Properties

Label 1232.4.a.bd.1.7
Level $1232$
Weight $4$
Character 1232.1
Self dual yes
Analytic conductor $72.690$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,4,Mod(1,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1232.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.6903531271\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 145x^{5} - 10x^{4} + 4790x^{3} - 2452x^{2} - 1496x + 320 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 616)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(10.0610\) of defining polynomial
Character \(\chi\) \(=\) 1232.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.0610 q^{3} +14.3419 q^{5} +7.00000 q^{7} +74.2235 q^{9} +11.0000 q^{11} +67.8481 q^{13} +144.294 q^{15} -17.1658 q^{17} +13.1002 q^{19} +70.4269 q^{21} -109.440 q^{23} +80.6901 q^{25} +475.115 q^{27} +8.40033 q^{29} +60.6206 q^{31} +110.671 q^{33} +100.393 q^{35} -409.456 q^{37} +682.619 q^{39} -438.921 q^{41} -141.177 q^{43} +1064.51 q^{45} -446.940 q^{47} +49.0000 q^{49} -172.705 q^{51} -138.795 q^{53} +157.761 q^{55} +131.801 q^{57} -681.593 q^{59} +687.672 q^{61} +519.564 q^{63} +973.071 q^{65} -584.435 q^{67} -1101.07 q^{69} -471.809 q^{71} +564.462 q^{73} +811.822 q^{75} +77.0000 q^{77} -175.668 q^{79} +2776.09 q^{81} +309.242 q^{83} -246.190 q^{85} +84.5156 q^{87} -878.091 q^{89} +474.937 q^{91} +609.903 q^{93} +187.882 q^{95} +103.599 q^{97} +816.458 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 6 q^{5} + 49 q^{7} + 101 q^{9} + 77 q^{11} + 88 q^{13} + 106 q^{15} + 134 q^{17} - 14 q^{19} - 42 q^{23} + 343 q^{25} + 30 q^{27} + 482 q^{29} - 50 q^{31} + 42 q^{35} + 152 q^{37} - 72 q^{39} + 234 q^{41}+ \cdots + 1111 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 10.0610 1.93624 0.968119 0.250491i \(-0.0805919\pi\)
0.968119 + 0.250491i \(0.0805919\pi\)
\(4\) 0 0
\(5\) 14.3419 1.28278 0.641389 0.767216i \(-0.278358\pi\)
0.641389 + 0.767216i \(0.278358\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) 74.2235 2.74902
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 67.8481 1.44751 0.723757 0.690055i \(-0.242414\pi\)
0.723757 + 0.690055i \(0.242414\pi\)
\(14\) 0 0
\(15\) 144.294 2.48376
\(16\) 0 0
\(17\) −17.1658 −0.244901 −0.122451 0.992475i \(-0.539075\pi\)
−0.122451 + 0.992475i \(0.539075\pi\)
\(18\) 0 0
\(19\) 13.1002 0.158179 0.0790894 0.996868i \(-0.474799\pi\)
0.0790894 + 0.996868i \(0.474799\pi\)
\(20\) 0 0
\(21\) 70.4269 0.731829
\(22\) 0 0
\(23\) −109.440 −0.992163 −0.496081 0.868276i \(-0.665228\pi\)
−0.496081 + 0.868276i \(0.665228\pi\)
\(24\) 0 0
\(25\) 80.6901 0.645520
\(26\) 0 0
\(27\) 475.115 3.38652
\(28\) 0 0
\(29\) 8.40033 0.0537897 0.0268949 0.999638i \(-0.491438\pi\)
0.0268949 + 0.999638i \(0.491438\pi\)
\(30\) 0 0
\(31\) 60.6206 0.351219 0.175609 0.984460i \(-0.443810\pi\)
0.175609 + 0.984460i \(0.443810\pi\)
\(32\) 0 0
\(33\) 110.671 0.583798
\(34\) 0 0
\(35\) 100.393 0.484845
\(36\) 0 0
\(37\) −409.456 −1.81930 −0.909650 0.415375i \(-0.863650\pi\)
−0.909650 + 0.415375i \(0.863650\pi\)
\(38\) 0 0
\(39\) 682.619 2.80273
\(40\) 0 0
\(41\) −438.921 −1.67190 −0.835950 0.548806i \(-0.815082\pi\)
−0.835950 + 0.548806i \(0.815082\pi\)
\(42\) 0 0
\(43\) −141.177 −0.500680 −0.250340 0.968158i \(-0.580542\pi\)
−0.250340 + 0.968158i \(0.580542\pi\)
\(44\) 0 0
\(45\) 1064.51 3.52638
\(46\) 0 0
\(47\) −446.940 −1.38708 −0.693541 0.720417i \(-0.743950\pi\)
−0.693541 + 0.720417i \(0.743950\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −172.705 −0.474187
\(52\) 0 0
\(53\) −138.795 −0.359716 −0.179858 0.983693i \(-0.557564\pi\)
−0.179858 + 0.983693i \(0.557564\pi\)
\(54\) 0 0
\(55\) 157.761 0.386772
\(56\) 0 0
\(57\) 131.801 0.306272
\(58\) 0 0
\(59\) −681.593 −1.50400 −0.751998 0.659165i \(-0.770910\pi\)
−0.751998 + 0.659165i \(0.770910\pi\)
\(60\) 0 0
\(61\) 687.672 1.44340 0.721700 0.692206i \(-0.243361\pi\)
0.721700 + 0.692206i \(0.243361\pi\)
\(62\) 0 0
\(63\) 519.564 1.03903
\(64\) 0 0
\(65\) 973.071 1.85684
\(66\) 0 0
\(67\) −584.435 −1.06567 −0.532837 0.846218i \(-0.678874\pi\)
−0.532837 + 0.846218i \(0.678874\pi\)
\(68\) 0 0
\(69\) −1101.07 −1.92106
\(70\) 0 0
\(71\) −471.809 −0.788640 −0.394320 0.918973i \(-0.629020\pi\)
−0.394320 + 0.918973i \(0.629020\pi\)
\(72\) 0 0
\(73\) 564.462 0.905004 0.452502 0.891763i \(-0.350531\pi\)
0.452502 + 0.891763i \(0.350531\pi\)
\(74\) 0 0
\(75\) 811.822 1.24988
\(76\) 0 0
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) −175.668 −0.250179 −0.125089 0.992145i \(-0.539922\pi\)
−0.125089 + 0.992145i \(0.539922\pi\)
\(80\) 0 0
\(81\) 2776.09 3.80808
\(82\) 0 0
\(83\) 309.242 0.408961 0.204480 0.978871i \(-0.434450\pi\)
0.204480 + 0.978871i \(0.434450\pi\)
\(84\) 0 0
\(85\) −246.190 −0.314154
\(86\) 0 0
\(87\) 84.5156 0.104150
\(88\) 0 0
\(89\) −878.091 −1.04581 −0.522907 0.852390i \(-0.675153\pi\)
−0.522907 + 0.852390i \(0.675153\pi\)
\(90\) 0 0
\(91\) 474.937 0.547109
\(92\) 0 0
\(93\) 609.903 0.680043
\(94\) 0 0
\(95\) 187.882 0.202908
\(96\) 0 0
\(97\) 103.599 0.108443 0.0542213 0.998529i \(-0.482732\pi\)
0.0542213 + 0.998529i \(0.482732\pi\)
\(98\) 0 0
\(99\) 816.458 0.828860
\(100\) 0 0
\(101\) 1776.97 1.75065 0.875324 0.483537i \(-0.160648\pi\)
0.875324 + 0.483537i \(0.160648\pi\)
\(102\) 0 0
\(103\) −653.008 −0.624687 −0.312344 0.949969i \(-0.601114\pi\)
−0.312344 + 0.949969i \(0.601114\pi\)
\(104\) 0 0
\(105\) 1010.06 0.938775
\(106\) 0 0
\(107\) 866.625 0.782989 0.391494 0.920180i \(-0.371958\pi\)
0.391494 + 0.920180i \(0.371958\pi\)
\(108\) 0 0
\(109\) 461.141 0.405223 0.202611 0.979259i \(-0.435057\pi\)
0.202611 + 0.979259i \(0.435057\pi\)
\(110\) 0 0
\(111\) −4119.53 −3.52260
\(112\) 0 0
\(113\) −285.685 −0.237831 −0.118916 0.992904i \(-0.537942\pi\)
−0.118916 + 0.992904i \(0.537942\pi\)
\(114\) 0 0
\(115\) −1569.57 −1.27272
\(116\) 0 0
\(117\) 5035.93 3.97924
\(118\) 0 0
\(119\) −120.161 −0.0925640
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) −4415.97 −3.23719
\(124\) 0 0
\(125\) −635.489 −0.454719
\(126\) 0 0
\(127\) 2290.71 1.60053 0.800266 0.599645i \(-0.204691\pi\)
0.800266 + 0.599645i \(0.204691\pi\)
\(128\) 0 0
\(129\) −1420.38 −0.969435
\(130\) 0 0
\(131\) −2548.85 −1.69995 −0.849976 0.526821i \(-0.823384\pi\)
−0.849976 + 0.526821i \(0.823384\pi\)
\(132\) 0 0
\(133\) 91.7016 0.0597860
\(134\) 0 0
\(135\) 6814.05 4.34415
\(136\) 0 0
\(137\) −2818.87 −1.75790 −0.878949 0.476916i \(-0.841755\pi\)
−0.878949 + 0.476916i \(0.841755\pi\)
\(138\) 0 0
\(139\) −180.336 −0.110043 −0.0550213 0.998485i \(-0.517523\pi\)
−0.0550213 + 0.998485i \(0.517523\pi\)
\(140\) 0 0
\(141\) −4496.66 −2.68572
\(142\) 0 0
\(143\) 746.330 0.436442
\(144\) 0 0
\(145\) 120.477 0.0690003
\(146\) 0 0
\(147\) 492.988 0.276605
\(148\) 0 0
\(149\) 3222.44 1.77176 0.885882 0.463910i \(-0.153554\pi\)
0.885882 + 0.463910i \(0.153554\pi\)
\(150\) 0 0
\(151\) −3385.37 −1.82449 −0.912243 0.409650i \(-0.865651\pi\)
−0.912243 + 0.409650i \(0.865651\pi\)
\(152\) 0 0
\(153\) −1274.11 −0.673238
\(154\) 0 0
\(155\) 869.414 0.450536
\(156\) 0 0
\(157\) 2772.58 1.40940 0.704701 0.709505i \(-0.251081\pi\)
0.704701 + 0.709505i \(0.251081\pi\)
\(158\) 0 0
\(159\) −1396.41 −0.696496
\(160\) 0 0
\(161\) −766.077 −0.375002
\(162\) 0 0
\(163\) 1567.26 0.753113 0.376557 0.926394i \(-0.377108\pi\)
0.376557 + 0.926394i \(0.377108\pi\)
\(164\) 0 0
\(165\) 1587.23 0.748883
\(166\) 0 0
\(167\) 295.988 0.137151 0.0685755 0.997646i \(-0.478155\pi\)
0.0685755 + 0.997646i \(0.478155\pi\)
\(168\) 0 0
\(169\) 2406.37 1.09530
\(170\) 0 0
\(171\) 972.345 0.434837
\(172\) 0 0
\(173\) −120.518 −0.0529643 −0.0264822 0.999649i \(-0.508431\pi\)
−0.0264822 + 0.999649i \(0.508431\pi\)
\(174\) 0 0
\(175\) 564.830 0.243984
\(176\) 0 0
\(177\) −6857.50 −2.91210
\(178\) 0 0
\(179\) 2892.59 1.20783 0.603917 0.797047i \(-0.293606\pi\)
0.603917 + 0.797047i \(0.293606\pi\)
\(180\) 0 0
\(181\) 3707.38 1.52247 0.761237 0.648474i \(-0.224592\pi\)
0.761237 + 0.648474i \(0.224592\pi\)
\(182\) 0 0
\(183\) 6918.66 2.79477
\(184\) 0 0
\(185\) −5872.37 −2.33376
\(186\) 0 0
\(187\) −188.824 −0.0738405
\(188\) 0 0
\(189\) 3325.80 1.27998
\(190\) 0 0
\(191\) −421.426 −0.159651 −0.0798253 0.996809i \(-0.525436\pi\)
−0.0798253 + 0.996809i \(0.525436\pi\)
\(192\) 0 0
\(193\) −4215.98 −1.57240 −0.786198 0.617974i \(-0.787954\pi\)
−0.786198 + 0.617974i \(0.787954\pi\)
\(194\) 0 0
\(195\) 9790.06 3.59529
\(196\) 0 0
\(197\) 1718.73 0.621597 0.310799 0.950476i \(-0.399404\pi\)
0.310799 + 0.950476i \(0.399404\pi\)
\(198\) 0 0
\(199\) 126.081 0.0449126 0.0224563 0.999748i \(-0.492851\pi\)
0.0224563 + 0.999748i \(0.492851\pi\)
\(200\) 0 0
\(201\) −5879.99 −2.06340
\(202\) 0 0
\(203\) 58.8023 0.0203306
\(204\) 0 0
\(205\) −6294.95 −2.14468
\(206\) 0 0
\(207\) −8122.99 −2.72747
\(208\) 0 0
\(209\) 144.103 0.0476927
\(210\) 0 0
\(211\) −3816.42 −1.24518 −0.622591 0.782548i \(-0.713920\pi\)
−0.622591 + 0.782548i \(0.713920\pi\)
\(212\) 0 0
\(213\) −4746.87 −1.52700
\(214\) 0 0
\(215\) −2024.74 −0.642261
\(216\) 0 0
\(217\) 424.344 0.132748
\(218\) 0 0
\(219\) 5679.05 1.75230
\(220\) 0 0
\(221\) −1164.67 −0.354498
\(222\) 0 0
\(223\) −2772.63 −0.832598 −0.416299 0.909228i \(-0.636673\pi\)
−0.416299 + 0.909228i \(0.636673\pi\)
\(224\) 0 0
\(225\) 5989.10 1.77455
\(226\) 0 0
\(227\) 226.228 0.0661467 0.0330733 0.999453i \(-0.489471\pi\)
0.0330733 + 0.999453i \(0.489471\pi\)
\(228\) 0 0
\(229\) 3682.55 1.06266 0.531331 0.847165i \(-0.321692\pi\)
0.531331 + 0.847165i \(0.321692\pi\)
\(230\) 0 0
\(231\) 774.696 0.220655
\(232\) 0 0
\(233\) −1924.70 −0.541166 −0.270583 0.962697i \(-0.587216\pi\)
−0.270583 + 0.962697i \(0.587216\pi\)
\(234\) 0 0
\(235\) −6409.97 −1.77932
\(236\) 0 0
\(237\) −1767.39 −0.484406
\(238\) 0 0
\(239\) 67.3679 0.0182329 0.00911646 0.999958i \(-0.497098\pi\)
0.00911646 + 0.999958i \(0.497098\pi\)
\(240\) 0 0
\(241\) 1036.47 0.277032 0.138516 0.990360i \(-0.455767\pi\)
0.138516 + 0.990360i \(0.455767\pi\)
\(242\) 0 0
\(243\) 15102.1 3.98684
\(244\) 0 0
\(245\) 702.753 0.183254
\(246\) 0 0
\(247\) 888.826 0.228966
\(248\) 0 0
\(249\) 3111.28 0.791845
\(250\) 0 0
\(251\) 2832.00 0.712169 0.356085 0.934454i \(-0.384111\pi\)
0.356085 + 0.934454i \(0.384111\pi\)
\(252\) 0 0
\(253\) −1203.84 −0.299148
\(254\) 0 0
\(255\) −2476.92 −0.608277
\(256\) 0 0
\(257\) 6866.93 1.66672 0.833361 0.552730i \(-0.186414\pi\)
0.833361 + 0.552730i \(0.186414\pi\)
\(258\) 0 0
\(259\) −2866.19 −0.687631
\(260\) 0 0
\(261\) 623.502 0.147869
\(262\) 0 0
\(263\) −3900.01 −0.914391 −0.457196 0.889366i \(-0.651146\pi\)
−0.457196 + 0.889366i \(0.651146\pi\)
\(264\) 0 0
\(265\) −1990.58 −0.461436
\(266\) 0 0
\(267\) −8834.46 −2.02495
\(268\) 0 0
\(269\) 7754.91 1.75772 0.878858 0.477084i \(-0.158306\pi\)
0.878858 + 0.477084i \(0.158306\pi\)
\(270\) 0 0
\(271\) 638.600 0.143145 0.0715723 0.997435i \(-0.477198\pi\)
0.0715723 + 0.997435i \(0.477198\pi\)
\(272\) 0 0
\(273\) 4778.34 1.05933
\(274\) 0 0
\(275\) 887.591 0.194632
\(276\) 0 0
\(277\) 2628.38 0.570123 0.285062 0.958509i \(-0.407986\pi\)
0.285062 + 0.958509i \(0.407986\pi\)
\(278\) 0 0
\(279\) 4499.47 0.965506
\(280\) 0 0
\(281\) −1860.68 −0.395013 −0.197507 0.980302i \(-0.563284\pi\)
−0.197507 + 0.980302i \(0.563284\pi\)
\(282\) 0 0
\(283\) −607.236 −0.127549 −0.0637746 0.997964i \(-0.520314\pi\)
−0.0637746 + 0.997964i \(0.520314\pi\)
\(284\) 0 0
\(285\) 1890.28 0.392879
\(286\) 0 0
\(287\) −3072.44 −0.631918
\(288\) 0 0
\(289\) −4618.33 −0.940023
\(290\) 0 0
\(291\) 1042.31 0.209970
\(292\) 0 0
\(293\) 7800.95 1.55541 0.777707 0.628627i \(-0.216383\pi\)
0.777707 + 0.628627i \(0.216383\pi\)
\(294\) 0 0
\(295\) −9775.33 −1.92929
\(296\) 0 0
\(297\) 5226.26 1.02107
\(298\) 0 0
\(299\) −7425.28 −1.43617
\(300\) 0 0
\(301\) −988.236 −0.189239
\(302\) 0 0
\(303\) 17878.1 3.38967
\(304\) 0 0
\(305\) 9862.52 1.85156
\(306\) 0 0
\(307\) 9064.65 1.68517 0.842584 0.538565i \(-0.181033\pi\)
0.842584 + 0.538565i \(0.181033\pi\)
\(308\) 0 0
\(309\) −6569.91 −1.20954
\(310\) 0 0
\(311\) 5297.32 0.965863 0.482932 0.875658i \(-0.339572\pi\)
0.482932 + 0.875658i \(0.339572\pi\)
\(312\) 0 0
\(313\) 6918.42 1.24937 0.624684 0.780878i \(-0.285228\pi\)
0.624684 + 0.780878i \(0.285228\pi\)
\(314\) 0 0
\(315\) 7451.54 1.33285
\(316\) 0 0
\(317\) 3381.23 0.599082 0.299541 0.954083i \(-0.403166\pi\)
0.299541 + 0.954083i \(0.403166\pi\)
\(318\) 0 0
\(319\) 92.4036 0.0162182
\(320\) 0 0
\(321\) 8719.11 1.51605
\(322\) 0 0
\(323\) −224.876 −0.0387382
\(324\) 0 0
\(325\) 5474.67 0.934400
\(326\) 0 0
\(327\) 4639.53 0.784608
\(328\) 0 0
\(329\) −3128.58 −0.524268
\(330\) 0 0
\(331\) −3209.23 −0.532917 −0.266458 0.963846i \(-0.585854\pi\)
−0.266458 + 0.963846i \(0.585854\pi\)
\(332\) 0 0
\(333\) −30391.2 −5.00129
\(334\) 0 0
\(335\) −8381.91 −1.36702
\(336\) 0 0
\(337\) −4995.77 −0.807528 −0.403764 0.914863i \(-0.632298\pi\)
−0.403764 + 0.914863i \(0.632298\pi\)
\(338\) 0 0
\(339\) −2874.27 −0.460498
\(340\) 0 0
\(341\) 666.826 0.105896
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) −15791.4 −2.46430
\(346\) 0 0
\(347\) 10101.5 1.56276 0.781380 0.624055i \(-0.214516\pi\)
0.781380 + 0.624055i \(0.214516\pi\)
\(348\) 0 0
\(349\) 2958.46 0.453761 0.226880 0.973923i \(-0.427147\pi\)
0.226880 + 0.973923i \(0.427147\pi\)
\(350\) 0 0
\(351\) 32235.7 4.90203
\(352\) 0 0
\(353\) 4387.14 0.661485 0.330742 0.943721i \(-0.392701\pi\)
0.330742 + 0.943721i \(0.392701\pi\)
\(354\) 0 0
\(355\) −6766.64 −1.01165
\(356\) 0 0
\(357\) −1208.94 −0.179226
\(358\) 0 0
\(359\) −9395.90 −1.38133 −0.690664 0.723176i \(-0.742682\pi\)
−0.690664 + 0.723176i \(0.742682\pi\)
\(360\) 0 0
\(361\) −6687.38 −0.974979
\(362\) 0 0
\(363\) 1217.38 0.176022
\(364\) 0 0
\(365\) 8095.46 1.16092
\(366\) 0 0
\(367\) 13000.7 1.84913 0.924567 0.381019i \(-0.124427\pi\)
0.924567 + 0.381019i \(0.124427\pi\)
\(368\) 0 0
\(369\) −32578.2 −4.59608
\(370\) 0 0
\(371\) −971.565 −0.135960
\(372\) 0 0
\(373\) 85.0675 0.0118087 0.00590433 0.999983i \(-0.498121\pi\)
0.00590433 + 0.999983i \(0.498121\pi\)
\(374\) 0 0
\(375\) −6393.64 −0.880444
\(376\) 0 0
\(377\) 569.947 0.0778614
\(378\) 0 0
\(379\) 3927.28 0.532271 0.266136 0.963936i \(-0.414253\pi\)
0.266136 + 0.963936i \(0.414253\pi\)
\(380\) 0 0
\(381\) 23046.8 3.09901
\(382\) 0 0
\(383\) 10432.6 1.39186 0.695928 0.718112i \(-0.254993\pi\)
0.695928 + 0.718112i \(0.254993\pi\)
\(384\) 0 0
\(385\) 1104.33 0.146186
\(386\) 0 0
\(387\) −10478.6 −1.37638
\(388\) 0 0
\(389\) 8843.08 1.15260 0.576301 0.817238i \(-0.304496\pi\)
0.576301 + 0.817238i \(0.304496\pi\)
\(390\) 0 0
\(391\) 1878.62 0.242982
\(392\) 0 0
\(393\) −25643.9 −3.29151
\(394\) 0 0
\(395\) −2519.41 −0.320924
\(396\) 0 0
\(397\) −2586.92 −0.327038 −0.163519 0.986540i \(-0.552284\pi\)
−0.163519 + 0.986540i \(0.552284\pi\)
\(398\) 0 0
\(399\) 922.609 0.115760
\(400\) 0 0
\(401\) −900.901 −0.112192 −0.0560958 0.998425i \(-0.517865\pi\)
−0.0560958 + 0.998425i \(0.517865\pi\)
\(402\) 0 0
\(403\) 4112.99 0.508394
\(404\) 0 0
\(405\) 39814.4 4.88492
\(406\) 0 0
\(407\) −4504.01 −0.548540
\(408\) 0 0
\(409\) −3007.28 −0.363571 −0.181785 0.983338i \(-0.558188\pi\)
−0.181785 + 0.983338i \(0.558188\pi\)
\(410\) 0 0
\(411\) −28360.6 −3.40371
\(412\) 0 0
\(413\) −4771.15 −0.568457
\(414\) 0 0
\(415\) 4435.12 0.524606
\(416\) 0 0
\(417\) −1814.36 −0.213069
\(418\) 0 0
\(419\) −10957.7 −1.27761 −0.638806 0.769368i \(-0.720571\pi\)
−0.638806 + 0.769368i \(0.720571\pi\)
\(420\) 0 0
\(421\) −9334.16 −1.08057 −0.540284 0.841483i \(-0.681683\pi\)
−0.540284 + 0.841483i \(0.681683\pi\)
\(422\) 0 0
\(423\) −33173.4 −3.81311
\(424\) 0 0
\(425\) −1385.11 −0.158089
\(426\) 0 0
\(427\) 4813.70 0.545554
\(428\) 0 0
\(429\) 7508.81 0.845056
\(430\) 0 0
\(431\) −5103.12 −0.570322 −0.285161 0.958480i \(-0.592047\pi\)
−0.285161 + 0.958480i \(0.592047\pi\)
\(432\) 0 0
\(433\) 13928.9 1.54592 0.772959 0.634457i \(-0.218776\pi\)
0.772959 + 0.634457i \(0.218776\pi\)
\(434\) 0 0
\(435\) 1212.11 0.133601
\(436\) 0 0
\(437\) −1433.68 −0.156939
\(438\) 0 0
\(439\) −568.101 −0.0617631 −0.0308816 0.999523i \(-0.509831\pi\)
−0.0308816 + 0.999523i \(0.509831\pi\)
\(440\) 0 0
\(441\) 3636.95 0.392717
\(442\) 0 0
\(443\) −5257.15 −0.563826 −0.281913 0.959440i \(-0.590969\pi\)
−0.281913 + 0.959440i \(0.590969\pi\)
\(444\) 0 0
\(445\) −12593.5 −1.34155
\(446\) 0 0
\(447\) 32421.0 3.43056
\(448\) 0 0
\(449\) 7352.06 0.772751 0.386376 0.922342i \(-0.373727\pi\)
0.386376 + 0.922342i \(0.373727\pi\)
\(450\) 0 0
\(451\) −4828.13 −0.504097
\(452\) 0 0
\(453\) −34060.1 −3.53264
\(454\) 0 0
\(455\) 6811.50 0.701820
\(456\) 0 0
\(457\) −3224.06 −0.330011 −0.165006 0.986293i \(-0.552764\pi\)
−0.165006 + 0.986293i \(0.552764\pi\)
\(458\) 0 0
\(459\) −8155.73 −0.829362
\(460\) 0 0
\(461\) 6271.52 0.633609 0.316804 0.948491i \(-0.397390\pi\)
0.316804 + 0.948491i \(0.397390\pi\)
\(462\) 0 0
\(463\) −3790.89 −0.380513 −0.190257 0.981734i \(-0.560932\pi\)
−0.190257 + 0.981734i \(0.560932\pi\)
\(464\) 0 0
\(465\) 8747.17 0.872344
\(466\) 0 0
\(467\) −17870.2 −1.77074 −0.885370 0.464887i \(-0.846095\pi\)
−0.885370 + 0.464887i \(0.846095\pi\)
\(468\) 0 0
\(469\) −4091.04 −0.402787
\(470\) 0 0
\(471\) 27894.9 2.72894
\(472\) 0 0
\(473\) −1552.94 −0.150961
\(474\) 0 0
\(475\) 1057.06 0.102108
\(476\) 0 0
\(477\) −10301.8 −0.988866
\(478\) 0 0
\(479\) −5173.31 −0.493475 −0.246737 0.969082i \(-0.579358\pi\)
−0.246737 + 0.969082i \(0.579358\pi\)
\(480\) 0 0
\(481\) −27780.8 −2.63346
\(482\) 0 0
\(483\) −7707.50 −0.726094
\(484\) 0 0
\(485\) 1485.81 0.139108
\(486\) 0 0
\(487\) −4340.73 −0.403895 −0.201948 0.979396i \(-0.564727\pi\)
−0.201948 + 0.979396i \(0.564727\pi\)
\(488\) 0 0
\(489\) 15768.2 1.45821
\(490\) 0 0
\(491\) −14069.5 −1.29318 −0.646588 0.762839i \(-0.723805\pi\)
−0.646588 + 0.762839i \(0.723805\pi\)
\(492\) 0 0
\(493\) −144.198 −0.0131732
\(494\) 0 0
\(495\) 11709.6 1.06324
\(496\) 0 0
\(497\) −3302.66 −0.298078
\(498\) 0 0
\(499\) 10778.6 0.966969 0.483484 0.875353i \(-0.339371\pi\)
0.483484 + 0.875353i \(0.339371\pi\)
\(500\) 0 0
\(501\) 2977.93 0.265557
\(502\) 0 0
\(503\) 5264.94 0.466704 0.233352 0.972392i \(-0.425031\pi\)
0.233352 + 0.972392i \(0.425031\pi\)
\(504\) 0 0
\(505\) 25485.2 2.24569
\(506\) 0 0
\(507\) 24210.5 2.12076
\(508\) 0 0
\(509\) 2261.00 0.196890 0.0984448 0.995143i \(-0.468613\pi\)
0.0984448 + 0.995143i \(0.468613\pi\)
\(510\) 0 0
\(511\) 3951.24 0.342059
\(512\) 0 0
\(513\) 6224.11 0.535675
\(514\) 0 0
\(515\) −9365.37 −0.801335
\(516\) 0 0
\(517\) −4916.34 −0.418221
\(518\) 0 0
\(519\) −1212.53 −0.102552
\(520\) 0 0
\(521\) −14775.1 −1.24244 −0.621219 0.783637i \(-0.713362\pi\)
−0.621219 + 0.783637i \(0.713362\pi\)
\(522\) 0 0
\(523\) −1812.18 −0.151512 −0.0757562 0.997126i \(-0.524137\pi\)
−0.0757562 + 0.997126i \(0.524137\pi\)
\(524\) 0 0
\(525\) 5682.75 0.472411
\(526\) 0 0
\(527\) −1040.60 −0.0860139
\(528\) 0 0
\(529\) −189.967 −0.0156133
\(530\) 0 0
\(531\) −50590.2 −4.13451
\(532\) 0 0
\(533\) −29779.9 −2.42010
\(534\) 0 0
\(535\) 12429.1 1.00440
\(536\) 0 0
\(537\) 29102.3 2.33866
\(538\) 0 0
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) 8240.98 0.654912 0.327456 0.944866i \(-0.393809\pi\)
0.327456 + 0.944866i \(0.393809\pi\)
\(542\) 0 0
\(543\) 37300.0 2.94787
\(544\) 0 0
\(545\) 6613.64 0.519811
\(546\) 0 0
\(547\) 10443.2 0.816303 0.408151 0.912914i \(-0.366174\pi\)
0.408151 + 0.912914i \(0.366174\pi\)
\(548\) 0 0
\(549\) 51041.4 3.96793
\(550\) 0 0
\(551\) 110.046 0.00850840
\(552\) 0 0
\(553\) −1229.67 −0.0945588
\(554\) 0 0
\(555\) −59081.9 −4.51871
\(556\) 0 0
\(557\) −17113.0 −1.30180 −0.650898 0.759166i \(-0.725607\pi\)
−0.650898 + 0.759166i \(0.725607\pi\)
\(558\) 0 0
\(559\) −9578.57 −0.724741
\(560\) 0 0
\(561\) −1899.76 −0.142973
\(562\) 0 0
\(563\) 7326.10 0.548416 0.274208 0.961670i \(-0.411584\pi\)
0.274208 + 0.961670i \(0.411584\pi\)
\(564\) 0 0
\(565\) −4097.26 −0.305085
\(566\) 0 0
\(567\) 19432.6 1.43932
\(568\) 0 0
\(569\) 16201.1 1.19365 0.596823 0.802373i \(-0.296429\pi\)
0.596823 + 0.802373i \(0.296429\pi\)
\(570\) 0 0
\(571\) −6085.63 −0.446017 −0.223008 0.974817i \(-0.571588\pi\)
−0.223008 + 0.974817i \(0.571588\pi\)
\(572\) 0 0
\(573\) −4239.96 −0.309122
\(574\) 0 0
\(575\) −8830.69 −0.640461
\(576\) 0 0
\(577\) −24688.1 −1.78125 −0.890623 0.454742i \(-0.849731\pi\)
−0.890623 + 0.454742i \(0.849731\pi\)
\(578\) 0 0
\(579\) −42416.9 −3.04453
\(580\) 0 0
\(581\) 2164.69 0.154573
\(582\) 0 0
\(583\) −1526.74 −0.108458
\(584\) 0 0
\(585\) 72224.7 5.10449
\(586\) 0 0
\(587\) −5267.95 −0.370412 −0.185206 0.982700i \(-0.559295\pi\)
−0.185206 + 0.982700i \(0.559295\pi\)
\(588\) 0 0
\(589\) 794.143 0.0555554
\(590\) 0 0
\(591\) 17292.2 1.20356
\(592\) 0 0
\(593\) 4931.50 0.341505 0.170752 0.985314i \(-0.445380\pi\)
0.170752 + 0.985314i \(0.445380\pi\)
\(594\) 0 0
\(595\) −1723.33 −0.118739
\(596\) 0 0
\(597\) 1268.50 0.0869616
\(598\) 0 0
\(599\) −3514.78 −0.239750 −0.119875 0.992789i \(-0.538249\pi\)
−0.119875 + 0.992789i \(0.538249\pi\)
\(600\) 0 0
\(601\) −28812.3 −1.95554 −0.977770 0.209682i \(-0.932757\pi\)
−0.977770 + 0.209682i \(0.932757\pi\)
\(602\) 0 0
\(603\) −43378.8 −2.92955
\(604\) 0 0
\(605\) 1735.37 0.116616
\(606\) 0 0
\(607\) −19080.8 −1.27589 −0.637944 0.770083i \(-0.720215\pi\)
−0.637944 + 0.770083i \(0.720215\pi\)
\(608\) 0 0
\(609\) 591.609 0.0393649
\(610\) 0 0
\(611\) −30324.0 −2.00782
\(612\) 0 0
\(613\) −10521.7 −0.693260 −0.346630 0.938002i \(-0.612674\pi\)
−0.346630 + 0.938002i \(0.612674\pi\)
\(614\) 0 0
\(615\) −63333.5 −4.15260
\(616\) 0 0
\(617\) 3227.78 0.210609 0.105304 0.994440i \(-0.466418\pi\)
0.105304 + 0.994440i \(0.466418\pi\)
\(618\) 0 0
\(619\) 11736.5 0.762081 0.381040 0.924558i \(-0.375566\pi\)
0.381040 + 0.924558i \(0.375566\pi\)
\(620\) 0 0
\(621\) −51996.4 −3.35997
\(622\) 0 0
\(623\) −6146.64 −0.395281
\(624\) 0 0
\(625\) −19200.4 −1.22882
\(626\) 0 0
\(627\) 1449.81 0.0923445
\(628\) 0 0
\(629\) 7028.64 0.445549
\(630\) 0 0
\(631\) −18613.0 −1.17428 −0.587141 0.809485i \(-0.699746\pi\)
−0.587141 + 0.809485i \(0.699746\pi\)
\(632\) 0 0
\(633\) −38397.0 −2.41097
\(634\) 0 0
\(635\) 32853.1 2.05313
\(636\) 0 0
\(637\) 3324.56 0.206788
\(638\) 0 0
\(639\) −35019.3 −2.16799
\(640\) 0 0
\(641\) −15637.2 −0.963547 −0.481774 0.876296i \(-0.660007\pi\)
−0.481774 + 0.876296i \(0.660007\pi\)
\(642\) 0 0
\(643\) −4556.56 −0.279461 −0.139730 0.990190i \(-0.544624\pi\)
−0.139730 + 0.990190i \(0.544624\pi\)
\(644\) 0 0
\(645\) −20370.9 −1.24357
\(646\) 0 0
\(647\) 19522.0 1.18623 0.593113 0.805119i \(-0.297899\pi\)
0.593113 + 0.805119i \(0.297899\pi\)
\(648\) 0 0
\(649\) −7497.52 −0.453472
\(650\) 0 0
\(651\) 4269.32 0.257032
\(652\) 0 0
\(653\) −33019.5 −1.97879 −0.989396 0.145240i \(-0.953604\pi\)
−0.989396 + 0.145240i \(0.953604\pi\)
\(654\) 0 0
\(655\) −36555.3 −2.18066
\(656\) 0 0
\(657\) 41896.4 2.48787
\(658\) 0 0
\(659\) 8821.98 0.521481 0.260740 0.965409i \(-0.416033\pi\)
0.260740 + 0.965409i \(0.416033\pi\)
\(660\) 0 0
\(661\) −5136.74 −0.302264 −0.151132 0.988514i \(-0.548292\pi\)
−0.151132 + 0.988514i \(0.548292\pi\)
\(662\) 0 0
\(663\) −11717.7 −0.686393
\(664\) 0 0
\(665\) 1315.18 0.0766922
\(666\) 0 0
\(667\) −919.329 −0.0533682
\(668\) 0 0
\(669\) −27895.4 −1.61211
\(670\) 0 0
\(671\) 7564.39 0.435201
\(672\) 0 0
\(673\) 30486.9 1.74618 0.873092 0.487556i \(-0.162111\pi\)
0.873092 + 0.487556i \(0.162111\pi\)
\(674\) 0 0
\(675\) 38337.1 2.18606
\(676\) 0 0
\(677\) 25819.3 1.46575 0.732876 0.680362i \(-0.238177\pi\)
0.732876 + 0.680362i \(0.238177\pi\)
\(678\) 0 0
\(679\) 725.196 0.0409874
\(680\) 0 0
\(681\) 2276.08 0.128076
\(682\) 0 0
\(683\) −27914.2 −1.56385 −0.781923 0.623375i \(-0.785761\pi\)
−0.781923 + 0.623375i \(0.785761\pi\)
\(684\) 0 0
\(685\) −40427.9 −2.25499
\(686\) 0 0
\(687\) 37050.0 2.05757
\(688\) 0 0
\(689\) −9416.98 −0.520694
\(690\) 0 0
\(691\) 25028.4 1.37789 0.688946 0.724812i \(-0.258074\pi\)
0.688946 + 0.724812i \(0.258074\pi\)
\(692\) 0 0
\(693\) 5715.21 0.313280
\(694\) 0 0
\(695\) −2586.36 −0.141160
\(696\) 0 0
\(697\) 7534.43 0.409450
\(698\) 0 0
\(699\) −19364.4 −1.04783
\(700\) 0 0
\(701\) −15094.8 −0.813300 −0.406650 0.913584i \(-0.633303\pi\)
−0.406650 + 0.913584i \(0.633303\pi\)
\(702\) 0 0
\(703\) −5363.96 −0.287775
\(704\) 0 0
\(705\) −64490.6 −3.44519
\(706\) 0 0
\(707\) 12438.8 0.661683
\(708\) 0 0
\(709\) −8490.65 −0.449751 −0.224875 0.974388i \(-0.572197\pi\)
−0.224875 + 0.974388i \(0.572197\pi\)
\(710\) 0 0
\(711\) −13038.7 −0.687746
\(712\) 0 0
\(713\) −6634.29 −0.348466
\(714\) 0 0
\(715\) 10703.8 0.559858
\(716\) 0 0
\(717\) 677.788 0.0353033
\(718\) 0 0
\(719\) −4495.09 −0.233155 −0.116578 0.993182i \(-0.537192\pi\)
−0.116578 + 0.993182i \(0.537192\pi\)
\(720\) 0 0
\(721\) −4571.06 −0.236110
\(722\) 0 0
\(723\) 10427.9 0.536400
\(724\) 0 0
\(725\) 677.823 0.0347224
\(726\) 0 0
\(727\) 21560.6 1.09991 0.549957 0.835193i \(-0.314644\pi\)
0.549957 + 0.835193i \(0.314644\pi\)
\(728\) 0 0
\(729\) 76987.8 3.91138
\(730\) 0 0
\(731\) 2423.41 0.122617
\(732\) 0 0
\(733\) −6787.76 −0.342035 −0.171017 0.985268i \(-0.554705\pi\)
−0.171017 + 0.985268i \(0.554705\pi\)
\(734\) 0 0
\(735\) 7070.39 0.354823
\(736\) 0 0
\(737\) −6428.78 −0.321313
\(738\) 0 0
\(739\) −4086.69 −0.203425 −0.101713 0.994814i \(-0.532432\pi\)
−0.101713 + 0.994814i \(0.532432\pi\)
\(740\) 0 0
\(741\) 8942.47 0.443333
\(742\) 0 0
\(743\) −21237.7 −1.04863 −0.524316 0.851524i \(-0.675679\pi\)
−0.524316 + 0.851524i \(0.675679\pi\)
\(744\) 0 0
\(745\) 46216.0 2.27278
\(746\) 0 0
\(747\) 22953.0 1.12424
\(748\) 0 0
\(749\) 6066.38 0.295942
\(750\) 0 0
\(751\) 31705.5 1.54055 0.770274 0.637713i \(-0.220119\pi\)
0.770274 + 0.637713i \(0.220119\pi\)
\(752\) 0 0
\(753\) 28492.8 1.37893
\(754\) 0 0
\(755\) −48552.6 −2.34041
\(756\) 0 0
\(757\) 4979.15 0.239063 0.119531 0.992830i \(-0.461861\pi\)
0.119531 + 0.992830i \(0.461861\pi\)
\(758\) 0 0
\(759\) −12111.8 −0.579222
\(760\) 0 0
\(761\) −1026.14 −0.0488796 −0.0244398 0.999701i \(-0.507780\pi\)
−0.0244398 + 0.999701i \(0.507780\pi\)
\(762\) 0 0
\(763\) 3227.99 0.153160
\(764\) 0 0
\(765\) −18273.1 −0.863615
\(766\) 0 0
\(767\) −46244.8 −2.17706
\(768\) 0 0
\(769\) 6183.41 0.289960 0.144980 0.989435i \(-0.453688\pi\)
0.144980 + 0.989435i \(0.453688\pi\)
\(770\) 0 0
\(771\) 69088.1 3.22717
\(772\) 0 0
\(773\) −6211.97 −0.289041 −0.144521 0.989502i \(-0.546164\pi\)
−0.144521 + 0.989502i \(0.546164\pi\)
\(774\) 0 0
\(775\) 4891.48 0.226719
\(776\) 0 0
\(777\) −28836.7 −1.33142
\(778\) 0 0
\(779\) −5749.96 −0.264459
\(780\) 0 0
\(781\) −5189.90 −0.237784
\(782\) 0 0
\(783\) 3991.12 0.182160
\(784\) 0 0
\(785\) 39764.1 1.80795
\(786\) 0 0
\(787\) 33921.4 1.53642 0.768212 0.640195i \(-0.221146\pi\)
0.768212 + 0.640195i \(0.221146\pi\)
\(788\) 0 0
\(789\) −39237.9 −1.77048
\(790\) 0 0
\(791\) −1999.79 −0.0898919
\(792\) 0 0
\(793\) 46657.3 2.08934
\(794\) 0 0
\(795\) −20027.2 −0.893450
\(796\) 0 0
\(797\) −26779.1 −1.19017 −0.595083 0.803664i \(-0.702881\pi\)
−0.595083 + 0.803664i \(0.702881\pi\)
\(798\) 0 0
\(799\) 7672.09 0.339698
\(800\) 0 0
\(801\) −65175.0 −2.87496
\(802\) 0 0
\(803\) 6209.09 0.272869
\(804\) 0 0
\(805\) −10987.0 −0.481045
\(806\) 0 0
\(807\) 78022.1 3.40336
\(808\) 0 0
\(809\) −7143.09 −0.310430 −0.155215 0.987881i \(-0.549607\pi\)
−0.155215 + 0.987881i \(0.549607\pi\)
\(810\) 0 0
\(811\) 36059.7 1.56132 0.780659 0.624957i \(-0.214884\pi\)
0.780659 + 0.624957i \(0.214884\pi\)
\(812\) 0 0
\(813\) 6424.95 0.277162
\(814\) 0 0
\(815\) 22477.5 0.966077
\(816\) 0 0
\(817\) −1849.45 −0.0791969
\(818\) 0 0
\(819\) 35251.5 1.50401
\(820\) 0 0
\(821\) 2779.33 0.118148 0.0590738 0.998254i \(-0.481185\pi\)
0.0590738 + 0.998254i \(0.481185\pi\)
\(822\) 0 0
\(823\) 17594.9 0.745225 0.372613 0.927987i \(-0.378462\pi\)
0.372613 + 0.927987i \(0.378462\pi\)
\(824\) 0 0
\(825\) 8930.04 0.376853
\(826\) 0 0
\(827\) 24482.5 1.02943 0.514715 0.857361i \(-0.327898\pi\)
0.514715 + 0.857361i \(0.327898\pi\)
\(828\) 0 0
\(829\) 27032.5 1.13254 0.566270 0.824220i \(-0.308386\pi\)
0.566270 + 0.824220i \(0.308386\pi\)
\(830\) 0 0
\(831\) 26444.1 1.10389
\(832\) 0 0
\(833\) −841.125 −0.0349859
\(834\) 0 0
\(835\) 4245.03 0.175934
\(836\) 0 0
\(837\) 28801.7 1.18941
\(838\) 0 0
\(839\) −37534.3 −1.54449 −0.772246 0.635324i \(-0.780867\pi\)
−0.772246 + 0.635324i \(0.780867\pi\)
\(840\) 0 0
\(841\) −24318.4 −0.997107
\(842\) 0 0
\(843\) −18720.3 −0.764840
\(844\) 0 0
\(845\) 34511.9 1.40503
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) 0 0
\(849\) −6109.39 −0.246966
\(850\) 0 0
\(851\) 44810.7 1.80504
\(852\) 0 0
\(853\) −8716.67 −0.349886 −0.174943 0.984579i \(-0.555974\pi\)
−0.174943 + 0.984579i \(0.555974\pi\)
\(854\) 0 0
\(855\) 13945.3 0.557799
\(856\) 0 0
\(857\) 6145.31 0.244947 0.122474 0.992472i \(-0.460917\pi\)
0.122474 + 0.992472i \(0.460917\pi\)
\(858\) 0 0
\(859\) −17466.3 −0.693764 −0.346882 0.937909i \(-0.612760\pi\)
−0.346882 + 0.937909i \(0.612760\pi\)
\(860\) 0 0
\(861\) −30911.8 −1.22354
\(862\) 0 0
\(863\) −11676.2 −0.460560 −0.230280 0.973124i \(-0.573964\pi\)
−0.230280 + 0.973124i \(0.573964\pi\)
\(864\) 0 0
\(865\) −1728.46 −0.0679415
\(866\) 0 0
\(867\) −46465.0 −1.82011
\(868\) 0 0
\(869\) −1932.34 −0.0754318
\(870\) 0 0
\(871\) −39652.8 −1.54258
\(872\) 0 0
\(873\) 7689.51 0.298110
\(874\) 0 0
\(875\) −4448.42 −0.171868
\(876\) 0 0
\(877\) 35663.4 1.37317 0.686583 0.727052i \(-0.259110\pi\)
0.686583 + 0.727052i \(0.259110\pi\)
\(878\) 0 0
\(879\) 78485.3 3.01165
\(880\) 0 0
\(881\) −10415.5 −0.398305 −0.199152 0.979969i \(-0.563819\pi\)
−0.199152 + 0.979969i \(0.563819\pi\)
\(882\) 0 0
\(883\) −7393.46 −0.281778 −0.140889 0.990025i \(-0.544996\pi\)
−0.140889 + 0.990025i \(0.544996\pi\)
\(884\) 0 0
\(885\) −98349.5 −3.73557
\(886\) 0 0
\(887\) −46274.3 −1.75168 −0.875840 0.482601i \(-0.839692\pi\)
−0.875840 + 0.482601i \(0.839692\pi\)
\(888\) 0 0
\(889\) 16035.0 0.604945
\(890\) 0 0
\(891\) 30537.0 1.14818
\(892\) 0 0
\(893\) −5855.01 −0.219407
\(894\) 0 0
\(895\) 41485.3 1.54938
\(896\) 0 0
\(897\) −74705.6 −2.78077
\(898\) 0 0
\(899\) 509.233 0.0188920
\(900\) 0 0
\(901\) 2382.53 0.0880949
\(902\) 0 0
\(903\) −9942.63 −0.366412
\(904\) 0 0
\(905\) 53170.9 1.95300
\(906\) 0 0
\(907\) −20313.9 −0.743674 −0.371837 0.928298i \(-0.621272\pi\)
−0.371837 + 0.928298i \(0.621272\pi\)
\(908\) 0 0
\(909\) 131893. 4.81256
\(910\) 0 0
\(911\) 46553.4 1.69307 0.846534 0.532335i \(-0.178685\pi\)
0.846534 + 0.532335i \(0.178685\pi\)
\(912\) 0 0
\(913\) 3401.66 0.123306
\(914\) 0 0
\(915\) 99226.7 3.58507
\(916\) 0 0
\(917\) −17841.9 −0.642521
\(918\) 0 0
\(919\) 19428.9 0.697389 0.348695 0.937236i \(-0.386625\pi\)
0.348695 + 0.937236i \(0.386625\pi\)
\(920\) 0 0
\(921\) 91199.3 3.26289
\(922\) 0 0
\(923\) −32011.4 −1.14157
\(924\) 0 0
\(925\) −33039.0 −1.17440
\(926\) 0 0
\(927\) −48468.5 −1.71728
\(928\) 0 0
\(929\) −19403.3 −0.685255 −0.342628 0.939471i \(-0.611317\pi\)
−0.342628 + 0.939471i \(0.611317\pi\)
\(930\) 0 0
\(931\) 641.911 0.0225970
\(932\) 0 0
\(933\) 53296.3 1.87014
\(934\) 0 0
\(935\) −2708.09 −0.0947210
\(936\) 0 0
\(937\) 3532.47 0.123160 0.0615799 0.998102i \(-0.480386\pi\)
0.0615799 + 0.998102i \(0.480386\pi\)
\(938\) 0 0
\(939\) 69606.1 2.41907
\(940\) 0 0
\(941\) 52955.6 1.83454 0.917271 0.398263i \(-0.130387\pi\)
0.917271 + 0.398263i \(0.130387\pi\)
\(942\) 0 0
\(943\) 48035.3 1.65880
\(944\) 0 0
\(945\) 47698.3 1.64193
\(946\) 0 0
\(947\) 35064.1 1.20320 0.601600 0.798797i \(-0.294530\pi\)
0.601600 + 0.798797i \(0.294530\pi\)
\(948\) 0 0
\(949\) 38297.7 1.31001
\(950\) 0 0
\(951\) 34018.6 1.15997
\(952\) 0 0
\(953\) −46657.0 −1.58591 −0.792953 0.609282i \(-0.791458\pi\)
−0.792953 + 0.609282i \(0.791458\pi\)
\(954\) 0 0
\(955\) −6044.04 −0.204796
\(956\) 0 0
\(957\) 929.672 0.0314023
\(958\) 0 0
\(959\) −19732.1 −0.664423
\(960\) 0 0
\(961\) −26116.1 −0.876645
\(962\) 0 0
\(963\) 64323.9 2.15245
\(964\) 0 0
\(965\) −60465.1 −2.01704
\(966\) 0 0
\(967\) 39518.1 1.31418 0.657092 0.753811i \(-0.271786\pi\)
0.657092 + 0.753811i \(0.271786\pi\)
\(968\) 0 0
\(969\) −2262.48 −0.0750064
\(970\) 0 0
\(971\) 13173.8 0.435394 0.217697 0.976016i \(-0.430145\pi\)
0.217697 + 0.976016i \(0.430145\pi\)
\(972\) 0 0
\(973\) −1262.35 −0.0415922
\(974\) 0 0
\(975\) 55080.6 1.80922
\(976\) 0 0
\(977\) 516.124 0.0169010 0.00845049 0.999964i \(-0.497310\pi\)
0.00845049 + 0.999964i \(0.497310\pi\)
\(978\) 0 0
\(979\) −9659.00 −0.315325
\(980\) 0 0
\(981\) 34227.5 1.11397
\(982\) 0 0
\(983\) −28044.2 −0.909941 −0.454971 0.890506i \(-0.650350\pi\)
−0.454971 + 0.890506i \(0.650350\pi\)
\(984\) 0 0
\(985\) 24649.9 0.797372
\(986\) 0 0
\(987\) −31476.6 −1.01511
\(988\) 0 0
\(989\) 15450.3 0.496756
\(990\) 0 0
\(991\) 19654.1 0.630004 0.315002 0.949091i \(-0.397995\pi\)
0.315002 + 0.949091i \(0.397995\pi\)
\(992\) 0 0
\(993\) −32288.1 −1.03185
\(994\) 0 0
\(995\) 1808.24 0.0576130
\(996\) 0 0
\(997\) 6672.91 0.211969 0.105985 0.994368i \(-0.466201\pi\)
0.105985 + 0.994368i \(0.466201\pi\)
\(998\) 0 0
\(999\) −194539. −6.16109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.4.a.bd.1.7 7
4.3 odd 2 616.4.a.j.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
616.4.a.j.1.1 7 4.3 odd 2
1232.4.a.bd.1.7 7 1.1 even 1 trivial