Properties

Label 1232.4.a.bc.1.1
Level $1232$
Weight $4$
Character 1232.1
Self dual yes
Analytic conductor $72.690$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,4,Mod(1,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1232.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.6903531271\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 144x^{5} + 354x^{4} + 5172x^{3} - 6504x^{2} - 34432x + 18816 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 616)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(9.28858\) of defining polynomial
Character \(\chi\) \(=\) 1232.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.28858 q^{3} -8.74645 q^{5} -7.00000 q^{7} +59.2778 q^{9} -11.0000 q^{11} +55.3616 q^{13} +81.2421 q^{15} +29.3027 q^{17} -47.7550 q^{19} +65.0201 q^{21} +18.1011 q^{23} -48.4996 q^{25} -299.815 q^{27} -173.271 q^{29} +15.4825 q^{31} +102.174 q^{33} +61.2251 q^{35} -420.885 q^{37} -514.230 q^{39} +371.455 q^{41} -326.552 q^{43} -518.470 q^{45} -457.573 q^{47} +49.0000 q^{49} -272.180 q^{51} +720.569 q^{53} +96.2109 q^{55} +443.576 q^{57} -630.053 q^{59} +100.515 q^{61} -414.944 q^{63} -484.217 q^{65} -212.752 q^{67} -168.134 q^{69} -425.508 q^{71} -390.008 q^{73} +450.493 q^{75} +77.0000 q^{77} +503.207 q^{79} +1184.36 q^{81} +778.053 q^{83} -256.294 q^{85} +1609.44 q^{87} -549.010 q^{89} -387.531 q^{91} -143.810 q^{93} +417.687 q^{95} +895.729 q^{97} -652.056 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 3 q^{3} + 11 q^{5} - 49 q^{7} + 108 q^{9} - 77 q^{11} + 26 q^{13} - 67 q^{15} + 44 q^{17} - 34 q^{19} + 21 q^{21} + 29 q^{23} + 182 q^{25} - 99 q^{27} + 94 q^{29} + 173 q^{31} + 33 q^{33} - 77 q^{35}+ \cdots - 1188 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.28858 −1.78759 −0.893794 0.448477i \(-0.851967\pi\)
−0.893794 + 0.448477i \(0.851967\pi\)
\(4\) 0 0
\(5\) −8.74645 −0.782306 −0.391153 0.920326i \(-0.627924\pi\)
−0.391153 + 0.920326i \(0.627924\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 59.2778 2.19547
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 55.3616 1.18112 0.590559 0.806994i \(-0.298907\pi\)
0.590559 + 0.806994i \(0.298907\pi\)
\(14\) 0 0
\(15\) 81.2421 1.39844
\(16\) 0 0
\(17\) 29.3027 0.418055 0.209028 0.977910i \(-0.432970\pi\)
0.209028 + 0.977910i \(0.432970\pi\)
\(18\) 0 0
\(19\) −47.7550 −0.576619 −0.288309 0.957537i \(-0.593093\pi\)
−0.288309 + 0.957537i \(0.593093\pi\)
\(20\) 0 0
\(21\) 65.0201 0.675645
\(22\) 0 0
\(23\) 18.1011 0.164102 0.0820510 0.996628i \(-0.473853\pi\)
0.0820510 + 0.996628i \(0.473853\pi\)
\(24\) 0 0
\(25\) −48.4996 −0.387997
\(26\) 0 0
\(27\) −299.815 −2.13701
\(28\) 0 0
\(29\) −173.271 −1.10950 −0.554751 0.832017i \(-0.687186\pi\)
−0.554751 + 0.832017i \(0.687186\pi\)
\(30\) 0 0
\(31\) 15.4825 0.0897011 0.0448506 0.998994i \(-0.485719\pi\)
0.0448506 + 0.998994i \(0.485719\pi\)
\(32\) 0 0
\(33\) 102.174 0.538978
\(34\) 0 0
\(35\) 61.2251 0.295684
\(36\) 0 0
\(37\) −420.885 −1.87008 −0.935042 0.354536i \(-0.884639\pi\)
−0.935042 + 0.354536i \(0.884639\pi\)
\(38\) 0 0
\(39\) −514.230 −2.11135
\(40\) 0 0
\(41\) 371.455 1.41492 0.707458 0.706755i \(-0.249842\pi\)
0.707458 + 0.706755i \(0.249842\pi\)
\(42\) 0 0
\(43\) −326.552 −1.15811 −0.579055 0.815289i \(-0.696578\pi\)
−0.579055 + 0.815289i \(0.696578\pi\)
\(44\) 0 0
\(45\) −518.470 −1.71753
\(46\) 0 0
\(47\) −457.573 −1.42008 −0.710041 0.704160i \(-0.751324\pi\)
−0.710041 + 0.704160i \(0.751324\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −272.180 −0.747311
\(52\) 0 0
\(53\) 720.569 1.86750 0.933752 0.357920i \(-0.116514\pi\)
0.933752 + 0.357920i \(0.116514\pi\)
\(54\) 0 0
\(55\) 96.2109 0.235874
\(56\) 0 0
\(57\) 443.576 1.03076
\(58\) 0 0
\(59\) −630.053 −1.39027 −0.695135 0.718879i \(-0.744655\pi\)
−0.695135 + 0.718879i \(0.744655\pi\)
\(60\) 0 0
\(61\) 100.515 0.210978 0.105489 0.994420i \(-0.466359\pi\)
0.105489 + 0.994420i \(0.466359\pi\)
\(62\) 0 0
\(63\) −414.944 −0.829811
\(64\) 0 0
\(65\) −484.217 −0.923996
\(66\) 0 0
\(67\) −212.752 −0.387938 −0.193969 0.981008i \(-0.562136\pi\)
−0.193969 + 0.981008i \(0.562136\pi\)
\(68\) 0 0
\(69\) −168.134 −0.293347
\(70\) 0 0
\(71\) −425.508 −0.711246 −0.355623 0.934629i \(-0.615731\pi\)
−0.355623 + 0.934629i \(0.615731\pi\)
\(72\) 0 0
\(73\) −390.008 −0.625301 −0.312650 0.949868i \(-0.601217\pi\)
−0.312650 + 0.949868i \(0.601217\pi\)
\(74\) 0 0
\(75\) 450.493 0.693579
\(76\) 0 0
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) 503.207 0.716648 0.358324 0.933597i \(-0.383348\pi\)
0.358324 + 0.933597i \(0.383348\pi\)
\(80\) 0 0
\(81\) 1184.36 1.62463
\(82\) 0 0
\(83\) 778.053 1.02894 0.514472 0.857507i \(-0.327988\pi\)
0.514472 + 0.857507i \(0.327988\pi\)
\(84\) 0 0
\(85\) −256.294 −0.327047
\(86\) 0 0
\(87\) 1609.44 1.98333
\(88\) 0 0
\(89\) −549.010 −0.653876 −0.326938 0.945046i \(-0.606017\pi\)
−0.326938 + 0.945046i \(0.606017\pi\)
\(90\) 0 0
\(91\) −387.531 −0.446421
\(92\) 0 0
\(93\) −143.810 −0.160349
\(94\) 0 0
\(95\) 417.687 0.451092
\(96\) 0 0
\(97\) 895.729 0.937603 0.468802 0.883303i \(-0.344686\pi\)
0.468802 + 0.883303i \(0.344686\pi\)
\(98\) 0 0
\(99\) −652.056 −0.661960
\(100\) 0 0
\(101\) −242.349 −0.238758 −0.119379 0.992849i \(-0.538090\pi\)
−0.119379 + 0.992849i \(0.538090\pi\)
\(102\) 0 0
\(103\) 250.151 0.239302 0.119651 0.992816i \(-0.461822\pi\)
0.119651 + 0.992816i \(0.461822\pi\)
\(104\) 0 0
\(105\) −568.695 −0.528561
\(106\) 0 0
\(107\) −1226.41 −1.10805 −0.554025 0.832500i \(-0.686909\pi\)
−0.554025 + 0.832500i \(0.686909\pi\)
\(108\) 0 0
\(109\) −1320.88 −1.16071 −0.580357 0.814362i \(-0.697087\pi\)
−0.580357 + 0.814362i \(0.697087\pi\)
\(110\) 0 0
\(111\) 3909.43 3.34294
\(112\) 0 0
\(113\) −2016.73 −1.67892 −0.839461 0.543419i \(-0.817129\pi\)
−0.839461 + 0.543419i \(0.817129\pi\)
\(114\) 0 0
\(115\) −158.321 −0.128378
\(116\) 0 0
\(117\) 3281.71 2.59311
\(118\) 0 0
\(119\) −205.119 −0.158010
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) −3450.29 −2.52929
\(124\) 0 0
\(125\) 1517.51 1.08584
\(126\) 0 0
\(127\) 1479.84 1.03397 0.516986 0.855994i \(-0.327054\pi\)
0.516986 + 0.855994i \(0.327054\pi\)
\(128\) 0 0
\(129\) 3033.21 2.07022
\(130\) 0 0
\(131\) 345.718 0.230577 0.115288 0.993332i \(-0.463221\pi\)
0.115288 + 0.993332i \(0.463221\pi\)
\(132\) 0 0
\(133\) 334.285 0.217941
\(134\) 0 0
\(135\) 2622.32 1.67180
\(136\) 0 0
\(137\) 1614.99 1.00714 0.503570 0.863954i \(-0.332020\pi\)
0.503570 + 0.863954i \(0.332020\pi\)
\(138\) 0 0
\(139\) 2422.25 1.47808 0.739038 0.673664i \(-0.235280\pi\)
0.739038 + 0.673664i \(0.235280\pi\)
\(140\) 0 0
\(141\) 4250.21 2.53852
\(142\) 0 0
\(143\) −608.977 −0.356120
\(144\) 0 0
\(145\) 1515.50 0.867970
\(146\) 0 0
\(147\) −455.141 −0.255370
\(148\) 0 0
\(149\) −2569.68 −1.41286 −0.706430 0.707782i \(-0.749696\pi\)
−0.706430 + 0.707782i \(0.749696\pi\)
\(150\) 0 0
\(151\) 637.585 0.343616 0.171808 0.985130i \(-0.445039\pi\)
0.171808 + 0.985130i \(0.445039\pi\)
\(152\) 0 0
\(153\) 1737.00 0.917829
\(154\) 0 0
\(155\) −135.417 −0.0701737
\(156\) 0 0
\(157\) −1200.72 −0.610368 −0.305184 0.952293i \(-0.598718\pi\)
−0.305184 + 0.952293i \(0.598718\pi\)
\(158\) 0 0
\(159\) −6693.06 −3.33833
\(160\) 0 0
\(161\) −126.708 −0.0620248
\(162\) 0 0
\(163\) 3746.60 1.80035 0.900173 0.435533i \(-0.143440\pi\)
0.900173 + 0.435533i \(0.143440\pi\)
\(164\) 0 0
\(165\) −893.663 −0.421646
\(166\) 0 0
\(167\) 3401.91 1.57633 0.788166 0.615463i \(-0.211031\pi\)
0.788166 + 0.615463i \(0.211031\pi\)
\(168\) 0 0
\(169\) 867.902 0.395040
\(170\) 0 0
\(171\) −2830.81 −1.26595
\(172\) 0 0
\(173\) −764.688 −0.336059 −0.168029 0.985782i \(-0.553740\pi\)
−0.168029 + 0.985782i \(0.553740\pi\)
\(174\) 0 0
\(175\) 339.497 0.146649
\(176\) 0 0
\(177\) 5852.30 2.48523
\(178\) 0 0
\(179\) −1527.53 −0.637837 −0.318918 0.947782i \(-0.603320\pi\)
−0.318918 + 0.947782i \(0.603320\pi\)
\(180\) 0 0
\(181\) 144.636 0.0593963 0.0296982 0.999559i \(-0.490545\pi\)
0.0296982 + 0.999559i \(0.490545\pi\)
\(182\) 0 0
\(183\) −933.643 −0.377141
\(184\) 0 0
\(185\) 3681.25 1.46298
\(186\) 0 0
\(187\) −322.329 −0.126048
\(188\) 0 0
\(189\) 2098.70 0.807716
\(190\) 0 0
\(191\) −2719.77 −1.03034 −0.515172 0.857087i \(-0.672272\pi\)
−0.515172 + 0.857087i \(0.672272\pi\)
\(192\) 0 0
\(193\) 364.326 0.135880 0.0679398 0.997689i \(-0.478357\pi\)
0.0679398 + 0.997689i \(0.478357\pi\)
\(194\) 0 0
\(195\) 4497.69 1.65172
\(196\) 0 0
\(197\) −2416.38 −0.873907 −0.436953 0.899484i \(-0.643943\pi\)
−0.436953 + 0.899484i \(0.643943\pi\)
\(198\) 0 0
\(199\) 245.275 0.0873721 0.0436861 0.999045i \(-0.486090\pi\)
0.0436861 + 0.999045i \(0.486090\pi\)
\(200\) 0 0
\(201\) 1976.17 0.693473
\(202\) 0 0
\(203\) 1212.89 0.419352
\(204\) 0 0
\(205\) −3248.91 −1.10690
\(206\) 0 0
\(207\) 1073.00 0.360282
\(208\) 0 0
\(209\) 525.305 0.173857
\(210\) 0 0
\(211\) 48.2331 0.0157370 0.00786850 0.999969i \(-0.497495\pi\)
0.00786850 + 0.999969i \(0.497495\pi\)
\(212\) 0 0
\(213\) 3952.37 1.27142
\(214\) 0 0
\(215\) 2856.17 0.905997
\(216\) 0 0
\(217\) −108.377 −0.0339038
\(218\) 0 0
\(219\) 3622.62 1.11778
\(220\) 0 0
\(221\) 1622.24 0.493772
\(222\) 0 0
\(223\) 3448.23 1.03547 0.517737 0.855540i \(-0.326775\pi\)
0.517737 + 0.855540i \(0.326775\pi\)
\(224\) 0 0
\(225\) −2874.95 −0.851837
\(226\) 0 0
\(227\) −3385.07 −0.989756 −0.494878 0.868962i \(-0.664787\pi\)
−0.494878 + 0.868962i \(0.664787\pi\)
\(228\) 0 0
\(229\) −3732.54 −1.07709 −0.538543 0.842598i \(-0.681025\pi\)
−0.538543 + 0.842598i \(0.681025\pi\)
\(230\) 0 0
\(231\) −715.221 −0.203715
\(232\) 0 0
\(233\) −2063.10 −0.580077 −0.290038 0.957015i \(-0.593668\pi\)
−0.290038 + 0.957015i \(0.593668\pi\)
\(234\) 0 0
\(235\) 4002.14 1.11094
\(236\) 0 0
\(237\) −4674.08 −1.28107
\(238\) 0 0
\(239\) 5326.36 1.44156 0.720782 0.693162i \(-0.243783\pi\)
0.720782 + 0.693162i \(0.243783\pi\)
\(240\) 0 0
\(241\) 7042.61 1.88238 0.941192 0.337873i \(-0.109708\pi\)
0.941192 + 0.337873i \(0.109708\pi\)
\(242\) 0 0
\(243\) −2905.98 −0.767156
\(244\) 0 0
\(245\) −428.576 −0.111758
\(246\) 0 0
\(247\) −2643.79 −0.681055
\(248\) 0 0
\(249\) −7227.01 −1.83933
\(250\) 0 0
\(251\) 2446.72 0.615280 0.307640 0.951503i \(-0.400461\pi\)
0.307640 + 0.951503i \(0.400461\pi\)
\(252\) 0 0
\(253\) −199.113 −0.0494786
\(254\) 0 0
\(255\) 2380.61 0.584626
\(256\) 0 0
\(257\) 6353.12 1.54201 0.771006 0.636828i \(-0.219754\pi\)
0.771006 + 0.636828i \(0.219754\pi\)
\(258\) 0 0
\(259\) 2946.20 0.706826
\(260\) 0 0
\(261\) −10271.1 −2.43588
\(262\) 0 0
\(263\) 4480.12 1.05040 0.525202 0.850978i \(-0.323990\pi\)
0.525202 + 0.850978i \(0.323990\pi\)
\(264\) 0 0
\(265\) −6302.42 −1.46096
\(266\) 0 0
\(267\) 5099.53 1.16886
\(268\) 0 0
\(269\) 2147.58 0.486767 0.243384 0.969930i \(-0.421743\pi\)
0.243384 + 0.969930i \(0.421743\pi\)
\(270\) 0 0
\(271\) −4857.16 −1.08875 −0.544375 0.838842i \(-0.683233\pi\)
−0.544375 + 0.838842i \(0.683233\pi\)
\(272\) 0 0
\(273\) 3599.61 0.798016
\(274\) 0 0
\(275\) 533.496 0.116985
\(276\) 0 0
\(277\) 6166.94 1.33767 0.668837 0.743409i \(-0.266792\pi\)
0.668837 + 0.743409i \(0.266792\pi\)
\(278\) 0 0
\(279\) 917.767 0.196936
\(280\) 0 0
\(281\) −4176.04 −0.886555 −0.443277 0.896385i \(-0.646184\pi\)
−0.443277 + 0.896385i \(0.646184\pi\)
\(282\) 0 0
\(283\) 3721.52 0.781701 0.390850 0.920454i \(-0.372181\pi\)
0.390850 + 0.920454i \(0.372181\pi\)
\(284\) 0 0
\(285\) −3879.72 −0.806368
\(286\) 0 0
\(287\) −2600.19 −0.534788
\(288\) 0 0
\(289\) −4054.35 −0.825230
\(290\) 0 0
\(291\) −8320.05 −1.67605
\(292\) 0 0
\(293\) −1322.03 −0.263597 −0.131798 0.991277i \(-0.542075\pi\)
−0.131798 + 0.991277i \(0.542075\pi\)
\(294\) 0 0
\(295\) 5510.73 1.08762
\(296\) 0 0
\(297\) 3297.96 0.644334
\(298\) 0 0
\(299\) 1002.11 0.193824
\(300\) 0 0
\(301\) 2285.86 0.437724
\(302\) 0 0
\(303\) 2251.07 0.426801
\(304\) 0 0
\(305\) −879.150 −0.165049
\(306\) 0 0
\(307\) 2324.29 0.432098 0.216049 0.976383i \(-0.430683\pi\)
0.216049 + 0.976383i \(0.430683\pi\)
\(308\) 0 0
\(309\) −2323.54 −0.427773
\(310\) 0 0
\(311\) 2485.31 0.453148 0.226574 0.973994i \(-0.427247\pi\)
0.226574 + 0.973994i \(0.427247\pi\)
\(312\) 0 0
\(313\) 526.047 0.0949966 0.0474983 0.998871i \(-0.484875\pi\)
0.0474983 + 0.998871i \(0.484875\pi\)
\(314\) 0 0
\(315\) 3629.29 0.649166
\(316\) 0 0
\(317\) −3654.74 −0.647542 −0.323771 0.946135i \(-0.604951\pi\)
−0.323771 + 0.946135i \(0.604951\pi\)
\(318\) 0 0
\(319\) 1905.98 0.334527
\(320\) 0 0
\(321\) 11391.6 1.98074
\(322\) 0 0
\(323\) −1399.35 −0.241058
\(324\) 0 0
\(325\) −2685.01 −0.458270
\(326\) 0 0
\(327\) 12269.1 2.07488
\(328\) 0 0
\(329\) 3203.01 0.536741
\(330\) 0 0
\(331\) 2961.53 0.491783 0.245892 0.969297i \(-0.420919\pi\)
0.245892 + 0.969297i \(0.420919\pi\)
\(332\) 0 0
\(333\) −24949.2 −4.10572
\(334\) 0 0
\(335\) 1860.83 0.303486
\(336\) 0 0
\(337\) −901.796 −0.145768 −0.0728842 0.997340i \(-0.523220\pi\)
−0.0728842 + 0.997340i \(0.523220\pi\)
\(338\) 0 0
\(339\) 18732.6 3.00122
\(340\) 0 0
\(341\) −170.307 −0.0270459
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 1470.57 0.229487
\(346\) 0 0
\(347\) −6729.48 −1.04109 −0.520544 0.853835i \(-0.674271\pi\)
−0.520544 + 0.853835i \(0.674271\pi\)
\(348\) 0 0
\(349\) −3267.52 −0.501165 −0.250582 0.968095i \(-0.580622\pi\)
−0.250582 + 0.968095i \(0.580622\pi\)
\(350\) 0 0
\(351\) −16598.2 −2.52407
\(352\) 0 0
\(353\) −1267.11 −0.191052 −0.0955259 0.995427i \(-0.530453\pi\)
−0.0955259 + 0.995427i \(0.530453\pi\)
\(354\) 0 0
\(355\) 3721.68 0.556412
\(356\) 0 0
\(357\) 1905.26 0.282457
\(358\) 0 0
\(359\) 2786.30 0.409625 0.204812 0.978801i \(-0.434342\pi\)
0.204812 + 0.978801i \(0.434342\pi\)
\(360\) 0 0
\(361\) −4578.46 −0.667511
\(362\) 0 0
\(363\) −1123.92 −0.162508
\(364\) 0 0
\(365\) 3411.18 0.489177
\(366\) 0 0
\(367\) 2910.98 0.414038 0.207019 0.978337i \(-0.433624\pi\)
0.207019 + 0.978337i \(0.433624\pi\)
\(368\) 0 0
\(369\) 22019.0 3.10641
\(370\) 0 0
\(371\) −5043.98 −0.705850
\(372\) 0 0
\(373\) 10693.8 1.48446 0.742229 0.670146i \(-0.233769\pi\)
0.742229 + 0.670146i \(0.233769\pi\)
\(374\) 0 0
\(375\) −14095.5 −1.94103
\(376\) 0 0
\(377\) −9592.53 −1.31045
\(378\) 0 0
\(379\) −8880.72 −1.20362 −0.601810 0.798639i \(-0.705553\pi\)
−0.601810 + 0.798639i \(0.705553\pi\)
\(380\) 0 0
\(381\) −13745.6 −1.84832
\(382\) 0 0
\(383\) −10212.5 −1.36249 −0.681247 0.732054i \(-0.738562\pi\)
−0.681247 + 0.732054i \(0.738562\pi\)
\(384\) 0 0
\(385\) −673.477 −0.0891521
\(386\) 0 0
\(387\) −19357.3 −2.54260
\(388\) 0 0
\(389\) −2659.78 −0.346675 −0.173337 0.984863i \(-0.555455\pi\)
−0.173337 + 0.984863i \(0.555455\pi\)
\(390\) 0 0
\(391\) 530.411 0.0686037
\(392\) 0 0
\(393\) −3211.23 −0.412176
\(394\) 0 0
\(395\) −4401.27 −0.560638
\(396\) 0 0
\(397\) −12008.1 −1.51806 −0.759031 0.651055i \(-0.774327\pi\)
−0.759031 + 0.651055i \(0.774327\pi\)
\(398\) 0 0
\(399\) −3105.04 −0.389589
\(400\) 0 0
\(401\) −2141.85 −0.266731 −0.133365 0.991067i \(-0.542578\pi\)
−0.133365 + 0.991067i \(0.542578\pi\)
\(402\) 0 0
\(403\) 857.134 0.105948
\(404\) 0 0
\(405\) −10358.9 −1.27096
\(406\) 0 0
\(407\) 4629.74 0.563852
\(408\) 0 0
\(409\) −5357.72 −0.647732 −0.323866 0.946103i \(-0.604983\pi\)
−0.323866 + 0.946103i \(0.604983\pi\)
\(410\) 0 0
\(411\) −15001.0 −1.80035
\(412\) 0 0
\(413\) 4410.37 0.525473
\(414\) 0 0
\(415\) −6805.20 −0.804950
\(416\) 0 0
\(417\) −22499.3 −2.64219
\(418\) 0 0
\(419\) −7919.14 −0.923330 −0.461665 0.887054i \(-0.652748\pi\)
−0.461665 + 0.887054i \(0.652748\pi\)
\(420\) 0 0
\(421\) 15475.2 1.79148 0.895742 0.444574i \(-0.146645\pi\)
0.895742 + 0.444574i \(0.146645\pi\)
\(422\) 0 0
\(423\) −27123.9 −3.11775
\(424\) 0 0
\(425\) −1421.17 −0.162204
\(426\) 0 0
\(427\) −703.606 −0.0797421
\(428\) 0 0
\(429\) 5656.53 0.636597
\(430\) 0 0
\(431\) −11309.0 −1.26389 −0.631943 0.775015i \(-0.717742\pi\)
−0.631943 + 0.775015i \(0.717742\pi\)
\(432\) 0 0
\(433\) 12362.7 1.37209 0.686044 0.727560i \(-0.259346\pi\)
0.686044 + 0.727560i \(0.259346\pi\)
\(434\) 0 0
\(435\) −14076.9 −1.55157
\(436\) 0 0
\(437\) −864.420 −0.0946243
\(438\) 0 0
\(439\) 16462.3 1.78975 0.894876 0.446315i \(-0.147264\pi\)
0.894876 + 0.446315i \(0.147264\pi\)
\(440\) 0 0
\(441\) 2904.61 0.313639
\(442\) 0 0
\(443\) −1638.96 −0.175777 −0.0878887 0.996130i \(-0.528012\pi\)
−0.0878887 + 0.996130i \(0.528012\pi\)
\(444\) 0 0
\(445\) 4801.89 0.511532
\(446\) 0 0
\(447\) 23868.7 2.52561
\(448\) 0 0
\(449\) 16895.8 1.77586 0.887932 0.459975i \(-0.152142\pi\)
0.887932 + 0.459975i \(0.152142\pi\)
\(450\) 0 0
\(451\) −4086.01 −0.426613
\(452\) 0 0
\(453\) −5922.27 −0.614244
\(454\) 0 0
\(455\) 3389.52 0.349238
\(456\) 0 0
\(457\) 13309.4 1.36233 0.681166 0.732129i \(-0.261473\pi\)
0.681166 + 0.732129i \(0.261473\pi\)
\(458\) 0 0
\(459\) −8785.37 −0.893390
\(460\) 0 0
\(461\) 7377.21 0.745317 0.372658 0.927969i \(-0.378446\pi\)
0.372658 + 0.927969i \(0.378446\pi\)
\(462\) 0 0
\(463\) −4085.80 −0.410115 −0.205058 0.978750i \(-0.565738\pi\)
−0.205058 + 0.978750i \(0.565738\pi\)
\(464\) 0 0
\(465\) 1257.83 0.125442
\(466\) 0 0
\(467\) −8493.21 −0.841583 −0.420791 0.907157i \(-0.638248\pi\)
−0.420791 + 0.907157i \(0.638248\pi\)
\(468\) 0 0
\(469\) 1489.27 0.146627
\(470\) 0 0
\(471\) 11153.0 1.09109
\(472\) 0 0
\(473\) 3592.07 0.349183
\(474\) 0 0
\(475\) 2316.10 0.223726
\(476\) 0 0
\(477\) 42713.7 4.10006
\(478\) 0 0
\(479\) 9692.50 0.924554 0.462277 0.886735i \(-0.347032\pi\)
0.462277 + 0.886735i \(0.347032\pi\)
\(480\) 0 0
\(481\) −23300.9 −2.20879
\(482\) 0 0
\(483\) 1176.94 0.110875
\(484\) 0 0
\(485\) −7834.45 −0.733493
\(486\) 0 0
\(487\) −12601.5 −1.17255 −0.586273 0.810114i \(-0.699405\pi\)
−0.586273 + 0.810114i \(0.699405\pi\)
\(488\) 0 0
\(489\) −34800.6 −3.21828
\(490\) 0 0
\(491\) 14766.2 1.35720 0.678602 0.734506i \(-0.262586\pi\)
0.678602 + 0.734506i \(0.262586\pi\)
\(492\) 0 0
\(493\) −5077.29 −0.463833
\(494\) 0 0
\(495\) 5703.17 0.517856
\(496\) 0 0
\(497\) 2978.56 0.268826
\(498\) 0 0
\(499\) 5673.56 0.508985 0.254492 0.967075i \(-0.418092\pi\)
0.254492 + 0.967075i \(0.418092\pi\)
\(500\) 0 0
\(501\) −31598.9 −2.81783
\(502\) 0 0
\(503\) 16615.6 1.47287 0.736437 0.676507i \(-0.236507\pi\)
0.736437 + 0.676507i \(0.236507\pi\)
\(504\) 0 0
\(505\) 2119.69 0.186782
\(506\) 0 0
\(507\) −8061.58 −0.706168
\(508\) 0 0
\(509\) 12755.6 1.11077 0.555384 0.831594i \(-0.312571\pi\)
0.555384 + 0.831594i \(0.312571\pi\)
\(510\) 0 0
\(511\) 2730.05 0.236341
\(512\) 0 0
\(513\) 14317.7 1.23224
\(514\) 0 0
\(515\) −2187.93 −0.187207
\(516\) 0 0
\(517\) 5033.30 0.428171
\(518\) 0 0
\(519\) 7102.87 0.600735
\(520\) 0 0
\(521\) −23207.6 −1.95152 −0.975761 0.218841i \(-0.929773\pi\)
−0.975761 + 0.218841i \(0.929773\pi\)
\(522\) 0 0
\(523\) 14250.1 1.19142 0.595709 0.803200i \(-0.296871\pi\)
0.595709 + 0.803200i \(0.296871\pi\)
\(524\) 0 0
\(525\) −3153.45 −0.262148
\(526\) 0 0
\(527\) 453.678 0.0375000
\(528\) 0 0
\(529\) −11839.3 −0.973071
\(530\) 0 0
\(531\) −37348.2 −3.05230
\(532\) 0 0
\(533\) 20564.3 1.67118
\(534\) 0 0
\(535\) 10726.7 0.866835
\(536\) 0 0
\(537\) 14188.6 1.14019
\(538\) 0 0
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) −4669.48 −0.371084 −0.185542 0.982636i \(-0.559404\pi\)
−0.185542 + 0.982636i \(0.559404\pi\)
\(542\) 0 0
\(543\) −1343.47 −0.106176
\(544\) 0 0
\(545\) 11553.1 0.908034
\(546\) 0 0
\(547\) 6726.83 0.525811 0.262905 0.964822i \(-0.415319\pi\)
0.262905 + 0.964822i \(0.415319\pi\)
\(548\) 0 0
\(549\) 5958.31 0.463196
\(550\) 0 0
\(551\) 8274.54 0.639759
\(552\) 0 0
\(553\) −3522.45 −0.270867
\(554\) 0 0
\(555\) −34193.6 −2.61520
\(556\) 0 0
\(557\) 3162.64 0.240584 0.120292 0.992739i \(-0.461617\pi\)
0.120292 + 0.992739i \(0.461617\pi\)
\(558\) 0 0
\(559\) −18078.4 −1.36786
\(560\) 0 0
\(561\) 2993.98 0.225323
\(562\) 0 0
\(563\) 2871.42 0.214948 0.107474 0.994208i \(-0.465724\pi\)
0.107474 + 0.994208i \(0.465724\pi\)
\(564\) 0 0
\(565\) 17639.3 1.31343
\(566\) 0 0
\(567\) −8290.49 −0.614053
\(568\) 0 0
\(569\) 20069.0 1.47862 0.739310 0.673365i \(-0.235152\pi\)
0.739310 + 0.673365i \(0.235152\pi\)
\(570\) 0 0
\(571\) 4823.62 0.353524 0.176762 0.984254i \(-0.443438\pi\)
0.176762 + 0.984254i \(0.443438\pi\)
\(572\) 0 0
\(573\) 25262.8 1.84183
\(574\) 0 0
\(575\) −877.898 −0.0636711
\(576\) 0 0
\(577\) 8263.59 0.596218 0.298109 0.954532i \(-0.403644\pi\)
0.298109 + 0.954532i \(0.403644\pi\)
\(578\) 0 0
\(579\) −3384.07 −0.242897
\(580\) 0 0
\(581\) −5446.37 −0.388904
\(582\) 0 0
\(583\) −7926.26 −0.563074
\(584\) 0 0
\(585\) −28703.3 −2.02861
\(586\) 0 0
\(587\) 10010.8 0.703904 0.351952 0.936018i \(-0.385518\pi\)
0.351952 + 0.936018i \(0.385518\pi\)
\(588\) 0 0
\(589\) −739.366 −0.0517233
\(590\) 0 0
\(591\) 22444.7 1.56219
\(592\) 0 0
\(593\) 5528.35 0.382837 0.191418 0.981509i \(-0.438691\pi\)
0.191418 + 0.981509i \(0.438691\pi\)
\(594\) 0 0
\(595\) 1794.06 0.123612
\(596\) 0 0
\(597\) −2278.25 −0.156185
\(598\) 0 0
\(599\) 14773.4 1.00772 0.503862 0.863784i \(-0.331912\pi\)
0.503862 + 0.863784i \(0.331912\pi\)
\(600\) 0 0
\(601\) 5027.65 0.341235 0.170617 0.985337i \(-0.445424\pi\)
0.170617 + 0.985337i \(0.445424\pi\)
\(602\) 0 0
\(603\) −12611.5 −0.851707
\(604\) 0 0
\(605\) −1058.32 −0.0711187
\(606\) 0 0
\(607\) 3478.73 0.232615 0.116307 0.993213i \(-0.462894\pi\)
0.116307 + 0.993213i \(0.462894\pi\)
\(608\) 0 0
\(609\) −11266.1 −0.749629
\(610\) 0 0
\(611\) −25332.0 −1.67729
\(612\) 0 0
\(613\) 29008.0 1.91129 0.955646 0.294517i \(-0.0951589\pi\)
0.955646 + 0.294517i \(0.0951589\pi\)
\(614\) 0 0
\(615\) 30177.8 1.97868
\(616\) 0 0
\(617\) −9703.04 −0.633111 −0.316556 0.948574i \(-0.602526\pi\)
−0.316556 + 0.948574i \(0.602526\pi\)
\(618\) 0 0
\(619\) 12393.0 0.804714 0.402357 0.915483i \(-0.368191\pi\)
0.402357 + 0.915483i \(0.368191\pi\)
\(620\) 0 0
\(621\) −5426.99 −0.350689
\(622\) 0 0
\(623\) 3843.07 0.247142
\(624\) 0 0
\(625\) −7210.33 −0.461461
\(626\) 0 0
\(627\) −4879.34 −0.310785
\(628\) 0 0
\(629\) −12333.1 −0.781799
\(630\) 0 0
\(631\) 2520.06 0.158989 0.0794944 0.996835i \(-0.474669\pi\)
0.0794944 + 0.996835i \(0.474669\pi\)
\(632\) 0 0
\(633\) −448.017 −0.0281313
\(634\) 0 0
\(635\) −12943.3 −0.808883
\(636\) 0 0
\(637\) 2712.72 0.168731
\(638\) 0 0
\(639\) −25223.2 −1.56152
\(640\) 0 0
\(641\) −23140.4 −1.42588 −0.712940 0.701225i \(-0.752637\pi\)
−0.712940 + 0.701225i \(0.752637\pi\)
\(642\) 0 0
\(643\) 439.589 0.0269606 0.0134803 0.999909i \(-0.495709\pi\)
0.0134803 + 0.999909i \(0.495709\pi\)
\(644\) 0 0
\(645\) −26529.8 −1.61955
\(646\) 0 0
\(647\) −10005.8 −0.607992 −0.303996 0.952673i \(-0.598321\pi\)
−0.303996 + 0.952673i \(0.598321\pi\)
\(648\) 0 0
\(649\) 6930.59 0.419182
\(650\) 0 0
\(651\) 1006.67 0.0606061
\(652\) 0 0
\(653\) 17176.4 1.02935 0.514673 0.857386i \(-0.327913\pi\)
0.514673 + 0.857386i \(0.327913\pi\)
\(654\) 0 0
\(655\) −3023.81 −0.180382
\(656\) 0 0
\(657\) −23118.8 −1.37283
\(658\) 0 0
\(659\) 23395.7 1.38295 0.691476 0.722400i \(-0.256961\pi\)
0.691476 + 0.722400i \(0.256961\pi\)
\(660\) 0 0
\(661\) 1884.94 0.110916 0.0554582 0.998461i \(-0.482338\pi\)
0.0554582 + 0.998461i \(0.482338\pi\)
\(662\) 0 0
\(663\) −15068.3 −0.882662
\(664\) 0 0
\(665\) −2923.81 −0.170497
\(666\) 0 0
\(667\) −3136.39 −0.182071
\(668\) 0 0
\(669\) −32029.2 −1.85100
\(670\) 0 0
\(671\) −1105.67 −0.0636122
\(672\) 0 0
\(673\) −27956.4 −1.60125 −0.800624 0.599168i \(-0.795498\pi\)
−0.800624 + 0.599168i \(0.795498\pi\)
\(674\) 0 0
\(675\) 14540.9 0.829155
\(676\) 0 0
\(677\) −8612.92 −0.488953 −0.244477 0.969655i \(-0.578616\pi\)
−0.244477 + 0.969655i \(0.578616\pi\)
\(678\) 0 0
\(679\) −6270.10 −0.354381
\(680\) 0 0
\(681\) 31442.5 1.76928
\(682\) 0 0
\(683\) −30753.7 −1.72292 −0.861462 0.507821i \(-0.830451\pi\)
−0.861462 + 0.507821i \(0.830451\pi\)
\(684\) 0 0
\(685\) −14125.5 −0.787892
\(686\) 0 0
\(687\) 34670.0 1.92539
\(688\) 0 0
\(689\) 39891.8 2.20574
\(690\) 0 0
\(691\) −16576.8 −0.912608 −0.456304 0.889824i \(-0.650827\pi\)
−0.456304 + 0.889824i \(0.650827\pi\)
\(692\) 0 0
\(693\) 4564.39 0.250197
\(694\) 0 0
\(695\) −21186.1 −1.15631
\(696\) 0 0
\(697\) 10884.6 0.591513
\(698\) 0 0
\(699\) 19163.2 1.03694
\(700\) 0 0
\(701\) 9831.71 0.529727 0.264863 0.964286i \(-0.414673\pi\)
0.264863 + 0.964286i \(0.414673\pi\)
\(702\) 0 0
\(703\) 20099.4 1.07833
\(704\) 0 0
\(705\) −37174.2 −1.98590
\(706\) 0 0
\(707\) 1696.44 0.0902421
\(708\) 0 0
\(709\) 147.484 0.00781223 0.00390611 0.999992i \(-0.498757\pi\)
0.00390611 + 0.999992i \(0.498757\pi\)
\(710\) 0 0
\(711\) 29829.0 1.57338
\(712\) 0 0
\(713\) 280.250 0.0147201
\(714\) 0 0
\(715\) 5326.39 0.278595
\(716\) 0 0
\(717\) −49474.3 −2.57692
\(718\) 0 0
\(719\) −28988.4 −1.50359 −0.751797 0.659395i \(-0.770812\pi\)
−0.751797 + 0.659395i \(0.770812\pi\)
\(720\) 0 0
\(721\) −1751.05 −0.0904475
\(722\) 0 0
\(723\) −65415.9 −3.36493
\(724\) 0 0
\(725\) 8403.55 0.430483
\(726\) 0 0
\(727\) 38809.4 1.97986 0.989932 0.141541i \(-0.0452057\pi\)
0.989932 + 0.141541i \(0.0452057\pi\)
\(728\) 0 0
\(729\) −4985.13 −0.253271
\(730\) 0 0
\(731\) −9568.84 −0.484154
\(732\) 0 0
\(733\) 30441.7 1.53396 0.766979 0.641672i \(-0.221759\pi\)
0.766979 + 0.641672i \(0.221759\pi\)
\(734\) 0 0
\(735\) 3980.86 0.199777
\(736\) 0 0
\(737\) 2340.27 0.116968
\(738\) 0 0
\(739\) 29172.5 1.45214 0.726068 0.687622i \(-0.241346\pi\)
0.726068 + 0.687622i \(0.241346\pi\)
\(740\) 0 0
\(741\) 24557.1 1.21745
\(742\) 0 0
\(743\) −29299.5 −1.44670 −0.723348 0.690483i \(-0.757398\pi\)
−0.723348 + 0.690483i \(0.757398\pi\)
\(744\) 0 0
\(745\) 22475.6 1.10529
\(746\) 0 0
\(747\) 46121.2 2.25902
\(748\) 0 0
\(749\) 8584.86 0.418804
\(750\) 0 0
\(751\) 3455.71 0.167910 0.0839552 0.996470i \(-0.473245\pi\)
0.0839552 + 0.996470i \(0.473245\pi\)
\(752\) 0 0
\(753\) −22726.5 −1.09987
\(754\) 0 0
\(755\) −5576.61 −0.268813
\(756\) 0 0
\(757\) 35734.4 1.71571 0.857853 0.513895i \(-0.171798\pi\)
0.857853 + 0.513895i \(0.171798\pi\)
\(758\) 0 0
\(759\) 1849.47 0.0884475
\(760\) 0 0
\(761\) −1256.47 −0.0598516 −0.0299258 0.999552i \(-0.509527\pi\)
−0.0299258 + 0.999552i \(0.509527\pi\)
\(762\) 0 0
\(763\) 9246.19 0.438709
\(764\) 0 0
\(765\) −15192.6 −0.718023
\(766\) 0 0
\(767\) −34880.7 −1.64207
\(768\) 0 0
\(769\) −22119.9 −1.03728 −0.518638 0.854994i \(-0.673561\pi\)
−0.518638 + 0.854994i \(0.673561\pi\)
\(770\) 0 0
\(771\) −59011.5 −2.75648
\(772\) 0 0
\(773\) 25255.2 1.17512 0.587559 0.809181i \(-0.300089\pi\)
0.587559 + 0.809181i \(0.300089\pi\)
\(774\) 0 0
\(775\) −750.894 −0.0348038
\(776\) 0 0
\(777\) −27366.0 −1.26351
\(778\) 0 0
\(779\) −17738.9 −0.815867
\(780\) 0 0
\(781\) 4680.59 0.214449
\(782\) 0 0
\(783\) 51949.1 2.37102
\(784\) 0 0
\(785\) 10502.0 0.477494
\(786\) 0 0
\(787\) −12267.9 −0.555658 −0.277829 0.960631i \(-0.589615\pi\)
−0.277829 + 0.960631i \(0.589615\pi\)
\(788\) 0 0
\(789\) −41614.0 −1.87769
\(790\) 0 0
\(791\) 14117.1 0.634573
\(792\) 0 0
\(793\) 5564.67 0.249190
\(794\) 0 0
\(795\) 58540.5 2.61160
\(796\) 0 0
\(797\) 38661.9 1.71829 0.859144 0.511734i \(-0.170997\pi\)
0.859144 + 0.511734i \(0.170997\pi\)
\(798\) 0 0
\(799\) −13408.1 −0.593673
\(800\) 0 0
\(801\) −32544.1 −1.43557
\(802\) 0 0
\(803\) 4290.09 0.188535
\(804\) 0 0
\(805\) 1108.24 0.0485224
\(806\) 0 0
\(807\) −19948.0 −0.870140
\(808\) 0 0
\(809\) 15080.1 0.655364 0.327682 0.944788i \(-0.393733\pi\)
0.327682 + 0.944788i \(0.393733\pi\)
\(810\) 0 0
\(811\) 11347.8 0.491339 0.245670 0.969354i \(-0.420992\pi\)
0.245670 + 0.969354i \(0.420992\pi\)
\(812\) 0 0
\(813\) 45116.1 1.94624
\(814\) 0 0
\(815\) −32769.4 −1.40842
\(816\) 0 0
\(817\) 15594.5 0.667788
\(818\) 0 0
\(819\) −22972.0 −0.980105
\(820\) 0 0
\(821\) 718.501 0.0305431 0.0152715 0.999883i \(-0.495139\pi\)
0.0152715 + 0.999883i \(0.495139\pi\)
\(822\) 0 0
\(823\) 7900.61 0.334627 0.167313 0.985904i \(-0.446491\pi\)
0.167313 + 0.985904i \(0.446491\pi\)
\(824\) 0 0
\(825\) −4955.42 −0.209122
\(826\) 0 0
\(827\) 30490.8 1.28207 0.641034 0.767513i \(-0.278506\pi\)
0.641034 + 0.767513i \(0.278506\pi\)
\(828\) 0 0
\(829\) −26792.2 −1.12248 −0.561238 0.827654i \(-0.689675\pi\)
−0.561238 + 0.827654i \(0.689675\pi\)
\(830\) 0 0
\(831\) −57282.2 −2.39121
\(832\) 0 0
\(833\) 1435.83 0.0597222
\(834\) 0 0
\(835\) −29754.6 −1.23317
\(836\) 0 0
\(837\) −4641.88 −0.191693
\(838\) 0 0
\(839\) −37993.6 −1.56339 −0.781696 0.623660i \(-0.785645\pi\)
−0.781696 + 0.623660i \(0.785645\pi\)
\(840\) 0 0
\(841\) 5633.68 0.230993
\(842\) 0 0
\(843\) 38789.5 1.58480
\(844\) 0 0
\(845\) −7591.06 −0.309042
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 0 0
\(849\) −34567.6 −1.39736
\(850\) 0 0
\(851\) −7618.50 −0.306885
\(852\) 0 0
\(853\) 9117.36 0.365970 0.182985 0.983116i \(-0.441424\pi\)
0.182985 + 0.983116i \(0.441424\pi\)
\(854\) 0 0
\(855\) 24759.6 0.990361
\(856\) 0 0
\(857\) −28933.9 −1.15328 −0.576640 0.816998i \(-0.695637\pi\)
−0.576640 + 0.816998i \(0.695637\pi\)
\(858\) 0 0
\(859\) 38347.8 1.52318 0.761590 0.648059i \(-0.224419\pi\)
0.761590 + 0.648059i \(0.224419\pi\)
\(860\) 0 0
\(861\) 24152.1 0.955981
\(862\) 0 0
\(863\) 29878.9 1.17855 0.589275 0.807932i \(-0.299413\pi\)
0.589275 + 0.807932i \(0.299413\pi\)
\(864\) 0 0
\(865\) 6688.31 0.262901
\(866\) 0 0
\(867\) 37659.2 1.47517
\(868\) 0 0
\(869\) −5535.27 −0.216077
\(870\) 0 0
\(871\) −11778.3 −0.458200
\(872\) 0 0
\(873\) 53096.8 2.05848
\(874\) 0 0
\(875\) −10622.5 −0.410408
\(876\) 0 0
\(877\) 43604.3 1.67892 0.839460 0.543421i \(-0.182871\pi\)
0.839460 + 0.543421i \(0.182871\pi\)
\(878\) 0 0
\(879\) 12279.8 0.471202
\(880\) 0 0
\(881\) −49410.2 −1.88953 −0.944763 0.327754i \(-0.893708\pi\)
−0.944763 + 0.327754i \(0.893708\pi\)
\(882\) 0 0
\(883\) −2015.96 −0.0768316 −0.0384158 0.999262i \(-0.512231\pi\)
−0.0384158 + 0.999262i \(0.512231\pi\)
\(884\) 0 0
\(885\) −51186.9 −1.94421
\(886\) 0 0
\(887\) 25750.0 0.974745 0.487373 0.873194i \(-0.337955\pi\)
0.487373 + 0.873194i \(0.337955\pi\)
\(888\) 0 0
\(889\) −10358.9 −0.390805
\(890\) 0 0
\(891\) −13027.9 −0.489844
\(892\) 0 0
\(893\) 21851.4 0.818846
\(894\) 0 0
\(895\) 13360.4 0.498984
\(896\) 0 0
\(897\) −9308.16 −0.346477
\(898\) 0 0
\(899\) −2682.66 −0.0995235
\(900\) 0 0
\(901\) 21114.6 0.780720
\(902\) 0 0
\(903\) −21232.4 −0.782471
\(904\) 0 0
\(905\) −1265.05 −0.0464661
\(906\) 0 0
\(907\) 10039.2 0.367527 0.183763 0.982971i \(-0.441172\pi\)
0.183763 + 0.982971i \(0.441172\pi\)
\(908\) 0 0
\(909\) −14365.9 −0.524187
\(910\) 0 0
\(911\) −25190.3 −0.916129 −0.458064 0.888919i \(-0.651457\pi\)
−0.458064 + 0.888919i \(0.651457\pi\)
\(912\) 0 0
\(913\) −8558.58 −0.310238
\(914\) 0 0
\(915\) 8166.06 0.295040
\(916\) 0 0
\(917\) −2420.03 −0.0871498
\(918\) 0 0
\(919\) 42342.1 1.51985 0.759923 0.650014i \(-0.225237\pi\)
0.759923 + 0.650014i \(0.225237\pi\)
\(920\) 0 0
\(921\) −21589.3 −0.772413
\(922\) 0 0
\(923\) −23556.8 −0.840066
\(924\) 0 0
\(925\) 20412.8 0.725587
\(926\) 0 0
\(927\) 14828.4 0.525380
\(928\) 0 0
\(929\) −42175.0 −1.48947 −0.744735 0.667360i \(-0.767424\pi\)
−0.744735 + 0.667360i \(0.767424\pi\)
\(930\) 0 0
\(931\) −2340.00 −0.0823741
\(932\) 0 0
\(933\) −23085.0 −0.810043
\(934\) 0 0
\(935\) 2819.24 0.0986084
\(936\) 0 0
\(937\) −18274.8 −0.637151 −0.318576 0.947897i \(-0.603204\pi\)
−0.318576 + 0.947897i \(0.603204\pi\)
\(938\) 0 0
\(939\) −4886.23 −0.169815
\(940\) 0 0
\(941\) 22386.5 0.775537 0.387769 0.921757i \(-0.373246\pi\)
0.387769 + 0.921757i \(0.373246\pi\)
\(942\) 0 0
\(943\) 6723.76 0.232191
\(944\) 0 0
\(945\) −18356.2 −0.631881
\(946\) 0 0
\(947\) −21655.6 −0.743098 −0.371549 0.928413i \(-0.621173\pi\)
−0.371549 + 0.928413i \(0.621173\pi\)
\(948\) 0 0
\(949\) −21591.4 −0.738554
\(950\) 0 0
\(951\) 33947.4 1.15754
\(952\) 0 0
\(953\) 33141.8 1.12651 0.563257 0.826282i \(-0.309548\pi\)
0.563257 + 0.826282i \(0.309548\pi\)
\(954\) 0 0
\(955\) 23788.3 0.806044
\(956\) 0 0
\(957\) −17703.8 −0.597997
\(958\) 0 0
\(959\) −11305.0 −0.380663
\(960\) 0 0
\(961\) −29551.3 −0.991954
\(962\) 0 0
\(963\) −72698.8 −2.43270
\(964\) 0 0
\(965\) −3186.56 −0.106299
\(966\) 0 0
\(967\) 36846.1 1.22533 0.612664 0.790344i \(-0.290098\pi\)
0.612664 + 0.790344i \(0.290098\pi\)
\(968\) 0 0
\(969\) 12998.0 0.430913
\(970\) 0 0
\(971\) −47644.8 −1.57466 −0.787330 0.616532i \(-0.788537\pi\)
−0.787330 + 0.616532i \(0.788537\pi\)
\(972\) 0 0
\(973\) −16955.8 −0.558660
\(974\) 0 0
\(975\) 24940.0 0.819199
\(976\) 0 0
\(977\) 25696.6 0.841459 0.420730 0.907186i \(-0.361774\pi\)
0.420730 + 0.907186i \(0.361774\pi\)
\(978\) 0 0
\(979\) 6039.12 0.197151
\(980\) 0 0
\(981\) −78299.1 −2.54832
\(982\) 0 0
\(983\) 48634.8 1.57804 0.789018 0.614370i \(-0.210590\pi\)
0.789018 + 0.614370i \(0.210590\pi\)
\(984\) 0 0
\(985\) 21134.7 0.683663
\(986\) 0 0
\(987\) −29751.4 −0.959472
\(988\) 0 0
\(989\) −5910.96 −0.190048
\(990\) 0 0
\(991\) −21519.7 −0.689804 −0.344902 0.938639i \(-0.612088\pi\)
−0.344902 + 0.938639i \(0.612088\pi\)
\(992\) 0 0
\(993\) −27508.4 −0.879107
\(994\) 0 0
\(995\) −2145.28 −0.0683518
\(996\) 0 0
\(997\) −44134.6 −1.40196 −0.700981 0.713180i \(-0.747254\pi\)
−0.700981 + 0.713180i \(0.747254\pi\)
\(998\) 0 0
\(999\) 126188. 3.99640
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.4.a.bc.1.1 7
4.3 odd 2 616.4.a.k.1.7 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
616.4.a.k.1.7 7 4.3 odd 2
1232.4.a.bc.1.1 7 1.1 even 1 trivial