Properties

Label 1232.4.a.p.1.2
Level $1232$
Weight $4$
Character 1232.1
Self dual yes
Analytic conductor $72.690$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,4,Mod(1,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1232.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.6903531271\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{137}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 34 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 154)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-5.35235\) of defining polynomial
Character \(\chi\) \(=\) 1232.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.35235 q^{3} +2.35235 q^{5} -7.00000 q^{7} +42.7617 q^{9} +11.0000 q^{11} +81.5235 q^{13} +19.6477 q^{15} -20.5906 q^{17} +104.933 q^{19} -58.4664 q^{21} +145.285 q^{23} -119.466 q^{25} +131.648 q^{27} -92.3624 q^{29} +50.9430 q^{31} +91.8758 q^{33} -16.4664 q^{35} +19.7617 q^{37} +680.913 q^{39} -102.953 q^{41} -142.819 q^{43} +100.591 q^{45} -504.456 q^{47} +49.0000 q^{49} -171.980 q^{51} -521.047 q^{53} +25.8758 q^{55} +876.436 q^{57} +433.017 q^{59} -429.235 q^{61} -299.332 q^{63} +191.772 q^{65} +1045.91 q^{67} +1213.47 q^{69} +800.044 q^{71} +862.188 q^{73} -997.826 q^{75} -77.0000 q^{77} +218.114 q^{79} -55.0000 q^{81} +1044.95 q^{83} -48.4363 q^{85} -771.443 q^{87} +494.601 q^{89} -570.664 q^{91} +425.493 q^{93} +246.839 q^{95} +1413.78 q^{97} +470.379 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{3} - 7 q^{5} - 14 q^{7} + 27 q^{9} + 22 q^{11} + 46 q^{13} + 51 q^{15} - 88 q^{17} + 46 q^{19} - 35 q^{21} + 115 q^{23} - 157 q^{25} + 275 q^{27} - 372 q^{29} + 137 q^{31} + 55 q^{33} + 49 q^{35}+ \cdots + 297 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.35235 1.60741 0.803705 0.595028i \(-0.202859\pi\)
0.803705 + 0.595028i \(0.202859\pi\)
\(4\) 0 0
\(5\) 2.35235 0.210401 0.105200 0.994451i \(-0.466452\pi\)
0.105200 + 0.994451i \(0.466452\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 42.7617 1.58377
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 81.5235 1.73927 0.869637 0.493692i \(-0.164353\pi\)
0.869637 + 0.493692i \(0.164353\pi\)
\(14\) 0 0
\(15\) 19.6477 0.338200
\(16\) 0 0
\(17\) −20.5906 −0.293762 −0.146881 0.989154i \(-0.546923\pi\)
−0.146881 + 0.989154i \(0.546923\pi\)
\(18\) 0 0
\(19\) 104.933 1.26701 0.633507 0.773737i \(-0.281615\pi\)
0.633507 + 0.773737i \(0.281615\pi\)
\(20\) 0 0
\(21\) −58.4664 −0.607544
\(22\) 0 0
\(23\) 145.285 1.31713 0.658567 0.752522i \(-0.271163\pi\)
0.658567 + 0.752522i \(0.271163\pi\)
\(24\) 0 0
\(25\) −119.466 −0.955732
\(26\) 0 0
\(27\) 131.648 0.938356
\(28\) 0 0
\(29\) −92.3624 −0.591423 −0.295712 0.955277i \(-0.595557\pi\)
−0.295712 + 0.955277i \(0.595557\pi\)
\(30\) 0 0
\(31\) 50.9430 0.295149 0.147575 0.989051i \(-0.452853\pi\)
0.147575 + 0.989051i \(0.452853\pi\)
\(32\) 0 0
\(33\) 91.8758 0.484653
\(34\) 0 0
\(35\) −16.4664 −0.0795239
\(36\) 0 0
\(37\) 19.7617 0.0878057 0.0439029 0.999036i \(-0.486021\pi\)
0.0439029 + 0.999036i \(0.486021\pi\)
\(38\) 0 0
\(39\) 680.913 2.79573
\(40\) 0 0
\(41\) −102.953 −0.392160 −0.196080 0.980588i \(-0.562821\pi\)
−0.196080 + 0.980588i \(0.562821\pi\)
\(42\) 0 0
\(43\) −142.819 −0.506504 −0.253252 0.967400i \(-0.581500\pi\)
−0.253252 + 0.967400i \(0.581500\pi\)
\(44\) 0 0
\(45\) 100.591 0.333226
\(46\) 0 0
\(47\) −504.456 −1.56559 −0.782793 0.622282i \(-0.786206\pi\)
−0.782793 + 0.622282i \(0.786206\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −171.980 −0.472196
\(52\) 0 0
\(53\) −521.047 −1.35040 −0.675201 0.737634i \(-0.735943\pi\)
−0.675201 + 0.737634i \(0.735943\pi\)
\(54\) 0 0
\(55\) 25.8758 0.0634382
\(56\) 0 0
\(57\) 876.436 2.03661
\(58\) 0 0
\(59\) 433.017 0.955491 0.477746 0.878498i \(-0.341454\pi\)
0.477746 + 0.878498i \(0.341454\pi\)
\(60\) 0 0
\(61\) −429.235 −0.900949 −0.450475 0.892789i \(-0.648745\pi\)
−0.450475 + 0.892789i \(0.648745\pi\)
\(62\) 0 0
\(63\) −299.332 −0.598608
\(64\) 0 0
\(65\) 191.772 0.365944
\(66\) 0 0
\(67\) 1045.91 1.90714 0.953569 0.301176i \(-0.0973792\pi\)
0.953569 + 0.301176i \(0.0973792\pi\)
\(68\) 0 0
\(69\) 1213.47 2.11717
\(70\) 0 0
\(71\) 800.044 1.33729 0.668646 0.743581i \(-0.266874\pi\)
0.668646 + 0.743581i \(0.266874\pi\)
\(72\) 0 0
\(73\) 862.188 1.38235 0.691174 0.722688i \(-0.257094\pi\)
0.691174 + 0.722688i \(0.257094\pi\)
\(74\) 0 0
\(75\) −997.826 −1.53625
\(76\) 0 0
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) 218.114 0.310630 0.155315 0.987865i \(-0.450361\pi\)
0.155315 + 0.987865i \(0.450361\pi\)
\(80\) 0 0
\(81\) −55.0000 −0.0754458
\(82\) 0 0
\(83\) 1044.95 1.38191 0.690955 0.722898i \(-0.257190\pi\)
0.690955 + 0.722898i \(0.257190\pi\)
\(84\) 0 0
\(85\) −48.4363 −0.0618077
\(86\) 0 0
\(87\) −771.443 −0.950660
\(88\) 0 0
\(89\) 494.601 0.589074 0.294537 0.955640i \(-0.404835\pi\)
0.294537 + 0.955640i \(0.404835\pi\)
\(90\) 0 0
\(91\) −570.664 −0.657383
\(92\) 0 0
\(93\) 425.493 0.474426
\(94\) 0 0
\(95\) 246.839 0.266580
\(96\) 0 0
\(97\) 1413.78 1.47987 0.739934 0.672680i \(-0.234857\pi\)
0.739934 + 0.672680i \(0.234857\pi\)
\(98\) 0 0
\(99\) 470.379 0.477524
\(100\) 0 0
\(101\) −1364.99 −1.34476 −0.672382 0.740204i \(-0.734729\pi\)
−0.672382 + 0.740204i \(0.734729\pi\)
\(102\) 0 0
\(103\) −408.497 −0.390780 −0.195390 0.980726i \(-0.562597\pi\)
−0.195390 + 0.980726i \(0.562597\pi\)
\(104\) 0 0
\(105\) −137.534 −0.127828
\(106\) 0 0
\(107\) 1049.39 0.948115 0.474057 0.880494i \(-0.342789\pi\)
0.474057 + 0.880494i \(0.342789\pi\)
\(108\) 0 0
\(109\) 863.081 0.758423 0.379212 0.925310i \(-0.376195\pi\)
0.379212 + 0.925310i \(0.376195\pi\)
\(110\) 0 0
\(111\) 165.057 0.141140
\(112\) 0 0
\(113\) 314.909 0.262161 0.131080 0.991372i \(-0.458155\pi\)
0.131080 + 0.991372i \(0.458155\pi\)
\(114\) 0 0
\(115\) 341.762 0.277126
\(116\) 0 0
\(117\) 3486.09 2.75461
\(118\) 0 0
\(119\) 144.134 0.111032
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) −859.899 −0.630362
\(124\) 0 0
\(125\) −575.071 −0.411487
\(126\) 0 0
\(127\) 100.973 0.0705505 0.0352753 0.999378i \(-0.488769\pi\)
0.0352753 + 0.999378i \(0.488769\pi\)
\(128\) 0 0
\(129\) −1192.87 −0.814160
\(130\) 0 0
\(131\) 1540.70 1.02757 0.513786 0.857918i \(-0.328242\pi\)
0.513786 + 0.857918i \(0.328242\pi\)
\(132\) 0 0
\(133\) −734.530 −0.478886
\(134\) 0 0
\(135\) 309.681 0.197431
\(136\) 0 0
\(137\) 121.299 0.0756442 0.0378221 0.999284i \(-0.487958\pi\)
0.0378221 + 0.999284i \(0.487958\pi\)
\(138\) 0 0
\(139\) 1439.94 0.878663 0.439331 0.898325i \(-0.355215\pi\)
0.439331 + 0.898325i \(0.355215\pi\)
\(140\) 0 0
\(141\) −4213.40 −2.51654
\(142\) 0 0
\(143\) 896.758 0.524411
\(144\) 0 0
\(145\) −217.269 −0.124436
\(146\) 0 0
\(147\) 409.265 0.229630
\(148\) 0 0
\(149\) −960.711 −0.528218 −0.264109 0.964493i \(-0.585078\pi\)
−0.264109 + 0.964493i \(0.585078\pi\)
\(150\) 0 0
\(151\) 2752.05 1.48317 0.741584 0.670860i \(-0.234075\pi\)
0.741584 + 0.670860i \(0.234075\pi\)
\(152\) 0 0
\(153\) −880.490 −0.465251
\(154\) 0 0
\(155\) 119.836 0.0620996
\(156\) 0 0
\(157\) −1548.04 −0.786922 −0.393461 0.919341i \(-0.628722\pi\)
−0.393461 + 0.919341i \(0.628722\pi\)
\(158\) 0 0
\(159\) −4351.97 −2.17065
\(160\) 0 0
\(161\) −1017.00 −0.497830
\(162\) 0 0
\(163\) −3644.22 −1.75115 −0.875574 0.483085i \(-0.839516\pi\)
−0.875574 + 0.483085i \(0.839516\pi\)
\(164\) 0 0
\(165\) 216.124 0.101971
\(166\) 0 0
\(167\) −2199.26 −1.01906 −0.509531 0.860452i \(-0.670181\pi\)
−0.509531 + 0.860452i \(0.670181\pi\)
\(168\) 0 0
\(169\) 4449.08 2.02507
\(170\) 0 0
\(171\) 4487.11 2.00666
\(172\) 0 0
\(173\) 1506.10 0.661888 0.330944 0.943650i \(-0.392633\pi\)
0.330944 + 0.943650i \(0.392633\pi\)
\(174\) 0 0
\(175\) 836.265 0.361233
\(176\) 0 0
\(177\) 3616.71 1.53587
\(178\) 0 0
\(179\) −3114.10 −1.30033 −0.650165 0.759793i \(-0.725300\pi\)
−0.650165 + 0.759793i \(0.725300\pi\)
\(180\) 0 0
\(181\) −1491.37 −0.612447 −0.306223 0.951960i \(-0.599065\pi\)
−0.306223 + 0.951960i \(0.599065\pi\)
\(182\) 0 0
\(183\) −3585.12 −1.44820
\(184\) 0 0
\(185\) 46.4866 0.0184744
\(186\) 0 0
\(187\) −226.497 −0.0885726
\(188\) 0 0
\(189\) −921.534 −0.354665
\(190\) 0 0
\(191\) −1553.58 −0.588551 −0.294275 0.955721i \(-0.595078\pi\)
−0.294275 + 0.955721i \(0.595078\pi\)
\(192\) 0 0
\(193\) 42.3760 0.0158046 0.00790231 0.999969i \(-0.497485\pi\)
0.00790231 + 0.999969i \(0.497485\pi\)
\(194\) 0 0
\(195\) 1601.75 0.588222
\(196\) 0 0
\(197\) −4120.51 −1.49022 −0.745112 0.666939i \(-0.767604\pi\)
−0.745112 + 0.666939i \(0.767604\pi\)
\(198\) 0 0
\(199\) −3601.21 −1.28283 −0.641414 0.767195i \(-0.721652\pi\)
−0.641414 + 0.767195i \(0.721652\pi\)
\(200\) 0 0
\(201\) 8735.80 3.06555
\(202\) 0 0
\(203\) 646.537 0.223537
\(204\) 0 0
\(205\) −242.181 −0.0825107
\(206\) 0 0
\(207\) 6212.65 2.08603
\(208\) 0 0
\(209\) 1154.26 0.382019
\(210\) 0 0
\(211\) −2741.91 −0.894602 −0.447301 0.894383i \(-0.647615\pi\)
−0.447301 + 0.894383i \(0.647615\pi\)
\(212\) 0 0
\(213\) 6682.25 2.14958
\(214\) 0 0
\(215\) −335.960 −0.106569
\(216\) 0 0
\(217\) −356.601 −0.111556
\(218\) 0 0
\(219\) 7201.30 2.22200
\(220\) 0 0
\(221\) −1678.62 −0.510932
\(222\) 0 0
\(223\) −3251.53 −0.976405 −0.488203 0.872730i \(-0.662347\pi\)
−0.488203 + 0.872730i \(0.662347\pi\)
\(224\) 0 0
\(225\) −5108.59 −1.51366
\(226\) 0 0
\(227\) −3058.09 −0.894153 −0.447077 0.894496i \(-0.647535\pi\)
−0.447077 + 0.894496i \(0.647535\pi\)
\(228\) 0 0
\(229\) −3767.60 −1.08721 −0.543603 0.839343i \(-0.682940\pi\)
−0.543603 + 0.839343i \(0.682940\pi\)
\(230\) 0 0
\(231\) −643.131 −0.183181
\(232\) 0 0
\(233\) −4462.05 −1.25459 −0.627294 0.778783i \(-0.715837\pi\)
−0.627294 + 0.778783i \(0.715837\pi\)
\(234\) 0 0
\(235\) −1186.66 −0.329400
\(236\) 0 0
\(237\) 1821.77 0.499310
\(238\) 0 0
\(239\) 1840.24 0.498056 0.249028 0.968496i \(-0.419889\pi\)
0.249028 + 0.968496i \(0.419889\pi\)
\(240\) 0 0
\(241\) 459.993 0.122949 0.0614747 0.998109i \(-0.480420\pi\)
0.0614747 + 0.998109i \(0.480420\pi\)
\(242\) 0 0
\(243\) −4013.87 −1.05963
\(244\) 0 0
\(245\) 115.265 0.0300572
\(246\) 0 0
\(247\) 8554.50 2.20368
\(248\) 0 0
\(249\) 8727.81 2.22130
\(250\) 0 0
\(251\) −4432.49 −1.11465 −0.557323 0.830296i \(-0.688171\pi\)
−0.557323 + 0.830296i \(0.688171\pi\)
\(252\) 0 0
\(253\) 1598.14 0.397131
\(254\) 0 0
\(255\) −404.557 −0.0993503
\(256\) 0 0
\(257\) −894.161 −0.217028 −0.108514 0.994095i \(-0.534609\pi\)
−0.108514 + 0.994095i \(0.534609\pi\)
\(258\) 0 0
\(259\) −138.332 −0.0331874
\(260\) 0 0
\(261\) −3949.58 −0.936677
\(262\) 0 0
\(263\) 7533.82 1.76637 0.883185 0.469025i \(-0.155395\pi\)
0.883185 + 0.469025i \(0.155395\pi\)
\(264\) 0 0
\(265\) −1225.68 −0.284125
\(266\) 0 0
\(267\) 4131.08 0.946883
\(268\) 0 0
\(269\) 3850.40 0.872726 0.436363 0.899771i \(-0.356266\pi\)
0.436363 + 0.899771i \(0.356266\pi\)
\(270\) 0 0
\(271\) 7395.67 1.65777 0.828883 0.559422i \(-0.188977\pi\)
0.828883 + 0.559422i \(0.188977\pi\)
\(272\) 0 0
\(273\) −4766.39 −1.05669
\(274\) 0 0
\(275\) −1314.13 −0.288164
\(276\) 0 0
\(277\) −1024.48 −0.222220 −0.111110 0.993808i \(-0.535441\pi\)
−0.111110 + 0.993808i \(0.535441\pi\)
\(278\) 0 0
\(279\) 2178.41 0.467448
\(280\) 0 0
\(281\) 7361.56 1.56283 0.781413 0.624014i \(-0.214499\pi\)
0.781413 + 0.624014i \(0.214499\pi\)
\(282\) 0 0
\(283\) −8245.30 −1.73192 −0.865958 0.500116i \(-0.833291\pi\)
−0.865958 + 0.500116i \(0.833291\pi\)
\(284\) 0 0
\(285\) 2061.68 0.428504
\(286\) 0 0
\(287\) 720.671 0.148223
\(288\) 0 0
\(289\) −4489.03 −0.913704
\(290\) 0 0
\(291\) 11808.3 2.37875
\(292\) 0 0
\(293\) −3900.22 −0.777655 −0.388828 0.921310i \(-0.627120\pi\)
−0.388828 + 0.921310i \(0.627120\pi\)
\(294\) 0 0
\(295\) 1018.61 0.201036
\(296\) 0 0
\(297\) 1448.12 0.282925
\(298\) 0 0
\(299\) 11844.2 2.29085
\(300\) 0 0
\(301\) 999.732 0.191440
\(302\) 0 0
\(303\) −11400.8 −2.16159
\(304\) 0 0
\(305\) −1009.71 −0.189560
\(306\) 0 0
\(307\) 1180.90 0.219536 0.109768 0.993957i \(-0.464989\pi\)
0.109768 + 0.993957i \(0.464989\pi\)
\(308\) 0 0
\(309\) −3411.91 −0.628144
\(310\) 0 0
\(311\) −8462.39 −1.54295 −0.771476 0.636258i \(-0.780481\pi\)
−0.771476 + 0.636258i \(0.780481\pi\)
\(312\) 0 0
\(313\) −1070.58 −0.193332 −0.0966658 0.995317i \(-0.530818\pi\)
−0.0966658 + 0.995317i \(0.530818\pi\)
\(314\) 0 0
\(315\) −704.134 −0.125948
\(316\) 0 0
\(317\) 4188.78 0.742161 0.371081 0.928601i \(-0.378987\pi\)
0.371081 + 0.928601i \(0.378987\pi\)
\(318\) 0 0
\(319\) −1015.99 −0.178321
\(320\) 0 0
\(321\) 8764.87 1.52401
\(322\) 0 0
\(323\) −2160.63 −0.372200
\(324\) 0 0
\(325\) −9739.32 −1.66228
\(326\) 0 0
\(327\) 7208.75 1.21910
\(328\) 0 0
\(329\) 3531.19 0.591736
\(330\) 0 0
\(331\) −1413.92 −0.234792 −0.117396 0.993085i \(-0.537455\pi\)
−0.117396 + 0.993085i \(0.537455\pi\)
\(332\) 0 0
\(333\) 845.047 0.139064
\(334\) 0 0
\(335\) 2460.35 0.401263
\(336\) 0 0
\(337\) 3332.50 0.538673 0.269336 0.963046i \(-0.413196\pi\)
0.269336 + 0.963046i \(0.413196\pi\)
\(338\) 0 0
\(339\) 2630.23 0.421400
\(340\) 0 0
\(341\) 560.372 0.0889908
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 2854.51 0.445455
\(346\) 0 0
\(347\) 11550.7 1.78696 0.893480 0.449103i \(-0.148256\pi\)
0.893480 + 0.449103i \(0.148256\pi\)
\(348\) 0 0
\(349\) −12512.1 −1.91907 −0.959534 0.281592i \(-0.909138\pi\)
−0.959534 + 0.281592i \(0.909138\pi\)
\(350\) 0 0
\(351\) 10732.4 1.63206
\(352\) 0 0
\(353\) −335.950 −0.0506538 −0.0253269 0.999679i \(-0.508063\pi\)
−0.0253269 + 0.999679i \(0.508063\pi\)
\(354\) 0 0
\(355\) 1881.98 0.281367
\(356\) 0 0
\(357\) 1203.86 0.178473
\(358\) 0 0
\(359\) −1767.91 −0.259907 −0.129953 0.991520i \(-0.541483\pi\)
−0.129953 + 0.991520i \(0.541483\pi\)
\(360\) 0 0
\(361\) 4151.91 0.605323
\(362\) 0 0
\(363\) 1010.63 0.146128
\(364\) 0 0
\(365\) 2028.17 0.290847
\(366\) 0 0
\(367\) 1373.56 0.195366 0.0976830 0.995218i \(-0.468857\pi\)
0.0976830 + 0.995218i \(0.468857\pi\)
\(368\) 0 0
\(369\) −4402.45 −0.621091
\(370\) 0 0
\(371\) 3647.33 0.510404
\(372\) 0 0
\(373\) 10297.9 1.42951 0.714753 0.699377i \(-0.246539\pi\)
0.714753 + 0.699377i \(0.246539\pi\)
\(374\) 0 0
\(375\) −4803.19 −0.661429
\(376\) 0 0
\(377\) −7529.71 −1.02865
\(378\) 0 0
\(379\) −6853.35 −0.928846 −0.464423 0.885613i \(-0.653738\pi\)
−0.464423 + 0.885613i \(0.653738\pi\)
\(380\) 0 0
\(381\) 843.363 0.113404
\(382\) 0 0
\(383\) 2300.66 0.306941 0.153470 0.988153i \(-0.450955\pi\)
0.153470 + 0.988153i \(0.450955\pi\)
\(384\) 0 0
\(385\) −181.131 −0.0239774
\(386\) 0 0
\(387\) −6107.18 −0.802185
\(388\) 0 0
\(389\) 2759.84 0.359715 0.179858 0.983693i \(-0.442436\pi\)
0.179858 + 0.983693i \(0.442436\pi\)
\(390\) 0 0
\(391\) −2991.51 −0.386924
\(392\) 0 0
\(393\) 12868.5 1.65173
\(394\) 0 0
\(395\) 513.081 0.0653567
\(396\) 0 0
\(397\) −5496.27 −0.694836 −0.347418 0.937710i \(-0.612941\pi\)
−0.347418 + 0.937710i \(0.612941\pi\)
\(398\) 0 0
\(399\) −6135.05 −0.769767
\(400\) 0 0
\(401\) −12144.8 −1.51243 −0.756215 0.654323i \(-0.772954\pi\)
−0.756215 + 0.654323i \(0.772954\pi\)
\(402\) 0 0
\(403\) 4153.05 0.513345
\(404\) 0 0
\(405\) −129.379 −0.0158738
\(406\) 0 0
\(407\) 217.379 0.0264744
\(408\) 0 0
\(409\) 587.946 0.0710809 0.0355404 0.999368i \(-0.488685\pi\)
0.0355404 + 0.999368i \(0.488685\pi\)
\(410\) 0 0
\(411\) 1013.13 0.121591
\(412\) 0 0
\(413\) −3031.12 −0.361142
\(414\) 0 0
\(415\) 2458.10 0.290755
\(416\) 0 0
\(417\) 12026.9 1.41237
\(418\) 0 0
\(419\) −8368.74 −0.975751 −0.487875 0.872913i \(-0.662228\pi\)
−0.487875 + 0.872913i \(0.662228\pi\)
\(420\) 0 0
\(421\) −12879.5 −1.49100 −0.745499 0.666507i \(-0.767789\pi\)
−0.745499 + 0.666507i \(0.767789\pi\)
\(422\) 0 0
\(423\) −21571.4 −2.47953
\(424\) 0 0
\(425\) 2459.89 0.280758
\(426\) 0 0
\(427\) 3004.64 0.340527
\(428\) 0 0
\(429\) 7490.04 0.842943
\(430\) 0 0
\(431\) −16473.6 −1.84108 −0.920541 0.390645i \(-0.872252\pi\)
−0.920541 + 0.390645i \(0.872252\pi\)
\(432\) 0 0
\(433\) −16301.9 −1.80928 −0.904642 0.426172i \(-0.859862\pi\)
−0.904642 + 0.426172i \(0.859862\pi\)
\(434\) 0 0
\(435\) −1814.70 −0.200019
\(436\) 0 0
\(437\) 15245.2 1.66883
\(438\) 0 0
\(439\) 11035.6 1.19978 0.599889 0.800083i \(-0.295211\pi\)
0.599889 + 0.800083i \(0.295211\pi\)
\(440\) 0 0
\(441\) 2095.33 0.226253
\(442\) 0 0
\(443\) −3713.24 −0.398243 −0.199121 0.979975i \(-0.563809\pi\)
−0.199121 + 0.979975i \(0.563809\pi\)
\(444\) 0 0
\(445\) 1163.47 0.123941
\(446\) 0 0
\(447\) −8024.20 −0.849064
\(448\) 0 0
\(449\) 11014.2 1.15767 0.578834 0.815445i \(-0.303508\pi\)
0.578834 + 0.815445i \(0.303508\pi\)
\(450\) 0 0
\(451\) −1132.48 −0.118241
\(452\) 0 0
\(453\) 22986.1 2.38406
\(454\) 0 0
\(455\) −1342.40 −0.138314
\(456\) 0 0
\(457\) 11077.3 1.13386 0.566930 0.823766i \(-0.308131\pi\)
0.566930 + 0.823766i \(0.308131\pi\)
\(458\) 0 0
\(459\) −2710.70 −0.275653
\(460\) 0 0
\(461\) 5182.57 0.523592 0.261796 0.965123i \(-0.415685\pi\)
0.261796 + 0.965123i \(0.415685\pi\)
\(462\) 0 0
\(463\) −9439.70 −0.947517 −0.473758 0.880655i \(-0.657103\pi\)
−0.473758 + 0.880655i \(0.657103\pi\)
\(464\) 0 0
\(465\) 1000.91 0.0998195
\(466\) 0 0
\(467\) −490.043 −0.0485578 −0.0242789 0.999705i \(-0.507729\pi\)
−0.0242789 + 0.999705i \(0.507729\pi\)
\(468\) 0 0
\(469\) −7321.37 −0.720830
\(470\) 0 0
\(471\) −12929.7 −1.26491
\(472\) 0 0
\(473\) −1571.01 −0.152717
\(474\) 0 0
\(475\) −12536.0 −1.21092
\(476\) 0 0
\(477\) −22280.9 −2.13872
\(478\) 0 0
\(479\) −15375.6 −1.46666 −0.733329 0.679874i \(-0.762034\pi\)
−0.733329 + 0.679874i \(0.762034\pi\)
\(480\) 0 0
\(481\) 1611.05 0.152718
\(482\) 0 0
\(483\) −8494.31 −0.800217
\(484\) 0 0
\(485\) 3325.69 0.311365
\(486\) 0 0
\(487\) −11235.8 −1.04547 −0.522733 0.852496i \(-0.675088\pi\)
−0.522733 + 0.852496i \(0.675088\pi\)
\(488\) 0 0
\(489\) −30437.8 −2.81481
\(490\) 0 0
\(491\) 1877.83 0.172598 0.0862988 0.996269i \(-0.472496\pi\)
0.0862988 + 0.996269i \(0.472496\pi\)
\(492\) 0 0
\(493\) 1901.80 0.173738
\(494\) 0 0
\(495\) 1106.50 0.100471
\(496\) 0 0
\(497\) −5600.31 −0.505449
\(498\) 0 0
\(499\) 21395.3 1.91941 0.959704 0.281014i \(-0.0906708\pi\)
0.959704 + 0.281014i \(0.0906708\pi\)
\(500\) 0 0
\(501\) −18368.9 −1.63805
\(502\) 0 0
\(503\) −101.167 −0.00896782 −0.00448391 0.999990i \(-0.501427\pi\)
−0.00448391 + 0.999990i \(0.501427\pi\)
\(504\) 0 0
\(505\) −3210.93 −0.282939
\(506\) 0 0
\(507\) 37160.3 3.25512
\(508\) 0 0
\(509\) 17744.1 1.54517 0.772587 0.634909i \(-0.218962\pi\)
0.772587 + 0.634909i \(0.218962\pi\)
\(510\) 0 0
\(511\) −6035.32 −0.522479
\(512\) 0 0
\(513\) 13814.2 1.18891
\(514\) 0 0
\(515\) −960.927 −0.0822204
\(516\) 0 0
\(517\) −5549.02 −0.472042
\(518\) 0 0
\(519\) 12579.5 1.06393
\(520\) 0 0
\(521\) −12669.9 −1.06541 −0.532707 0.846300i \(-0.678825\pi\)
−0.532707 + 0.846300i \(0.678825\pi\)
\(522\) 0 0
\(523\) 8960.78 0.749192 0.374596 0.927188i \(-0.377781\pi\)
0.374596 + 0.927188i \(0.377781\pi\)
\(524\) 0 0
\(525\) 6984.78 0.580649
\(526\) 0 0
\(527\) −1048.95 −0.0867036
\(528\) 0 0
\(529\) 8940.80 0.734840
\(530\) 0 0
\(531\) 18516.6 1.51328
\(532\) 0 0
\(533\) −8393.09 −0.682073
\(534\) 0 0
\(535\) 2468.53 0.199484
\(536\) 0 0
\(537\) −26010.1 −2.09016
\(538\) 0 0
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) 16692.5 1.32656 0.663279 0.748373i \(-0.269164\pi\)
0.663279 + 0.748373i \(0.269164\pi\)
\(542\) 0 0
\(543\) −12456.5 −0.984453
\(544\) 0 0
\(545\) 2030.27 0.159573
\(546\) 0 0
\(547\) 20444.7 1.59808 0.799041 0.601277i \(-0.205341\pi\)
0.799041 + 0.601277i \(0.205341\pi\)
\(548\) 0 0
\(549\) −18354.8 −1.42690
\(550\) 0 0
\(551\) −9691.85 −0.749341
\(552\) 0 0
\(553\) −1526.80 −0.117407
\(554\) 0 0
\(555\) 388.272 0.0296959
\(556\) 0 0
\(557\) −7842.15 −0.596557 −0.298279 0.954479i \(-0.596412\pi\)
−0.298279 + 0.954479i \(0.596412\pi\)
\(558\) 0 0
\(559\) −11643.1 −0.880948
\(560\) 0 0
\(561\) −1891.78 −0.142372
\(562\) 0 0
\(563\) −18045.9 −1.35088 −0.675438 0.737417i \(-0.736045\pi\)
−0.675438 + 0.737417i \(0.736045\pi\)
\(564\) 0 0
\(565\) 740.777 0.0551588
\(566\) 0 0
\(567\) 385.000 0.0285158
\(568\) 0 0
\(569\) −5416.93 −0.399103 −0.199551 0.979887i \(-0.563948\pi\)
−0.199551 + 0.979887i \(0.563948\pi\)
\(570\) 0 0
\(571\) 9301.85 0.681735 0.340867 0.940111i \(-0.389279\pi\)
0.340867 + 0.940111i \(0.389279\pi\)
\(572\) 0 0
\(573\) −12976.1 −0.946042
\(574\) 0 0
\(575\) −17356.7 −1.25883
\(576\) 0 0
\(577\) −20255.6 −1.46144 −0.730720 0.682677i \(-0.760816\pi\)
−0.730720 + 0.682677i \(0.760816\pi\)
\(578\) 0 0
\(579\) 353.939 0.0254045
\(580\) 0 0
\(581\) −7314.67 −0.522313
\(582\) 0 0
\(583\) −5731.52 −0.407162
\(584\) 0 0
\(585\) 8200.50 0.579571
\(586\) 0 0
\(587\) 24500.9 1.72276 0.861381 0.507960i \(-0.169600\pi\)
0.861381 + 0.507960i \(0.169600\pi\)
\(588\) 0 0
\(589\) 5345.59 0.373958
\(590\) 0 0
\(591\) −34415.9 −2.39540
\(592\) 0 0
\(593\) 3130.19 0.216765 0.108382 0.994109i \(-0.465433\pi\)
0.108382 + 0.994109i \(0.465433\pi\)
\(594\) 0 0
\(595\) 339.054 0.0233611
\(596\) 0 0
\(597\) −30078.6 −2.06203
\(598\) 0 0
\(599\) −13783.7 −0.940208 −0.470104 0.882611i \(-0.655784\pi\)
−0.470104 + 0.882611i \(0.655784\pi\)
\(600\) 0 0
\(601\) −15509.3 −1.05264 −0.526320 0.850287i \(-0.676429\pi\)
−0.526320 + 0.850287i \(0.676429\pi\)
\(602\) 0 0
\(603\) 44724.9 3.02046
\(604\) 0 0
\(605\) 284.634 0.0191273
\(606\) 0 0
\(607\) 10643.7 0.711722 0.355861 0.934539i \(-0.384188\pi\)
0.355861 + 0.934539i \(0.384188\pi\)
\(608\) 0 0
\(609\) 5400.10 0.359316
\(610\) 0 0
\(611\) −41125.1 −2.72298
\(612\) 0 0
\(613\) 13187.6 0.868910 0.434455 0.900694i \(-0.356941\pi\)
0.434455 + 0.900694i \(0.356941\pi\)
\(614\) 0 0
\(615\) −2022.78 −0.132629
\(616\) 0 0
\(617\) −13314.5 −0.868757 −0.434379 0.900730i \(-0.643032\pi\)
−0.434379 + 0.900730i \(0.643032\pi\)
\(618\) 0 0
\(619\) −28386.1 −1.84319 −0.921593 0.388158i \(-0.873111\pi\)
−0.921593 + 0.388158i \(0.873111\pi\)
\(620\) 0 0
\(621\) 19126.5 1.23594
\(622\) 0 0
\(623\) −3462.20 −0.222649
\(624\) 0 0
\(625\) 13580.5 0.869154
\(626\) 0 0
\(627\) 9640.80 0.614061
\(628\) 0 0
\(629\) −406.906 −0.0257940
\(630\) 0 0
\(631\) 4782.25 0.301709 0.150855 0.988556i \(-0.451797\pi\)
0.150855 + 0.988556i \(0.451797\pi\)
\(632\) 0 0
\(633\) −22901.4 −1.43799
\(634\) 0 0
\(635\) 237.524 0.0148439
\(636\) 0 0
\(637\) 3994.65 0.248468
\(638\) 0 0
\(639\) 34211.3 2.11796
\(640\) 0 0
\(641\) −1892.25 −0.116598 −0.0582991 0.998299i \(-0.518568\pi\)
−0.0582991 + 0.998299i \(0.518568\pi\)
\(642\) 0 0
\(643\) −14182.1 −0.869811 −0.434906 0.900476i \(-0.643218\pi\)
−0.434906 + 0.900476i \(0.643218\pi\)
\(644\) 0 0
\(645\) −2806.05 −0.171300
\(646\) 0 0
\(647\) 6763.25 0.410959 0.205480 0.978661i \(-0.434125\pi\)
0.205480 + 0.978661i \(0.434125\pi\)
\(648\) 0 0
\(649\) 4763.19 0.288091
\(650\) 0 0
\(651\) −2978.45 −0.179316
\(652\) 0 0
\(653\) 4924.05 0.295088 0.147544 0.989055i \(-0.452863\pi\)
0.147544 + 0.989055i \(0.452863\pi\)
\(654\) 0 0
\(655\) 3624.28 0.216202
\(656\) 0 0
\(657\) 36868.7 2.18932
\(658\) 0 0
\(659\) −19546.2 −1.15540 −0.577702 0.816248i \(-0.696050\pi\)
−0.577702 + 0.816248i \(0.696050\pi\)
\(660\) 0 0
\(661\) −16873.1 −0.992874 −0.496437 0.868073i \(-0.665359\pi\)
−0.496437 + 0.868073i \(0.665359\pi\)
\(662\) 0 0
\(663\) −14020.4 −0.821278
\(664\) 0 0
\(665\) −1727.87 −0.100758
\(666\) 0 0
\(667\) −13418.9 −0.778983
\(668\) 0 0
\(669\) −27157.9 −1.56948
\(670\) 0 0
\(671\) −4721.58 −0.271646
\(672\) 0 0
\(673\) −5675.73 −0.325086 −0.162543 0.986701i \(-0.551970\pi\)
−0.162543 + 0.986701i \(0.551970\pi\)
\(674\) 0 0
\(675\) −15727.5 −0.896816
\(676\) 0 0
\(677\) −26954.3 −1.53019 −0.765094 0.643919i \(-0.777308\pi\)
−0.765094 + 0.643919i \(0.777308\pi\)
\(678\) 0 0
\(679\) −9896.43 −0.559337
\(680\) 0 0
\(681\) −25542.3 −1.43727
\(682\) 0 0
\(683\) −21935.9 −1.22892 −0.614460 0.788948i \(-0.710626\pi\)
−0.614460 + 0.788948i \(0.710626\pi\)
\(684\) 0 0
\(685\) 285.337 0.0159156
\(686\) 0 0
\(687\) −31468.3 −1.74759
\(688\) 0 0
\(689\) −42477.6 −2.34872
\(690\) 0 0
\(691\) 14307.0 0.787649 0.393825 0.919186i \(-0.371152\pi\)
0.393825 + 0.919186i \(0.371152\pi\)
\(692\) 0 0
\(693\) −3292.65 −0.180487
\(694\) 0 0
\(695\) 3387.24 0.184871
\(696\) 0 0
\(697\) 2119.86 0.115202
\(698\) 0 0
\(699\) −37268.6 −2.01664
\(700\) 0 0
\(701\) −18083.0 −0.974304 −0.487152 0.873317i \(-0.661964\pi\)
−0.487152 + 0.873317i \(0.661964\pi\)
\(702\) 0 0
\(703\) 2073.66 0.111251
\(704\) 0 0
\(705\) −9911.38 −0.529481
\(706\) 0 0
\(707\) 9554.91 0.508273
\(708\) 0 0
\(709\) 11094.7 0.587689 0.293844 0.955853i \(-0.405065\pi\)
0.293844 + 0.955853i \(0.405065\pi\)
\(710\) 0 0
\(711\) 9326.94 0.491966
\(712\) 0 0
\(713\) 7401.26 0.388751
\(714\) 0 0
\(715\) 2109.49 0.110336
\(716\) 0 0
\(717\) 15370.3 0.800580
\(718\) 0 0
\(719\) −5377.04 −0.278901 −0.139451 0.990229i \(-0.544534\pi\)
−0.139451 + 0.990229i \(0.544534\pi\)
\(720\) 0 0
\(721\) 2859.48 0.147701
\(722\) 0 0
\(723\) 3842.03 0.197630
\(724\) 0 0
\(725\) 11034.2 0.565242
\(726\) 0 0
\(727\) 22454.6 1.14552 0.572762 0.819722i \(-0.305872\pi\)
0.572762 + 0.819722i \(0.305872\pi\)
\(728\) 0 0
\(729\) −32040.2 −1.62781
\(730\) 0 0
\(731\) 2940.72 0.148792
\(732\) 0 0
\(733\) −19535.4 −0.984386 −0.492193 0.870486i \(-0.663805\pi\)
−0.492193 + 0.870486i \(0.663805\pi\)
\(734\) 0 0
\(735\) 962.735 0.0483143
\(736\) 0 0
\(737\) 11505.0 0.575023
\(738\) 0 0
\(739\) 17528.7 0.872533 0.436267 0.899817i \(-0.356300\pi\)
0.436267 + 0.899817i \(0.356300\pi\)
\(740\) 0 0
\(741\) 71450.2 3.54222
\(742\) 0 0
\(743\) −25311.7 −1.24979 −0.624895 0.780709i \(-0.714858\pi\)
−0.624895 + 0.780709i \(0.714858\pi\)
\(744\) 0 0
\(745\) −2259.93 −0.111137
\(746\) 0 0
\(747\) 44684.0 2.18862
\(748\) 0 0
\(749\) −7345.73 −0.358354
\(750\) 0 0
\(751\) 11666.5 0.566865 0.283432 0.958992i \(-0.408527\pi\)
0.283432 + 0.958992i \(0.408527\pi\)
\(752\) 0 0
\(753\) −37021.7 −1.79169
\(754\) 0 0
\(755\) 6473.78 0.312059
\(756\) 0 0
\(757\) 12942.5 0.621402 0.310701 0.950508i \(-0.399436\pi\)
0.310701 + 0.950508i \(0.399436\pi\)
\(758\) 0 0
\(759\) 13348.2 0.638352
\(760\) 0 0
\(761\) 2447.96 0.116608 0.0583040 0.998299i \(-0.481431\pi\)
0.0583040 + 0.998299i \(0.481431\pi\)
\(762\) 0 0
\(763\) −6041.56 −0.286657
\(764\) 0 0
\(765\) −2071.22 −0.0978891
\(766\) 0 0
\(767\) 35301.0 1.66186
\(768\) 0 0
\(769\) 30557.1 1.43292 0.716461 0.697627i \(-0.245761\pi\)
0.716461 + 0.697627i \(0.245761\pi\)
\(770\) 0 0
\(771\) −7468.34 −0.348853
\(772\) 0 0
\(773\) 25089.5 1.16741 0.583704 0.811966i \(-0.301603\pi\)
0.583704 + 0.811966i \(0.301603\pi\)
\(774\) 0 0
\(775\) −6085.97 −0.282083
\(776\) 0 0
\(777\) −1155.40 −0.0533458
\(778\) 0 0
\(779\) −10803.2 −0.496872
\(780\) 0 0
\(781\) 8800.48 0.403209
\(782\) 0 0
\(783\) −12159.3 −0.554965
\(784\) 0 0
\(785\) −3641.53 −0.165569
\(786\) 0 0
\(787\) −929.983 −0.0421224 −0.0210612 0.999778i \(-0.506704\pi\)
−0.0210612 + 0.999778i \(0.506704\pi\)
\(788\) 0 0
\(789\) 62925.1 2.83928
\(790\) 0 0
\(791\) −2204.36 −0.0990875
\(792\) 0 0
\(793\) −34992.7 −1.56700
\(794\) 0 0
\(795\) −10237.3 −0.456706
\(796\) 0 0
\(797\) 13740.7 0.610692 0.305346 0.952242i \(-0.401228\pi\)
0.305346 + 0.952242i \(0.401228\pi\)
\(798\) 0 0
\(799\) 10387.1 0.459910
\(800\) 0 0
\(801\) 21150.0 0.932956
\(802\) 0 0
\(803\) 9484.07 0.416794
\(804\) 0 0
\(805\) −2392.33 −0.104744
\(806\) 0 0
\(807\) 32159.9 1.40283
\(808\) 0 0
\(809\) 16504.8 0.717277 0.358639 0.933477i \(-0.383241\pi\)
0.358639 + 0.933477i \(0.383241\pi\)
\(810\) 0 0
\(811\) 11540.3 0.499673 0.249836 0.968288i \(-0.419623\pi\)
0.249836 + 0.968288i \(0.419623\pi\)
\(812\) 0 0
\(813\) 61771.2 2.66471
\(814\) 0 0
\(815\) −8572.47 −0.368442
\(816\) 0 0
\(817\) −14986.4 −0.641747
\(818\) 0 0
\(819\) −24402.6 −1.04114
\(820\) 0 0
\(821\) 1510.96 0.0642298 0.0321149 0.999484i \(-0.489776\pi\)
0.0321149 + 0.999484i \(0.489776\pi\)
\(822\) 0 0
\(823\) −3331.48 −0.141103 −0.0705516 0.997508i \(-0.522476\pi\)
−0.0705516 + 0.997508i \(0.522476\pi\)
\(824\) 0 0
\(825\) −10976.1 −0.463198
\(826\) 0 0
\(827\) −13979.7 −0.587813 −0.293907 0.955834i \(-0.594955\pi\)
−0.293907 + 0.955834i \(0.594955\pi\)
\(828\) 0 0
\(829\) 40518.7 1.69755 0.848777 0.528752i \(-0.177340\pi\)
0.848777 + 0.528752i \(0.177340\pi\)
\(830\) 0 0
\(831\) −8556.79 −0.357198
\(832\) 0 0
\(833\) −1008.94 −0.0419660
\(834\) 0 0
\(835\) −5173.42 −0.214411
\(836\) 0 0
\(837\) 6706.52 0.276955
\(838\) 0 0
\(839\) 27143.3 1.11691 0.558457 0.829534i \(-0.311394\pi\)
0.558457 + 0.829534i \(0.311394\pi\)
\(840\) 0 0
\(841\) −15858.2 −0.650219
\(842\) 0 0
\(843\) 61486.4 2.51210
\(844\) 0 0
\(845\) 10465.8 0.426076
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 0 0
\(849\) −68867.7 −2.78390
\(850\) 0 0
\(851\) 2871.09 0.115652
\(852\) 0 0
\(853\) 20197.7 0.810733 0.405367 0.914154i \(-0.367144\pi\)
0.405367 + 0.914154i \(0.367144\pi\)
\(854\) 0 0
\(855\) 10555.3 0.422202
\(856\) 0 0
\(857\) 13913.2 0.554569 0.277285 0.960788i \(-0.410565\pi\)
0.277285 + 0.960788i \(0.410565\pi\)
\(858\) 0 0
\(859\) 43528.1 1.72894 0.864471 0.502683i \(-0.167654\pi\)
0.864471 + 0.502683i \(0.167654\pi\)
\(860\) 0 0
\(861\) 6019.30 0.238254
\(862\) 0 0
\(863\) −28016.6 −1.10509 −0.552547 0.833482i \(-0.686344\pi\)
−0.552547 + 0.833482i \(0.686344\pi\)
\(864\) 0 0
\(865\) 3542.88 0.139262
\(866\) 0 0
\(867\) −37493.9 −1.46870
\(868\) 0 0
\(869\) 2399.26 0.0936584
\(870\) 0 0
\(871\) 85266.2 3.31703
\(872\) 0 0
\(873\) 60455.5 2.34377
\(874\) 0 0
\(875\) 4025.49 0.155527
\(876\) 0 0
\(877\) 4700.43 0.180983 0.0904916 0.995897i \(-0.471156\pi\)
0.0904916 + 0.995897i \(0.471156\pi\)
\(878\) 0 0
\(879\) −32576.0 −1.25001
\(880\) 0 0
\(881\) 23698.4 0.906267 0.453133 0.891443i \(-0.350306\pi\)
0.453133 + 0.891443i \(0.350306\pi\)
\(882\) 0 0
\(883\) −24496.4 −0.933602 −0.466801 0.884362i \(-0.654594\pi\)
−0.466801 + 0.884362i \(0.654594\pi\)
\(884\) 0 0
\(885\) 8507.76 0.323147
\(886\) 0 0
\(887\) −32811.7 −1.24206 −0.621031 0.783786i \(-0.713286\pi\)
−0.621031 + 0.783786i \(0.713286\pi\)
\(888\) 0 0
\(889\) −706.812 −0.0266656
\(890\) 0 0
\(891\) −605.000 −0.0227478
\(892\) 0 0
\(893\) −52934.1 −1.98362
\(894\) 0 0
\(895\) −7325.46 −0.273590
\(896\) 0 0
\(897\) 98926.6 3.68234
\(898\) 0 0
\(899\) −4705.21 −0.174558
\(900\) 0 0
\(901\) 10728.7 0.396697
\(902\) 0 0
\(903\) 8350.11 0.307723
\(904\) 0 0
\(905\) −3508.23 −0.128859
\(906\) 0 0
\(907\) 16608.9 0.608037 0.304018 0.952666i \(-0.401672\pi\)
0.304018 + 0.952666i \(0.401672\pi\)
\(908\) 0 0
\(909\) −58369.2 −2.12980
\(910\) 0 0
\(911\) 35779.4 1.30123 0.650617 0.759406i \(-0.274510\pi\)
0.650617 + 0.759406i \(0.274510\pi\)
\(912\) 0 0
\(913\) 11494.5 0.416661
\(914\) 0 0
\(915\) −8433.46 −0.304701
\(916\) 0 0
\(917\) −10784.9 −0.388386
\(918\) 0 0
\(919\) 31726.8 1.13881 0.569406 0.822056i \(-0.307173\pi\)
0.569406 + 0.822056i \(0.307173\pi\)
\(920\) 0 0
\(921\) 9863.28 0.352884
\(922\) 0 0
\(923\) 65222.4 2.32592
\(924\) 0 0
\(925\) −2360.87 −0.0839187
\(926\) 0 0
\(927\) −17468.0 −0.618905
\(928\) 0 0
\(929\) 30258.0 1.06860 0.534302 0.845294i \(-0.320575\pi\)
0.534302 + 0.845294i \(0.320575\pi\)
\(930\) 0 0
\(931\) 5141.71 0.181002
\(932\) 0 0
\(933\) −70680.8 −2.48016
\(934\) 0 0
\(935\) −532.799 −0.0186357
\(936\) 0 0
\(937\) 20434.2 0.712438 0.356219 0.934402i \(-0.384066\pi\)
0.356219 + 0.934402i \(0.384066\pi\)
\(938\) 0 0
\(939\) −8941.86 −0.310763
\(940\) 0 0
\(941\) −29128.2 −1.00909 −0.504545 0.863385i \(-0.668340\pi\)
−0.504545 + 0.863385i \(0.668340\pi\)
\(942\) 0 0
\(943\) −14957.6 −0.516527
\(944\) 0 0
\(945\) −2167.77 −0.0746217
\(946\) 0 0
\(947\) −7701.21 −0.264262 −0.132131 0.991232i \(-0.542182\pi\)
−0.132131 + 0.991232i \(0.542182\pi\)
\(948\) 0 0
\(949\) 70288.6 2.40428
\(950\) 0 0
\(951\) 34986.1 1.19296
\(952\) 0 0
\(953\) 4283.51 0.145600 0.0727998 0.997347i \(-0.476807\pi\)
0.0727998 + 0.997347i \(0.476807\pi\)
\(954\) 0 0
\(955\) −3654.57 −0.123831
\(956\) 0 0
\(957\) −8485.87 −0.286635
\(958\) 0 0
\(959\) −849.092 −0.0285908
\(960\) 0 0
\(961\) −27195.8 −0.912887
\(962\) 0 0
\(963\) 44873.7 1.50159
\(964\) 0 0
\(965\) 99.6832 0.00332530
\(966\) 0 0
\(967\) −38091.6 −1.26675 −0.633373 0.773847i \(-0.718330\pi\)
−0.633373 + 0.773847i \(0.718330\pi\)
\(968\) 0 0
\(969\) −18046.3 −0.598279
\(970\) 0 0
\(971\) 4194.45 0.138626 0.0693132 0.997595i \(-0.477919\pi\)
0.0693132 + 0.997595i \(0.477919\pi\)
\(972\) 0 0
\(973\) −10079.6 −0.332103
\(974\) 0 0
\(975\) −81346.2 −2.67196
\(976\) 0 0
\(977\) −25613.1 −0.838725 −0.419362 0.907819i \(-0.637746\pi\)
−0.419362 + 0.907819i \(0.637746\pi\)
\(978\) 0 0
\(979\) 5440.61 0.177612
\(980\) 0 0
\(981\) 36906.8 1.20117
\(982\) 0 0
\(983\) 23674.3 0.768152 0.384076 0.923301i \(-0.374520\pi\)
0.384076 + 0.923301i \(0.374520\pi\)
\(984\) 0 0
\(985\) −9692.88 −0.313544
\(986\) 0 0
\(987\) 29493.8 0.951162
\(988\) 0 0
\(989\) −20749.5 −0.667133
\(990\) 0 0
\(991\) −47328.6 −1.51710 −0.758548 0.651617i \(-0.774091\pi\)
−0.758548 + 0.651617i \(0.774091\pi\)
\(992\) 0 0
\(993\) −11809.6 −0.377408
\(994\) 0 0
\(995\) −8471.30 −0.269908
\(996\) 0 0
\(997\) −36318.1 −1.15367 −0.576834 0.816862i \(-0.695712\pi\)
−0.576834 + 0.816862i \(0.695712\pi\)
\(998\) 0 0
\(999\) 2601.59 0.0823930
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.4.a.p.1.2 2
4.3 odd 2 154.4.a.f.1.1 2
12.11 even 2 1386.4.a.ba.1.1 2
28.27 even 2 1078.4.a.j.1.2 2
44.43 even 2 1694.4.a.l.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
154.4.a.f.1.1 2 4.3 odd 2
1078.4.a.j.1.2 2 28.27 even 2
1232.4.a.p.1.2 2 1.1 even 1 trivial
1386.4.a.ba.1.1 2 12.11 even 2
1694.4.a.l.1.1 2 44.43 even 2