Properties

Label 1232.4.a.bd.1.1
Level $1232$
Weight $4$
Character 1232.1
Self dual yes
Analytic conductor $72.690$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,4,Mod(1,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1232.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.6903531271\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 145x^{5} - 10x^{4} + 4790x^{3} - 2452x^{2} - 1496x + 320 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 616)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-9.14775\) of defining polynomial
Character \(\chi\) \(=\) 1232.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.14775 q^{3} +12.3118 q^{5} +7.00000 q^{7} +56.6814 q^{9} +11.0000 q^{11} +80.1862 q^{13} -112.625 q^{15} +68.2069 q^{17} +104.118 q^{19} -64.0343 q^{21} +184.098 q^{23} +26.5807 q^{25} -271.518 q^{27} +273.783 q^{29} -55.4648 q^{31} -100.625 q^{33} +86.1827 q^{35} -29.6327 q^{37} -733.523 q^{39} +188.501 q^{41} -65.0808 q^{43} +697.851 q^{45} +270.661 q^{47} +49.0000 q^{49} -623.940 q^{51} -711.859 q^{53} +135.430 q^{55} -952.441 q^{57} -464.547 q^{59} +415.489 q^{61} +396.770 q^{63} +987.237 q^{65} +78.8015 q^{67} -1684.08 q^{69} +660.432 q^{71} -1158.76 q^{73} -243.154 q^{75} +77.0000 q^{77} -1106.65 q^{79} +953.384 q^{81} -871.893 q^{83} +839.751 q^{85} -2504.50 q^{87} +64.4796 q^{89} +561.303 q^{91} +507.379 q^{93} +1281.88 q^{95} +557.755 q^{97} +623.495 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 6 q^{5} + 49 q^{7} + 101 q^{9} + 77 q^{11} + 88 q^{13} + 106 q^{15} + 134 q^{17} - 14 q^{19} - 42 q^{23} + 343 q^{25} + 30 q^{27} + 482 q^{29} - 50 q^{31} + 42 q^{35} + 152 q^{37} - 72 q^{39} + 234 q^{41}+ \cdots + 1111 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.14775 −1.76049 −0.880243 0.474523i \(-0.842621\pi\)
−0.880243 + 0.474523i \(0.842621\pi\)
\(4\) 0 0
\(5\) 12.3118 1.10120 0.550601 0.834769i \(-0.314399\pi\)
0.550601 + 0.834769i \(0.314399\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) 56.6814 2.09931
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 80.1862 1.71074 0.855371 0.518016i \(-0.173329\pi\)
0.855371 + 0.518016i \(0.173329\pi\)
\(14\) 0 0
\(15\) −112.625 −1.93865
\(16\) 0 0
\(17\) 68.2069 0.973095 0.486547 0.873654i \(-0.338256\pi\)
0.486547 + 0.873654i \(0.338256\pi\)
\(18\) 0 0
\(19\) 104.118 1.25717 0.628584 0.777742i \(-0.283635\pi\)
0.628584 + 0.777742i \(0.283635\pi\)
\(20\) 0 0
\(21\) −64.0343 −0.665401
\(22\) 0 0
\(23\) 184.098 1.66900 0.834501 0.551007i \(-0.185756\pi\)
0.834501 + 0.551007i \(0.185756\pi\)
\(24\) 0 0
\(25\) 26.5807 0.212646
\(26\) 0 0
\(27\) −271.518 −1.93532
\(28\) 0 0
\(29\) 273.783 1.75311 0.876556 0.481300i \(-0.159835\pi\)
0.876556 + 0.481300i \(0.159835\pi\)
\(30\) 0 0
\(31\) −55.4648 −0.321348 −0.160674 0.987008i \(-0.551367\pi\)
−0.160674 + 0.987008i \(0.551367\pi\)
\(32\) 0 0
\(33\) −100.625 −0.530807
\(34\) 0 0
\(35\) 86.1827 0.416215
\(36\) 0 0
\(37\) −29.6327 −0.131664 −0.0658321 0.997831i \(-0.520970\pi\)
−0.0658321 + 0.997831i \(0.520970\pi\)
\(38\) 0 0
\(39\) −733.523 −3.01174
\(40\) 0 0
\(41\) 188.501 0.718022 0.359011 0.933333i \(-0.383114\pi\)
0.359011 + 0.933333i \(0.383114\pi\)
\(42\) 0 0
\(43\) −65.0808 −0.230807 −0.115404 0.993319i \(-0.536816\pi\)
−0.115404 + 0.993319i \(0.536816\pi\)
\(44\) 0 0
\(45\) 697.851 2.31177
\(46\) 0 0
\(47\) 270.661 0.839999 0.420000 0.907524i \(-0.362030\pi\)
0.420000 + 0.907524i \(0.362030\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −623.940 −1.71312
\(52\) 0 0
\(53\) −711.859 −1.84493 −0.922466 0.386079i \(-0.873829\pi\)
−0.922466 + 0.386079i \(0.873829\pi\)
\(54\) 0 0
\(55\) 135.430 0.332025
\(56\) 0 0
\(57\) −952.441 −2.21323
\(58\) 0 0
\(59\) −464.547 −1.02506 −0.512532 0.858668i \(-0.671293\pi\)
−0.512532 + 0.858668i \(0.671293\pi\)
\(60\) 0 0
\(61\) 415.489 0.872097 0.436048 0.899923i \(-0.356378\pi\)
0.436048 + 0.899923i \(0.356378\pi\)
\(62\) 0 0
\(63\) 396.770 0.793465
\(64\) 0 0
\(65\) 987.237 1.88387
\(66\) 0 0
\(67\) 78.8015 0.143689 0.0718443 0.997416i \(-0.477112\pi\)
0.0718443 + 0.997416i \(0.477112\pi\)
\(68\) 0 0
\(69\) −1684.08 −2.93825
\(70\) 0 0
\(71\) 660.432 1.10393 0.551963 0.833868i \(-0.313879\pi\)
0.551963 + 0.833868i \(0.313879\pi\)
\(72\) 0 0
\(73\) −1158.76 −1.85784 −0.928922 0.370275i \(-0.879263\pi\)
−0.928922 + 0.370275i \(0.879263\pi\)
\(74\) 0 0
\(75\) −243.154 −0.374360
\(76\) 0 0
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) −1106.65 −1.57605 −0.788023 0.615645i \(-0.788895\pi\)
−0.788023 + 0.615645i \(0.788895\pi\)
\(80\) 0 0
\(81\) 953.384 1.30780
\(82\) 0 0
\(83\) −871.893 −1.15304 −0.576522 0.817082i \(-0.695591\pi\)
−0.576522 + 0.817082i \(0.695591\pi\)
\(84\) 0 0
\(85\) 839.751 1.07157
\(86\) 0 0
\(87\) −2504.50 −3.08633
\(88\) 0 0
\(89\) 64.4796 0.0767958 0.0383979 0.999263i \(-0.487775\pi\)
0.0383979 + 0.999263i \(0.487775\pi\)
\(90\) 0 0
\(91\) 561.303 0.646600
\(92\) 0 0
\(93\) 507.379 0.565728
\(94\) 0 0
\(95\) 1281.88 1.38440
\(96\) 0 0
\(97\) 557.755 0.583829 0.291915 0.956444i \(-0.405708\pi\)
0.291915 + 0.956444i \(0.405708\pi\)
\(98\) 0 0
\(99\) 623.495 0.632966
\(100\) 0 0
\(101\) −1407.37 −1.38652 −0.693261 0.720686i \(-0.743827\pi\)
−0.693261 + 0.720686i \(0.743827\pi\)
\(102\) 0 0
\(103\) 1606.59 1.53691 0.768457 0.639902i \(-0.221025\pi\)
0.768457 + 0.639902i \(0.221025\pi\)
\(104\) 0 0
\(105\) −788.378 −0.732741
\(106\) 0 0
\(107\) 763.156 0.689505 0.344752 0.938694i \(-0.387963\pi\)
0.344752 + 0.938694i \(0.387963\pi\)
\(108\) 0 0
\(109\) −814.464 −0.715702 −0.357851 0.933779i \(-0.616490\pi\)
−0.357851 + 0.933779i \(0.616490\pi\)
\(110\) 0 0
\(111\) 271.072 0.231793
\(112\) 0 0
\(113\) 794.810 0.661677 0.330838 0.943687i \(-0.392669\pi\)
0.330838 + 0.943687i \(0.392669\pi\)
\(114\) 0 0
\(115\) 2266.58 1.83791
\(116\) 0 0
\(117\) 4545.06 3.59138
\(118\) 0 0
\(119\) 477.448 0.367795
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) −1724.36 −1.26407
\(124\) 0 0
\(125\) −1211.72 −0.867036
\(126\) 0 0
\(127\) 329.002 0.229876 0.114938 0.993373i \(-0.463333\pi\)
0.114938 + 0.993373i \(0.463333\pi\)
\(128\) 0 0
\(129\) 595.343 0.406333
\(130\) 0 0
\(131\) −65.4279 −0.0436371 −0.0218186 0.999762i \(-0.506946\pi\)
−0.0218186 + 0.999762i \(0.506946\pi\)
\(132\) 0 0
\(133\) 728.823 0.475165
\(134\) 0 0
\(135\) −3342.88 −2.13118
\(136\) 0 0
\(137\) 2467.65 1.53887 0.769437 0.638723i \(-0.220537\pi\)
0.769437 + 0.638723i \(0.220537\pi\)
\(138\) 0 0
\(139\) −42.2419 −0.0257763 −0.0128882 0.999917i \(-0.504103\pi\)
−0.0128882 + 0.999917i \(0.504103\pi\)
\(140\) 0 0
\(141\) −2475.94 −1.47881
\(142\) 0 0
\(143\) 882.048 0.515808
\(144\) 0 0
\(145\) 3370.77 1.93053
\(146\) 0 0
\(147\) −448.240 −0.251498
\(148\) 0 0
\(149\) 1092.78 0.600832 0.300416 0.953808i \(-0.402875\pi\)
0.300416 + 0.953808i \(0.402875\pi\)
\(150\) 0 0
\(151\) −3051.30 −1.64444 −0.822222 0.569167i \(-0.807266\pi\)
−0.822222 + 0.569167i \(0.807266\pi\)
\(152\) 0 0
\(153\) 3866.06 2.04283
\(154\) 0 0
\(155\) −682.873 −0.353869
\(156\) 0 0
\(157\) −12.0234 −0.00611191 −0.00305596 0.999995i \(-0.500973\pi\)
−0.00305596 + 0.999995i \(0.500973\pi\)
\(158\) 0 0
\(159\) 6511.91 3.24798
\(160\) 0 0
\(161\) 1288.68 0.630823
\(162\) 0 0
\(163\) −667.031 −0.320527 −0.160264 0.987074i \(-0.551234\pi\)
−0.160264 + 0.987074i \(0.551234\pi\)
\(164\) 0 0
\(165\) −1238.88 −0.584525
\(166\) 0 0
\(167\) 580.227 0.268858 0.134429 0.990923i \(-0.457080\pi\)
0.134429 + 0.990923i \(0.457080\pi\)
\(168\) 0 0
\(169\) 4232.82 1.92664
\(170\) 0 0
\(171\) 5901.53 2.63919
\(172\) 0 0
\(173\) −4354.49 −1.91367 −0.956837 0.290625i \(-0.906137\pi\)
−0.956837 + 0.290625i \(0.906137\pi\)
\(174\) 0 0
\(175\) 186.065 0.0803726
\(176\) 0 0
\(177\) 4249.56 1.80461
\(178\) 0 0
\(179\) 1804.21 0.753368 0.376684 0.926342i \(-0.377064\pi\)
0.376684 + 0.926342i \(0.377064\pi\)
\(180\) 0 0
\(181\) −1370.66 −0.562876 −0.281438 0.959579i \(-0.590811\pi\)
−0.281438 + 0.959579i \(0.590811\pi\)
\(182\) 0 0
\(183\) −3800.79 −1.53531
\(184\) 0 0
\(185\) −364.832 −0.144989
\(186\) 0 0
\(187\) 750.276 0.293399
\(188\) 0 0
\(189\) −1900.63 −0.731483
\(190\) 0 0
\(191\) −3243.85 −1.22888 −0.614441 0.788963i \(-0.710618\pi\)
−0.614441 + 0.788963i \(0.710618\pi\)
\(192\) 0 0
\(193\) 3024.82 1.12814 0.564072 0.825726i \(-0.309234\pi\)
0.564072 + 0.825726i \(0.309234\pi\)
\(194\) 0 0
\(195\) −9031.00 −3.31653
\(196\) 0 0
\(197\) −3561.50 −1.28805 −0.644026 0.765004i \(-0.722737\pi\)
−0.644026 + 0.765004i \(0.722737\pi\)
\(198\) 0 0
\(199\) 4128.67 1.47072 0.735360 0.677676i \(-0.237013\pi\)
0.735360 + 0.677676i \(0.237013\pi\)
\(200\) 0 0
\(201\) −720.857 −0.252962
\(202\) 0 0
\(203\) 1916.48 0.662614
\(204\) 0 0
\(205\) 2320.79 0.790687
\(206\) 0 0
\(207\) 10434.9 3.50375
\(208\) 0 0
\(209\) 1145.29 0.379050
\(210\) 0 0
\(211\) 741.318 0.241869 0.120935 0.992660i \(-0.461411\pi\)
0.120935 + 0.992660i \(0.461411\pi\)
\(212\) 0 0
\(213\) −6041.47 −1.94345
\(214\) 0 0
\(215\) −801.262 −0.254166
\(216\) 0 0
\(217\) −388.254 −0.121458
\(218\) 0 0
\(219\) 10600.1 3.27071
\(220\) 0 0
\(221\) 5469.25 1.66471
\(222\) 0 0
\(223\) −1461.55 −0.438890 −0.219445 0.975625i \(-0.570425\pi\)
−0.219445 + 0.975625i \(0.570425\pi\)
\(224\) 0 0
\(225\) 1506.63 0.446410
\(226\) 0 0
\(227\) 3760.81 1.09962 0.549810 0.835289i \(-0.314700\pi\)
0.549810 + 0.835289i \(0.314700\pi\)
\(228\) 0 0
\(229\) 336.514 0.0971067 0.0485534 0.998821i \(-0.484539\pi\)
0.0485534 + 0.998821i \(0.484539\pi\)
\(230\) 0 0
\(231\) −704.377 −0.200626
\(232\) 0 0
\(233\) 627.324 0.176383 0.0881917 0.996104i \(-0.471891\pi\)
0.0881917 + 0.996104i \(0.471891\pi\)
\(234\) 0 0
\(235\) 3332.33 0.925009
\(236\) 0 0
\(237\) 10123.3 2.77461
\(238\) 0 0
\(239\) 1892.58 0.512220 0.256110 0.966648i \(-0.417559\pi\)
0.256110 + 0.966648i \(0.417559\pi\)
\(240\) 0 0
\(241\) −1735.91 −0.463982 −0.231991 0.972718i \(-0.574524\pi\)
−0.231991 + 0.972718i \(0.574524\pi\)
\(242\) 0 0
\(243\) −1390.33 −0.367036
\(244\) 0 0
\(245\) 603.279 0.157315
\(246\) 0 0
\(247\) 8348.78 2.15069
\(248\) 0 0
\(249\) 7975.86 2.02992
\(250\) 0 0
\(251\) −2547.18 −0.640545 −0.320272 0.947326i \(-0.603774\pi\)
−0.320272 + 0.947326i \(0.603774\pi\)
\(252\) 0 0
\(253\) 2025.08 0.503223
\(254\) 0 0
\(255\) −7681.83 −1.88649
\(256\) 0 0
\(257\) −5298.56 −1.28605 −0.643025 0.765845i \(-0.722321\pi\)
−0.643025 + 0.765845i \(0.722321\pi\)
\(258\) 0 0
\(259\) −207.429 −0.0497644
\(260\) 0 0
\(261\) 15518.4 3.68033
\(262\) 0 0
\(263\) 4866.37 1.14096 0.570482 0.821310i \(-0.306757\pi\)
0.570482 + 0.821310i \(0.306757\pi\)
\(264\) 0 0
\(265\) −8764.28 −2.03164
\(266\) 0 0
\(267\) −589.844 −0.135198
\(268\) 0 0
\(269\) −7316.95 −1.65845 −0.829224 0.558916i \(-0.811217\pi\)
−0.829224 + 0.558916i \(0.811217\pi\)
\(270\) 0 0
\(271\) −2149.75 −0.481875 −0.240937 0.970541i \(-0.577455\pi\)
−0.240937 + 0.970541i \(0.577455\pi\)
\(272\) 0 0
\(273\) −5134.66 −1.13833
\(274\) 0 0
\(275\) 292.388 0.0641151
\(276\) 0 0
\(277\) −6431.73 −1.39511 −0.697555 0.716531i \(-0.745729\pi\)
−0.697555 + 0.716531i \(0.745729\pi\)
\(278\) 0 0
\(279\) −3143.83 −0.674609
\(280\) 0 0
\(281\) −1252.60 −0.265921 −0.132961 0.991121i \(-0.542448\pi\)
−0.132961 + 0.991121i \(0.542448\pi\)
\(282\) 0 0
\(283\) −6100.99 −1.28151 −0.640753 0.767747i \(-0.721378\pi\)
−0.640753 + 0.767747i \(0.721378\pi\)
\(284\) 0 0
\(285\) −11726.3 −2.43721
\(286\) 0 0
\(287\) 1319.51 0.271387
\(288\) 0 0
\(289\) −260.816 −0.0530869
\(290\) 0 0
\(291\) −5102.20 −1.02782
\(292\) 0 0
\(293\) 7020.95 1.39989 0.699946 0.714196i \(-0.253207\pi\)
0.699946 + 0.714196i \(0.253207\pi\)
\(294\) 0 0
\(295\) −5719.41 −1.12880
\(296\) 0 0
\(297\) −2986.70 −0.583522
\(298\) 0 0
\(299\) 14762.1 2.85523
\(300\) 0 0
\(301\) −455.565 −0.0872370
\(302\) 0 0
\(303\) 12874.3 2.44095
\(304\) 0 0
\(305\) 5115.42 0.960355
\(306\) 0 0
\(307\) −1084.55 −0.201624 −0.100812 0.994905i \(-0.532144\pi\)
−0.100812 + 0.994905i \(0.532144\pi\)
\(308\) 0 0
\(309\) −14696.7 −2.70572
\(310\) 0 0
\(311\) −1013.41 −0.184775 −0.0923877 0.995723i \(-0.529450\pi\)
−0.0923877 + 0.995723i \(0.529450\pi\)
\(312\) 0 0
\(313\) −7679.46 −1.38680 −0.693401 0.720552i \(-0.743888\pi\)
−0.693401 + 0.720552i \(0.743888\pi\)
\(314\) 0 0
\(315\) 4884.96 0.873765
\(316\) 0 0
\(317\) 6170.81 1.09334 0.546668 0.837350i \(-0.315896\pi\)
0.546668 + 0.837350i \(0.315896\pi\)
\(318\) 0 0
\(319\) 3011.61 0.528583
\(320\) 0 0
\(321\) −6981.16 −1.21386
\(322\) 0 0
\(323\) 7101.53 1.22334
\(324\) 0 0
\(325\) 2131.41 0.363782
\(326\) 0 0
\(327\) 7450.52 1.25998
\(328\) 0 0
\(329\) 1894.63 0.317490
\(330\) 0 0
\(331\) −1231.70 −0.204532 −0.102266 0.994757i \(-0.532609\pi\)
−0.102266 + 0.994757i \(0.532609\pi\)
\(332\) 0 0
\(333\) −1679.62 −0.276404
\(334\) 0 0
\(335\) 970.190 0.158230
\(336\) 0 0
\(337\) −877.044 −0.141767 −0.0708837 0.997485i \(-0.522582\pi\)
−0.0708837 + 0.997485i \(0.522582\pi\)
\(338\) 0 0
\(339\) −7270.73 −1.16487
\(340\) 0 0
\(341\) −610.113 −0.0968900
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) −20734.1 −3.23561
\(346\) 0 0
\(347\) 1722.78 0.266524 0.133262 0.991081i \(-0.457455\pi\)
0.133262 + 0.991081i \(0.457455\pi\)
\(348\) 0 0
\(349\) −11582.3 −1.77647 −0.888236 0.459388i \(-0.848069\pi\)
−0.888236 + 0.459388i \(0.848069\pi\)
\(350\) 0 0
\(351\) −21772.0 −3.31084
\(352\) 0 0
\(353\) −3617.24 −0.545401 −0.272700 0.962099i \(-0.587917\pi\)
−0.272700 + 0.962099i \(0.587917\pi\)
\(354\) 0 0
\(355\) 8131.11 1.21565
\(356\) 0 0
\(357\) −4367.58 −0.647498
\(358\) 0 0
\(359\) −5092.73 −0.748702 −0.374351 0.927287i \(-0.622134\pi\)
−0.374351 + 0.927287i \(0.622134\pi\)
\(360\) 0 0
\(361\) 3981.45 0.580471
\(362\) 0 0
\(363\) −1106.88 −0.160044
\(364\) 0 0
\(365\) −14266.4 −2.04586
\(366\) 0 0
\(367\) −7905.22 −1.12438 −0.562192 0.827007i \(-0.690042\pi\)
−0.562192 + 0.827007i \(0.690042\pi\)
\(368\) 0 0
\(369\) 10684.5 1.50735
\(370\) 0 0
\(371\) −4983.01 −0.697318
\(372\) 0 0
\(373\) −7760.82 −1.07732 −0.538660 0.842523i \(-0.681069\pi\)
−0.538660 + 0.842523i \(0.681069\pi\)
\(374\) 0 0
\(375\) 11084.5 1.52640
\(376\) 0 0
\(377\) 21953.6 2.99912
\(378\) 0 0
\(379\) 6800.27 0.921652 0.460826 0.887490i \(-0.347553\pi\)
0.460826 + 0.887490i \(0.347553\pi\)
\(380\) 0 0
\(381\) −3009.63 −0.404693
\(382\) 0 0
\(383\) −11602.9 −1.54800 −0.773998 0.633188i \(-0.781746\pi\)
−0.773998 + 0.633188i \(0.781746\pi\)
\(384\) 0 0
\(385\) 948.010 0.125494
\(386\) 0 0
\(387\) −3688.87 −0.484537
\(388\) 0 0
\(389\) −8729.14 −1.13775 −0.568875 0.822424i \(-0.692621\pi\)
−0.568875 + 0.822424i \(0.692621\pi\)
\(390\) 0 0
\(391\) 12556.7 1.62410
\(392\) 0 0
\(393\) 598.519 0.0768226
\(394\) 0 0
\(395\) −13624.9 −1.73555
\(396\) 0 0
\(397\) −6264.99 −0.792017 −0.396009 0.918247i \(-0.629605\pi\)
−0.396009 + 0.918247i \(0.629605\pi\)
\(398\) 0 0
\(399\) −6667.09 −0.836521
\(400\) 0 0
\(401\) 13433.6 1.67293 0.836463 0.548023i \(-0.184619\pi\)
0.836463 + 0.548023i \(0.184619\pi\)
\(402\) 0 0
\(403\) −4447.51 −0.549743
\(404\) 0 0
\(405\) 11737.9 1.44015
\(406\) 0 0
\(407\) −325.959 −0.0396983
\(408\) 0 0
\(409\) 1416.39 0.171237 0.0856184 0.996328i \(-0.472713\pi\)
0.0856184 + 0.996328i \(0.472713\pi\)
\(410\) 0 0
\(411\) −22573.5 −2.70917
\(412\) 0 0
\(413\) −3251.83 −0.387438
\(414\) 0 0
\(415\) −10734.6 −1.26973
\(416\) 0 0
\(417\) 386.419 0.0453789
\(418\) 0 0
\(419\) −12604.4 −1.46960 −0.734801 0.678282i \(-0.762725\pi\)
−0.734801 + 0.678282i \(0.762725\pi\)
\(420\) 0 0
\(421\) −1936.94 −0.224230 −0.112115 0.993695i \(-0.535762\pi\)
−0.112115 + 0.993695i \(0.535762\pi\)
\(422\) 0 0
\(423\) 15341.4 1.76342
\(424\) 0 0
\(425\) 1812.99 0.206925
\(426\) 0 0
\(427\) 2908.42 0.329622
\(428\) 0 0
\(429\) −8068.76 −0.908073
\(430\) 0 0
\(431\) 9158.34 1.02353 0.511765 0.859125i \(-0.328992\pi\)
0.511765 + 0.859125i \(0.328992\pi\)
\(432\) 0 0
\(433\) −831.437 −0.0922779 −0.0461390 0.998935i \(-0.514692\pi\)
−0.0461390 + 0.998935i \(0.514692\pi\)
\(434\) 0 0
\(435\) −30834.9 −3.39867
\(436\) 0 0
\(437\) 19167.8 2.09822
\(438\) 0 0
\(439\) 6223.67 0.676627 0.338314 0.941033i \(-0.390144\pi\)
0.338314 + 0.941033i \(0.390144\pi\)
\(440\) 0 0
\(441\) 2777.39 0.299902
\(442\) 0 0
\(443\) −7495.66 −0.803904 −0.401952 0.915661i \(-0.631668\pi\)
−0.401952 + 0.915661i \(0.631668\pi\)
\(444\) 0 0
\(445\) 793.861 0.0845677
\(446\) 0 0
\(447\) −9996.47 −1.05776
\(448\) 0 0
\(449\) 8227.98 0.864816 0.432408 0.901678i \(-0.357664\pi\)
0.432408 + 0.901678i \(0.357664\pi\)
\(450\) 0 0
\(451\) 2073.51 0.216492
\(452\) 0 0
\(453\) 27912.5 2.89502
\(454\) 0 0
\(455\) 6910.66 0.712037
\(456\) 0 0
\(457\) −1099.99 −0.112594 −0.0562969 0.998414i \(-0.517929\pi\)
−0.0562969 + 0.998414i \(0.517929\pi\)
\(458\) 0 0
\(459\) −18519.4 −1.88325
\(460\) 0 0
\(461\) −3290.30 −0.332417 −0.166209 0.986091i \(-0.553153\pi\)
−0.166209 + 0.986091i \(0.553153\pi\)
\(462\) 0 0
\(463\) 9480.79 0.951640 0.475820 0.879543i \(-0.342151\pi\)
0.475820 + 0.879543i \(0.342151\pi\)
\(464\) 0 0
\(465\) 6246.75 0.622981
\(466\) 0 0
\(467\) −10021.6 −0.993033 −0.496516 0.868027i \(-0.665388\pi\)
−0.496516 + 0.868027i \(0.665388\pi\)
\(468\) 0 0
\(469\) 551.611 0.0543092
\(470\) 0 0
\(471\) 109.987 0.0107599
\(472\) 0 0
\(473\) −715.888 −0.0695911
\(474\) 0 0
\(475\) 2767.52 0.267332
\(476\) 0 0
\(477\) −40349.2 −3.87309
\(478\) 0 0
\(479\) −4897.70 −0.467185 −0.233593 0.972335i \(-0.575048\pi\)
−0.233593 + 0.972335i \(0.575048\pi\)
\(480\) 0 0
\(481\) −2376.13 −0.225244
\(482\) 0 0
\(483\) −11788.6 −1.11056
\(484\) 0 0
\(485\) 6866.97 0.642914
\(486\) 0 0
\(487\) 13863.5 1.28997 0.644985 0.764196i \(-0.276864\pi\)
0.644985 + 0.764196i \(0.276864\pi\)
\(488\) 0 0
\(489\) 6101.84 0.564283
\(490\) 0 0
\(491\) −6235.99 −0.573170 −0.286585 0.958055i \(-0.592520\pi\)
−0.286585 + 0.958055i \(0.592520\pi\)
\(492\) 0 0
\(493\) 18673.9 1.70594
\(494\) 0 0
\(495\) 7676.36 0.697024
\(496\) 0 0
\(497\) 4623.02 0.417245
\(498\) 0 0
\(499\) 12334.8 1.10658 0.553288 0.832990i \(-0.313373\pi\)
0.553288 + 0.832990i \(0.313373\pi\)
\(500\) 0 0
\(501\) −5307.78 −0.473321
\(502\) 0 0
\(503\) −10179.9 −0.902389 −0.451194 0.892426i \(-0.649002\pi\)
−0.451194 + 0.892426i \(0.649002\pi\)
\(504\) 0 0
\(505\) −17327.3 −1.52684
\(506\) 0 0
\(507\) −38720.8 −3.39182
\(508\) 0 0
\(509\) 10212.0 0.889267 0.444634 0.895713i \(-0.353334\pi\)
0.444634 + 0.895713i \(0.353334\pi\)
\(510\) 0 0
\(511\) −8111.32 −0.702199
\(512\) 0 0
\(513\) −28269.8 −2.43303
\(514\) 0 0
\(515\) 19780.0 1.69245
\(516\) 0 0
\(517\) 2977.27 0.253269
\(518\) 0 0
\(519\) 39833.8 3.36900
\(520\) 0 0
\(521\) −8751.45 −0.735908 −0.367954 0.929844i \(-0.619942\pi\)
−0.367954 + 0.929844i \(0.619942\pi\)
\(522\) 0 0
\(523\) 16339.2 1.36608 0.683042 0.730379i \(-0.260657\pi\)
0.683042 + 0.730379i \(0.260657\pi\)
\(524\) 0 0
\(525\) −1702.08 −0.141495
\(526\) 0 0
\(527\) −3783.09 −0.312702
\(528\) 0 0
\(529\) 21725.0 1.78557
\(530\) 0 0
\(531\) −26331.2 −2.15193
\(532\) 0 0
\(533\) 15115.2 1.22835
\(534\) 0 0
\(535\) 9395.83 0.759284
\(536\) 0 0
\(537\) −16504.4 −1.32629
\(538\) 0 0
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −3508.22 −0.278799 −0.139399 0.990236i \(-0.544517\pi\)
−0.139399 + 0.990236i \(0.544517\pi\)
\(542\) 0 0
\(543\) 12538.5 0.990935
\(544\) 0 0
\(545\) −10027.5 −0.788133
\(546\) 0 0
\(547\) 10613.7 0.829635 0.414817 0.909905i \(-0.363845\pi\)
0.414817 + 0.909905i \(0.363845\pi\)
\(548\) 0 0
\(549\) 23550.5 1.83080
\(550\) 0 0
\(551\) 28505.6 2.20396
\(552\) 0 0
\(553\) −7746.54 −0.595690
\(554\) 0 0
\(555\) 3337.39 0.255251
\(556\) 0 0
\(557\) 19663.6 1.49583 0.747913 0.663797i \(-0.231056\pi\)
0.747913 + 0.663797i \(0.231056\pi\)
\(558\) 0 0
\(559\) −5218.58 −0.394852
\(560\) 0 0
\(561\) −6863.34 −0.516525
\(562\) 0 0
\(563\) −16614.1 −1.24369 −0.621846 0.783139i \(-0.713617\pi\)
−0.621846 + 0.783139i \(0.713617\pi\)
\(564\) 0 0
\(565\) 9785.56 0.728640
\(566\) 0 0
\(567\) 6673.69 0.494301
\(568\) 0 0
\(569\) 1106.25 0.0815049 0.0407524 0.999169i \(-0.487025\pi\)
0.0407524 + 0.999169i \(0.487025\pi\)
\(570\) 0 0
\(571\) −13478.4 −0.987835 −0.493917 0.869509i \(-0.664436\pi\)
−0.493917 + 0.869509i \(0.664436\pi\)
\(572\) 0 0
\(573\) 29673.9 2.16343
\(574\) 0 0
\(575\) 4893.45 0.354906
\(576\) 0 0
\(577\) −11069.4 −0.798656 −0.399328 0.916808i \(-0.630756\pi\)
−0.399328 + 0.916808i \(0.630756\pi\)
\(578\) 0 0
\(579\) −27670.4 −1.98608
\(580\) 0 0
\(581\) −6103.25 −0.435810
\(582\) 0 0
\(583\) −7830.45 −0.556268
\(584\) 0 0
\(585\) 55958.0 3.95483
\(586\) 0 0
\(587\) −3858.21 −0.271287 −0.135644 0.990758i \(-0.543310\pi\)
−0.135644 + 0.990758i \(0.543310\pi\)
\(588\) 0 0
\(589\) −5774.86 −0.403988
\(590\) 0 0
\(591\) 32579.7 2.26760
\(592\) 0 0
\(593\) 9846.03 0.681835 0.340917 0.940093i \(-0.389262\pi\)
0.340917 + 0.940093i \(0.389262\pi\)
\(594\) 0 0
\(595\) 5878.26 0.405017
\(596\) 0 0
\(597\) −37768.0 −2.58918
\(598\) 0 0
\(599\) 12370.3 0.843802 0.421901 0.906642i \(-0.361363\pi\)
0.421901 + 0.906642i \(0.361363\pi\)
\(600\) 0 0
\(601\) 13728.3 0.931765 0.465883 0.884847i \(-0.345737\pi\)
0.465883 + 0.884847i \(0.345737\pi\)
\(602\) 0 0
\(603\) 4466.58 0.301647
\(604\) 0 0
\(605\) 1489.73 0.100109
\(606\) 0 0
\(607\) 4689.25 0.313560 0.156780 0.987634i \(-0.449889\pi\)
0.156780 + 0.987634i \(0.449889\pi\)
\(608\) 0 0
\(609\) −17531.5 −1.16652
\(610\) 0 0
\(611\) 21703.3 1.43702
\(612\) 0 0
\(613\) 16666.9 1.09816 0.549079 0.835770i \(-0.314979\pi\)
0.549079 + 0.835770i \(0.314979\pi\)
\(614\) 0 0
\(615\) −21230.0 −1.39199
\(616\) 0 0
\(617\) 16164.9 1.05474 0.527370 0.849636i \(-0.323178\pi\)
0.527370 + 0.849636i \(0.323178\pi\)
\(618\) 0 0
\(619\) 728.700 0.0473165 0.0236583 0.999720i \(-0.492469\pi\)
0.0236583 + 0.999720i \(0.492469\pi\)
\(620\) 0 0
\(621\) −49985.9 −3.23006
\(622\) 0 0
\(623\) 451.357 0.0290261
\(624\) 0 0
\(625\) −18241.1 −1.16743
\(626\) 0 0
\(627\) −10476.9 −0.667313
\(628\) 0 0
\(629\) −2021.15 −0.128122
\(630\) 0 0
\(631\) −20704.7 −1.30625 −0.653124 0.757251i \(-0.726542\pi\)
−0.653124 + 0.757251i \(0.726542\pi\)
\(632\) 0 0
\(633\) −6781.39 −0.425808
\(634\) 0 0
\(635\) 4050.61 0.253139
\(636\) 0 0
\(637\) 3929.12 0.244392
\(638\) 0 0
\(639\) 37434.2 2.31749
\(640\) 0 0
\(641\) 17599.4 1.08446 0.542228 0.840232i \(-0.317581\pi\)
0.542228 + 0.840232i \(0.317581\pi\)
\(642\) 0 0
\(643\) 12657.6 0.776310 0.388155 0.921594i \(-0.373112\pi\)
0.388155 + 0.921594i \(0.373112\pi\)
\(644\) 0 0
\(645\) 7329.75 0.447455
\(646\) 0 0
\(647\) 1456.90 0.0885263 0.0442631 0.999020i \(-0.485906\pi\)
0.0442631 + 0.999020i \(0.485906\pi\)
\(648\) 0 0
\(649\) −5110.01 −0.309069
\(650\) 0 0
\(651\) 3551.65 0.213825
\(652\) 0 0
\(653\) 3582.16 0.214672 0.107336 0.994223i \(-0.465768\pi\)
0.107336 + 0.994223i \(0.465768\pi\)
\(654\) 0 0
\(655\) −805.536 −0.0480533
\(656\) 0 0
\(657\) −65680.2 −3.90019
\(658\) 0 0
\(659\) −30089.2 −1.77862 −0.889308 0.457309i \(-0.848813\pi\)
−0.889308 + 0.457309i \(0.848813\pi\)
\(660\) 0 0
\(661\) 27621.6 1.62535 0.812675 0.582717i \(-0.198011\pi\)
0.812675 + 0.582717i \(0.198011\pi\)
\(662\) 0 0
\(663\) −50031.4 −2.93070
\(664\) 0 0
\(665\) 8973.13 0.523253
\(666\) 0 0
\(667\) 50402.8 2.92595
\(668\) 0 0
\(669\) 13369.9 0.772659
\(670\) 0 0
\(671\) 4570.38 0.262947
\(672\) 0 0
\(673\) 19934.5 1.14178 0.570891 0.821026i \(-0.306598\pi\)
0.570891 + 0.821026i \(0.306598\pi\)
\(674\) 0 0
\(675\) −7217.15 −0.411538
\(676\) 0 0
\(677\) 18528.2 1.05184 0.525920 0.850534i \(-0.323721\pi\)
0.525920 + 0.850534i \(0.323721\pi\)
\(678\) 0 0
\(679\) 3904.28 0.220667
\(680\) 0 0
\(681\) −34403.0 −1.93587
\(682\) 0 0
\(683\) 4577.85 0.256467 0.128233 0.991744i \(-0.459069\pi\)
0.128233 + 0.991744i \(0.459069\pi\)
\(684\) 0 0
\(685\) 30381.3 1.69461
\(686\) 0 0
\(687\) −3078.34 −0.170955
\(688\) 0 0
\(689\) −57081.2 −3.15620
\(690\) 0 0
\(691\) −10369.2 −0.570858 −0.285429 0.958400i \(-0.592136\pi\)
−0.285429 + 0.958400i \(0.592136\pi\)
\(692\) 0 0
\(693\) 4364.47 0.239239
\(694\) 0 0
\(695\) −520.074 −0.0283850
\(696\) 0 0
\(697\) 12857.1 0.698703
\(698\) 0 0
\(699\) −5738.60 −0.310521
\(700\) 0 0
\(701\) −29578.6 −1.59368 −0.796839 0.604191i \(-0.793496\pi\)
−0.796839 + 0.604191i \(0.793496\pi\)
\(702\) 0 0
\(703\) −3085.28 −0.165524
\(704\) 0 0
\(705\) −30483.3 −1.62847
\(706\) 0 0
\(707\) −9851.61 −0.524056
\(708\) 0 0
\(709\) −35837.9 −1.89834 −0.949168 0.314769i \(-0.898073\pi\)
−0.949168 + 0.314769i \(0.898073\pi\)
\(710\) 0 0
\(711\) −62726.4 −3.30861
\(712\) 0 0
\(713\) −10211.0 −0.536330
\(714\) 0 0
\(715\) 10859.6 0.568009
\(716\) 0 0
\(717\) −17312.8 −0.901756
\(718\) 0 0
\(719\) −24283.9 −1.25958 −0.629789 0.776766i \(-0.716859\pi\)
−0.629789 + 0.776766i \(0.716859\pi\)
\(720\) 0 0
\(721\) 11246.1 0.580899
\(722\) 0 0
\(723\) 15879.7 0.816834
\(724\) 0 0
\(725\) 7277.36 0.372792
\(726\) 0 0
\(727\) 18783.9 0.958259 0.479130 0.877744i \(-0.340952\pi\)
0.479130 + 0.877744i \(0.340952\pi\)
\(728\) 0 0
\(729\) −13023.0 −0.661635
\(730\) 0 0
\(731\) −4438.96 −0.224598
\(732\) 0 0
\(733\) 15115.4 0.761667 0.380833 0.924644i \(-0.375637\pi\)
0.380833 + 0.924644i \(0.375637\pi\)
\(734\) 0 0
\(735\) −5518.65 −0.276950
\(736\) 0 0
\(737\) 866.817 0.0433238
\(738\) 0 0
\(739\) −33698.9 −1.67745 −0.838724 0.544557i \(-0.816698\pi\)
−0.838724 + 0.544557i \(0.816698\pi\)
\(740\) 0 0
\(741\) −76372.6 −3.78626
\(742\) 0 0
\(743\) 13689.2 0.675918 0.337959 0.941161i \(-0.390263\pi\)
0.337959 + 0.941161i \(0.390263\pi\)
\(744\) 0 0
\(745\) 13454.1 0.661637
\(746\) 0 0
\(747\) −49420.1 −2.42060
\(748\) 0 0
\(749\) 5342.09 0.260608
\(750\) 0 0
\(751\) −25644.2 −1.24603 −0.623016 0.782209i \(-0.714093\pi\)
−0.623016 + 0.782209i \(0.714093\pi\)
\(752\) 0 0
\(753\) 23301.0 1.12767
\(754\) 0 0
\(755\) −37567.0 −1.81086
\(756\) 0 0
\(757\) 16529.6 0.793633 0.396816 0.917898i \(-0.370115\pi\)
0.396816 + 0.917898i \(0.370115\pi\)
\(758\) 0 0
\(759\) −18524.9 −0.885917
\(760\) 0 0
\(761\) −28422.9 −1.35392 −0.676958 0.736022i \(-0.736702\pi\)
−0.676958 + 0.736022i \(0.736702\pi\)
\(762\) 0 0
\(763\) −5701.25 −0.270510
\(764\) 0 0
\(765\) 47598.3 2.24957
\(766\) 0 0
\(767\) −37250.2 −1.75362
\(768\) 0 0
\(769\) −2296.42 −0.107687 −0.0538433 0.998549i \(-0.517147\pi\)
−0.0538433 + 0.998549i \(0.517147\pi\)
\(770\) 0 0
\(771\) 48469.9 2.26407
\(772\) 0 0
\(773\) 30248.4 1.40745 0.703724 0.710473i \(-0.251519\pi\)
0.703724 + 0.710473i \(0.251519\pi\)
\(774\) 0 0
\(775\) −1474.30 −0.0683333
\(776\) 0 0
\(777\) 1897.51 0.0876096
\(778\) 0 0
\(779\) 19626.2 0.902674
\(780\) 0 0
\(781\) 7264.75 0.332846
\(782\) 0 0
\(783\) −74337.1 −3.39284
\(784\) 0 0
\(785\) −148.030 −0.00673045
\(786\) 0 0
\(787\) 16251.6 0.736096 0.368048 0.929807i \(-0.380026\pi\)
0.368048 + 0.929807i \(0.380026\pi\)
\(788\) 0 0
\(789\) −44516.4 −2.00865
\(790\) 0 0
\(791\) 5563.67 0.250090
\(792\) 0 0
\(793\) 33316.5 1.49193
\(794\) 0 0
\(795\) 80173.4 3.57668
\(796\) 0 0
\(797\) 13971.8 0.620962 0.310481 0.950580i \(-0.399510\pi\)
0.310481 + 0.950580i \(0.399510\pi\)
\(798\) 0 0
\(799\) 18461.0 0.817399
\(800\) 0 0
\(801\) 3654.80 0.161218
\(802\) 0 0
\(803\) −12746.4 −0.560161
\(804\) 0 0
\(805\) 15866.0 0.694664
\(806\) 0 0
\(807\) 66933.7 2.91967
\(808\) 0 0
\(809\) −27507.5 −1.19544 −0.597721 0.801704i \(-0.703927\pi\)
−0.597721 + 0.801704i \(0.703927\pi\)
\(810\) 0 0
\(811\) −29240.5 −1.26606 −0.633028 0.774129i \(-0.718188\pi\)
−0.633028 + 0.774129i \(0.718188\pi\)
\(812\) 0 0
\(813\) 19665.4 0.848333
\(814\) 0 0
\(815\) −8212.36 −0.352965
\(816\) 0 0
\(817\) −6776.05 −0.290164
\(818\) 0 0
\(819\) 31815.5 1.35741
\(820\) 0 0
\(821\) 23841.8 1.01350 0.506751 0.862092i \(-0.330846\pi\)
0.506751 + 0.862092i \(0.330846\pi\)
\(822\) 0 0
\(823\) 12205.6 0.516961 0.258480 0.966016i \(-0.416778\pi\)
0.258480 + 0.966016i \(0.416778\pi\)
\(824\) 0 0
\(825\) −2674.69 −0.112874
\(826\) 0 0
\(827\) −39789.6 −1.67306 −0.836531 0.547920i \(-0.815420\pi\)
−0.836531 + 0.547920i \(0.815420\pi\)
\(828\) 0 0
\(829\) −18129.2 −0.759533 −0.379766 0.925082i \(-0.623996\pi\)
−0.379766 + 0.925082i \(0.623996\pi\)
\(830\) 0 0
\(831\) 58835.9 2.45607
\(832\) 0 0
\(833\) 3342.14 0.139014
\(834\) 0 0
\(835\) 7143.65 0.296067
\(836\) 0 0
\(837\) 15059.7 0.621911
\(838\) 0 0
\(839\) 5078.87 0.208989 0.104495 0.994525i \(-0.466677\pi\)
0.104495 + 0.994525i \(0.466677\pi\)
\(840\) 0 0
\(841\) 50568.2 2.07340
\(842\) 0 0
\(843\) 11458.5 0.468151
\(844\) 0 0
\(845\) 52113.7 2.12162
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) 0 0
\(849\) 55810.4 2.25607
\(850\) 0 0
\(851\) −5455.30 −0.219748
\(852\) 0 0
\(853\) 9616.04 0.385987 0.192994 0.981200i \(-0.438180\pi\)
0.192994 + 0.981200i \(0.438180\pi\)
\(854\) 0 0
\(855\) 72658.5 2.90628
\(856\) 0 0
\(857\) 11328.7 0.451552 0.225776 0.974179i \(-0.427508\pi\)
0.225776 + 0.974179i \(0.427508\pi\)
\(858\) 0 0
\(859\) 46045.4 1.82893 0.914464 0.404668i \(-0.132613\pi\)
0.914464 + 0.404668i \(0.132613\pi\)
\(860\) 0 0
\(861\) −12070.5 −0.477773
\(862\) 0 0
\(863\) −15695.8 −0.619111 −0.309555 0.950881i \(-0.600180\pi\)
−0.309555 + 0.950881i \(0.600180\pi\)
\(864\) 0 0
\(865\) −53611.6 −2.10734
\(866\) 0 0
\(867\) 2385.88 0.0934588
\(868\) 0 0
\(869\) −12173.1 −0.475196
\(870\) 0 0
\(871\) 6318.79 0.245814
\(872\) 0 0
\(873\) 31614.3 1.22564
\(874\) 0 0
\(875\) −8482.04 −0.327709
\(876\) 0 0
\(877\) −41186.1 −1.58581 −0.792906 0.609344i \(-0.791433\pi\)
−0.792906 + 0.609344i \(0.791433\pi\)
\(878\) 0 0
\(879\) −64226.0 −2.46449
\(880\) 0 0
\(881\) −31056.9 −1.18767 −0.593833 0.804588i \(-0.702386\pi\)
−0.593833 + 0.804588i \(0.702386\pi\)
\(882\) 0 0
\(883\) −32020.9 −1.22037 −0.610187 0.792257i \(-0.708906\pi\)
−0.610187 + 0.792257i \(0.708906\pi\)
\(884\) 0 0
\(885\) 52319.8 1.98724
\(886\) 0 0
\(887\) −17880.9 −0.676870 −0.338435 0.940990i \(-0.609897\pi\)
−0.338435 + 0.940990i \(0.609897\pi\)
\(888\) 0 0
\(889\) 2303.01 0.0868848
\(890\) 0 0
\(891\) 10487.2 0.394316
\(892\) 0 0
\(893\) 28180.5 1.05602
\(894\) 0 0
\(895\) 22213.1 0.829610
\(896\) 0 0
\(897\) −135040. −5.02659
\(898\) 0 0
\(899\) −15185.3 −0.563358
\(900\) 0 0
\(901\) −48553.7 −1.79529
\(902\) 0 0
\(903\) 4167.40 0.153580
\(904\) 0 0
\(905\) −16875.3 −0.619840
\(906\) 0 0
\(907\) 28412.1 1.04014 0.520071 0.854123i \(-0.325905\pi\)
0.520071 + 0.854123i \(0.325905\pi\)
\(908\) 0 0
\(909\) −79771.9 −2.91074
\(910\) 0 0
\(911\) −52287.5 −1.90160 −0.950802 0.309800i \(-0.899738\pi\)
−0.950802 + 0.309800i \(0.899738\pi\)
\(912\) 0 0
\(913\) −9590.82 −0.347656
\(914\) 0 0
\(915\) −46794.6 −1.69069
\(916\) 0 0
\(917\) −457.995 −0.0164933
\(918\) 0 0
\(919\) 7428.89 0.266655 0.133328 0.991072i \(-0.457434\pi\)
0.133328 + 0.991072i \(0.457434\pi\)
\(920\) 0 0
\(921\) 9921.21 0.354957
\(922\) 0 0
\(923\) 52957.5 1.88853
\(924\) 0 0
\(925\) −787.658 −0.0279979
\(926\) 0 0
\(927\) 91063.8 3.22646
\(928\) 0 0
\(929\) 15872.5 0.560559 0.280280 0.959918i \(-0.409573\pi\)
0.280280 + 0.959918i \(0.409573\pi\)
\(930\) 0 0
\(931\) 5101.76 0.179595
\(932\) 0 0
\(933\) 9270.42 0.325295
\(934\) 0 0
\(935\) 9237.26 0.323092
\(936\) 0 0
\(937\) 21205.2 0.739321 0.369660 0.929167i \(-0.379474\pi\)
0.369660 + 0.929167i \(0.379474\pi\)
\(938\) 0 0
\(939\) 70249.8 2.44144
\(940\) 0 0
\(941\) 20982.6 0.726902 0.363451 0.931613i \(-0.381598\pi\)
0.363451 + 0.931613i \(0.381598\pi\)
\(942\) 0 0
\(943\) 34702.6 1.19838
\(944\) 0 0
\(945\) −23400.2 −0.805511
\(946\) 0 0
\(947\) −4468.49 −0.153333 −0.0766665 0.997057i \(-0.524428\pi\)
−0.0766665 + 0.997057i \(0.524428\pi\)
\(948\) 0 0
\(949\) −92916.5 −3.17829
\(950\) 0 0
\(951\) −56449.1 −1.92480
\(952\) 0 0
\(953\) 11117.3 0.377885 0.188943 0.981988i \(-0.439494\pi\)
0.188943 + 0.981988i \(0.439494\pi\)
\(954\) 0 0
\(955\) −39937.6 −1.35325
\(956\) 0 0
\(957\) −27549.5 −0.930563
\(958\) 0 0
\(959\) 17273.6 0.581639
\(960\) 0 0
\(961\) −26714.7 −0.896736
\(962\) 0 0
\(963\) 43256.7 1.44749
\(964\) 0 0
\(965\) 37241.1 1.24231
\(966\) 0 0
\(967\) 11293.0 0.375550 0.187775 0.982212i \(-0.439872\pi\)
0.187775 + 0.982212i \(0.439872\pi\)
\(968\) 0 0
\(969\) −64963.1 −2.15368
\(970\) 0 0
\(971\) −30920.8 −1.02193 −0.510966 0.859601i \(-0.670712\pi\)
−0.510966 + 0.859601i \(0.670712\pi\)
\(972\) 0 0
\(973\) −295.693 −0.00974254
\(974\) 0 0
\(975\) −19497.6 −0.640433
\(976\) 0 0
\(977\) −9639.96 −0.315670 −0.157835 0.987466i \(-0.550451\pi\)
−0.157835 + 0.987466i \(0.550451\pi\)
\(978\) 0 0
\(979\) 709.276 0.0231548
\(980\) 0 0
\(981\) −46165.0 −1.50248
\(982\) 0 0
\(983\) −26217.9 −0.850683 −0.425341 0.905033i \(-0.639846\pi\)
−0.425341 + 0.905033i \(0.639846\pi\)
\(984\) 0 0
\(985\) −43848.5 −1.41840
\(986\) 0 0
\(987\) −17331.6 −0.558937
\(988\) 0 0
\(989\) −11981.2 −0.385218
\(990\) 0 0
\(991\) 14319.1 0.458991 0.229496 0.973310i \(-0.426292\pi\)
0.229496 + 0.973310i \(0.426292\pi\)
\(992\) 0 0
\(993\) 11267.3 0.360076
\(994\) 0 0
\(995\) 50831.4 1.61956
\(996\) 0 0
\(997\) 41490.0 1.31795 0.658977 0.752163i \(-0.270989\pi\)
0.658977 + 0.752163i \(0.270989\pi\)
\(998\) 0 0
\(999\) 8045.81 0.254813
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.4.a.bd.1.1 7
4.3 odd 2 616.4.a.j.1.7 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
616.4.a.j.1.7 7 4.3 odd 2
1232.4.a.bd.1.1 7 1.1 even 1 trivial