
\(979\) −1950.50 −0.0636753
\(980\) 0 0
\(981\) −72960.9 −2.37458
\(982\) 0 0
\(983\) −2709.05 −0.0878995 −0.0439498 0.999034i \(-0.513994\pi\)
−0.0439498 + 0.999034i \(0.513994\pi\)
\(984\) 0 0
\(985\) −5630.92 −0.182148
\(986\) 0 0
\(987\) 2575.96 0.0830737
\(988\) 0 0
\(989\) −13760.0 −0.442410
\(990\) 0 0
\(991\) 22183.3 0.711077 0.355538 0.934662i \(-0.384297\pi\)
0.355538 + 0.934662i \(0.384297\pi\)
\(992\) 0 0
\(993\) 95139.0 3.04043
\(994\) 0 0
\(995\) −51328.1 −1.63539
\(996\) 0 0
\(997\) 25840.5 0.820838 0.410419 0.911897i \(-0.365382\pi\)
0.410419 + 0.911897i \(0.365382\pi\)
\(998\) 0 0
\(999\) −48038.0 −1.52138
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.4.a.bb.1.6 6
4.3 odd 2 616.4.a.i.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
616.4.a.i.1.1 6 4.3 odd 2
1232.4.a.bb.1.6 6 1.1 even 1 trivial