Properties

Label 1232.4.a.u.1.1
Level $1232$
Weight $4$
Character 1232.1
Self dual yes
Analytic conductor $72.690$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,4,Mod(1,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1232.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.6903531271\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 29x^{2} + 3x + 114 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 616)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.49248\) of defining polynomial
Character \(\chi\) \(=\) 1232.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.49248 q^{3} -8.18240 q^{5} -7.00000 q^{7} -6.81760 q^{9} -11.0000 q^{11} +6.07157 q^{13} +36.7593 q^{15} -108.555 q^{17} -40.0288 q^{19} +31.4474 q^{21} -49.1578 q^{23} -58.0484 q^{25} +151.925 q^{27} -89.1584 q^{29} -111.551 q^{31} +49.4173 q^{33} +57.2768 q^{35} -195.258 q^{37} -27.2764 q^{39} -226.927 q^{41} +17.0565 q^{43} +55.7843 q^{45} -61.5015 q^{47} +49.0000 q^{49} +487.680 q^{51} -691.929 q^{53} +90.0064 q^{55} +179.829 q^{57} +240.751 q^{59} -694.558 q^{61} +47.7232 q^{63} -49.6800 q^{65} -396.960 q^{67} +220.840 q^{69} +232.999 q^{71} +43.3791 q^{73} +260.781 q^{75} +77.0000 q^{77} +230.462 q^{79} -498.445 q^{81} -210.747 q^{83} +888.237 q^{85} +400.543 q^{87} +328.953 q^{89} -42.5010 q^{91} +501.140 q^{93} +327.532 q^{95} +1765.90 q^{97} +74.9936 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} - 13 q^{5} - 28 q^{7} - 47 q^{9} - 44 q^{11} - 34 q^{13} - 63 q^{15} - 58 q^{17} - 60 q^{19} - 21 q^{21} + 93 q^{23} - 19 q^{25} - 63 q^{27} - 144 q^{29} + 129 q^{31} - 33 q^{33} + 91 q^{35}+ \cdots + 517 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.49248 −0.864579 −0.432289 0.901735i \(-0.642294\pi\)
−0.432289 + 0.901735i \(0.642294\pi\)
\(4\) 0 0
\(5\) −8.18240 −0.731856 −0.365928 0.930643i \(-0.619248\pi\)
−0.365928 + 0.930643i \(0.619248\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) −6.81760 −0.252504
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 6.07157 0.129535 0.0647673 0.997900i \(-0.479369\pi\)
0.0647673 + 0.997900i \(0.479369\pi\)
\(14\) 0 0
\(15\) 36.7593 0.632747
\(16\) 0 0
\(17\) −108.555 −1.54873 −0.774363 0.632741i \(-0.781930\pi\)
−0.774363 + 0.632741i \(0.781930\pi\)
\(18\) 0 0
\(19\) −40.0288 −0.483328 −0.241664 0.970360i \(-0.577693\pi\)
−0.241664 + 0.970360i \(0.577693\pi\)
\(20\) 0 0
\(21\) 31.4474 0.326780
\(22\) 0 0
\(23\) −49.1578 −0.445657 −0.222828 0.974858i \(-0.571529\pi\)
−0.222828 + 0.974858i \(0.571529\pi\)
\(24\) 0 0
\(25\) −58.0484 −0.464387
\(26\) 0 0
\(27\) 151.925 1.08289
\(28\) 0 0
\(29\) −89.1584 −0.570907 −0.285454 0.958393i \(-0.592144\pi\)
−0.285454 + 0.958393i \(0.592144\pi\)
\(30\) 0 0
\(31\) −111.551 −0.646294 −0.323147 0.946349i \(-0.604741\pi\)
−0.323147 + 0.946349i \(0.604741\pi\)
\(32\) 0 0
\(33\) 49.4173 0.260680
\(34\) 0 0
\(35\) 57.2768 0.276616
\(36\) 0 0
\(37\) −195.258 −0.867572 −0.433786 0.901016i \(-0.642823\pi\)
−0.433786 + 0.901016i \(0.642823\pi\)
\(38\) 0 0
\(39\) −27.2764 −0.111993
\(40\) 0 0
\(41\) −226.927 −0.864393 −0.432197 0.901779i \(-0.642261\pi\)
−0.432197 + 0.901779i \(0.642261\pi\)
\(42\) 0 0
\(43\) 17.0565 0.0604904 0.0302452 0.999543i \(-0.490371\pi\)
0.0302452 + 0.999543i \(0.490371\pi\)
\(44\) 0 0
\(45\) 55.7843 0.184796
\(46\) 0 0
\(47\) −61.5015 −0.190870 −0.0954352 0.995436i \(-0.530424\pi\)
−0.0954352 + 0.995436i \(0.530424\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 487.680 1.33900
\(52\) 0 0
\(53\) −691.929 −1.79328 −0.896639 0.442762i \(-0.853999\pi\)
−0.896639 + 0.442762i \(0.853999\pi\)
\(54\) 0 0
\(55\) 90.0064 0.220663
\(56\) 0 0
\(57\) 179.829 0.417875
\(58\) 0 0
\(59\) 240.751 0.531238 0.265619 0.964078i \(-0.414424\pi\)
0.265619 + 0.964078i \(0.414424\pi\)
\(60\) 0 0
\(61\) −694.558 −1.45785 −0.728927 0.684591i \(-0.759981\pi\)
−0.728927 + 0.684591i \(0.759981\pi\)
\(62\) 0 0
\(63\) 47.7232 0.0954375
\(64\) 0 0
\(65\) −49.6800 −0.0948006
\(66\) 0 0
\(67\) −396.960 −0.723826 −0.361913 0.932212i \(-0.617876\pi\)
−0.361913 + 0.932212i \(0.617876\pi\)
\(68\) 0 0
\(69\) 220.840 0.385305
\(70\) 0 0
\(71\) 232.999 0.389463 0.194732 0.980857i \(-0.437616\pi\)
0.194732 + 0.980857i \(0.437616\pi\)
\(72\) 0 0
\(73\) 43.3791 0.0695499 0.0347749 0.999395i \(-0.488929\pi\)
0.0347749 + 0.999395i \(0.488929\pi\)
\(74\) 0 0
\(75\) 260.781 0.401499
\(76\) 0 0
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) 230.462 0.328215 0.164108 0.986442i \(-0.447526\pi\)
0.164108 + 0.986442i \(0.447526\pi\)
\(80\) 0 0
\(81\) −498.445 −0.683738
\(82\) 0 0
\(83\) −210.747 −0.278705 −0.139353 0.990243i \(-0.544502\pi\)
−0.139353 + 0.990243i \(0.544502\pi\)
\(84\) 0 0
\(85\) 888.237 1.13344
\(86\) 0 0
\(87\) 400.543 0.493594
\(88\) 0 0
\(89\) 328.953 0.391786 0.195893 0.980625i \(-0.437239\pi\)
0.195893 + 0.980625i \(0.437239\pi\)
\(90\) 0 0
\(91\) −42.5010 −0.0489595
\(92\) 0 0
\(93\) 501.140 0.558772
\(94\) 0 0
\(95\) 327.532 0.353727
\(96\) 0 0
\(97\) 1765.90 1.84846 0.924228 0.381841i \(-0.124710\pi\)
0.924228 + 0.381841i \(0.124710\pi\)
\(98\) 0 0
\(99\) 74.9936 0.0761328
\(100\) 0 0
\(101\) −1038.52 −1.02314 −0.511569 0.859242i \(-0.670935\pi\)
−0.511569 + 0.859242i \(0.670935\pi\)
\(102\) 0 0
\(103\) 1756.90 1.68070 0.840352 0.542041i \(-0.182348\pi\)
0.840352 + 0.542041i \(0.182348\pi\)
\(104\) 0 0
\(105\) −257.315 −0.239156
\(106\) 0 0
\(107\) −708.981 −0.640559 −0.320279 0.947323i \(-0.603777\pi\)
−0.320279 + 0.947323i \(0.603777\pi\)
\(108\) 0 0
\(109\) −631.308 −0.554755 −0.277377 0.960761i \(-0.589465\pi\)
−0.277377 + 0.960761i \(0.589465\pi\)
\(110\) 0 0
\(111\) 877.191 0.750084
\(112\) 0 0
\(113\) −694.277 −0.577983 −0.288991 0.957332i \(-0.593320\pi\)
−0.288991 + 0.957332i \(0.593320\pi\)
\(114\) 0 0
\(115\) 402.229 0.326157
\(116\) 0 0
\(117\) −41.3935 −0.0327080
\(118\) 0 0
\(119\) 759.882 0.585364
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 1019.47 0.747336
\(124\) 0 0
\(125\) 1497.77 1.07172
\(126\) 0 0
\(127\) −566.147 −0.395571 −0.197785 0.980245i \(-0.563375\pi\)
−0.197785 + 0.980245i \(0.563375\pi\)
\(128\) 0 0
\(129\) −76.6259 −0.0522987
\(130\) 0 0
\(131\) 646.992 0.431511 0.215756 0.976447i \(-0.430779\pi\)
0.215756 + 0.976447i \(0.430779\pi\)
\(132\) 0 0
\(133\) 280.202 0.182681
\(134\) 0 0
\(135\) −1243.11 −0.792518
\(136\) 0 0
\(137\) −415.390 −0.259045 −0.129522 0.991576i \(-0.541344\pi\)
−0.129522 + 0.991576i \(0.541344\pi\)
\(138\) 0 0
\(139\) −2005.54 −1.22379 −0.611897 0.790937i \(-0.709593\pi\)
−0.611897 + 0.790937i \(0.709593\pi\)
\(140\) 0 0
\(141\) 276.294 0.165022
\(142\) 0 0
\(143\) −66.7872 −0.0390561
\(144\) 0 0
\(145\) 729.530 0.417822
\(146\) 0 0
\(147\) −220.132 −0.123511
\(148\) 0 0
\(149\) 1271.61 0.699156 0.349578 0.936907i \(-0.386325\pi\)
0.349578 + 0.936907i \(0.386325\pi\)
\(150\) 0 0
\(151\) 2653.44 1.43003 0.715014 0.699110i \(-0.246420\pi\)
0.715014 + 0.699110i \(0.246420\pi\)
\(152\) 0 0
\(153\) 740.082 0.391059
\(154\) 0 0
\(155\) 912.754 0.472994
\(156\) 0 0
\(157\) 986.712 0.501581 0.250790 0.968041i \(-0.419309\pi\)
0.250790 + 0.968041i \(0.419309\pi\)
\(158\) 0 0
\(159\) 3108.48 1.55043
\(160\) 0 0
\(161\) 344.104 0.168442
\(162\) 0 0
\(163\) 807.865 0.388202 0.194101 0.980982i \(-0.437821\pi\)
0.194101 + 0.980982i \(0.437821\pi\)
\(164\) 0 0
\(165\) −404.352 −0.190780
\(166\) 0 0
\(167\) 2269.50 1.05161 0.525806 0.850604i \(-0.323764\pi\)
0.525806 + 0.850604i \(0.323764\pi\)
\(168\) 0 0
\(169\) −2160.14 −0.983221
\(170\) 0 0
\(171\) 272.900 0.122042
\(172\) 0 0
\(173\) −3029.98 −1.33159 −0.665794 0.746135i \(-0.731907\pi\)
−0.665794 + 0.746135i \(0.731907\pi\)
\(174\) 0 0
\(175\) 406.339 0.175522
\(176\) 0 0
\(177\) −1081.57 −0.459297
\(178\) 0 0
\(179\) −2013.28 −0.840667 −0.420333 0.907370i \(-0.638087\pi\)
−0.420333 + 0.907370i \(0.638087\pi\)
\(180\) 0 0
\(181\) 897.906 0.368734 0.184367 0.982857i \(-0.440977\pi\)
0.184367 + 0.982857i \(0.440977\pi\)
\(182\) 0 0
\(183\) 3120.29 1.26043
\(184\) 0 0
\(185\) 1597.68 0.634938
\(186\) 0 0
\(187\) 1194.10 0.466959
\(188\) 0 0
\(189\) −1063.47 −0.409293
\(190\) 0 0
\(191\) 1725.88 0.653823 0.326911 0.945055i \(-0.393992\pi\)
0.326911 + 0.945055i \(0.393992\pi\)
\(192\) 0 0
\(193\) 2822.38 1.05264 0.526319 0.850287i \(-0.323572\pi\)
0.526319 + 0.850287i \(0.323572\pi\)
\(194\) 0 0
\(195\) 223.186 0.0819626
\(196\) 0 0
\(197\) 2324.71 0.840755 0.420378 0.907349i \(-0.361898\pi\)
0.420378 + 0.907349i \(0.361898\pi\)
\(198\) 0 0
\(199\) 1221.56 0.435145 0.217573 0.976044i \(-0.430186\pi\)
0.217573 + 0.976044i \(0.430186\pi\)
\(200\) 0 0
\(201\) 1783.33 0.625804
\(202\) 0 0
\(203\) 624.109 0.215783
\(204\) 0 0
\(205\) 1856.81 0.632611
\(206\) 0 0
\(207\) 335.138 0.112530
\(208\) 0 0
\(209\) 440.317 0.145729
\(210\) 0 0
\(211\) 395.480 0.129033 0.0645165 0.997917i \(-0.479449\pi\)
0.0645165 + 0.997917i \(0.479449\pi\)
\(212\) 0 0
\(213\) −1046.74 −0.336722
\(214\) 0 0
\(215\) −139.563 −0.0442703
\(216\) 0 0
\(217\) 780.856 0.244276
\(218\) 0 0
\(219\) −194.880 −0.0601314
\(220\) 0 0
\(221\) −659.096 −0.200614
\(222\) 0 0
\(223\) −4280.19 −1.28530 −0.642652 0.766158i \(-0.722166\pi\)
−0.642652 + 0.766158i \(0.722166\pi\)
\(224\) 0 0
\(225\) 395.751 0.117259
\(226\) 0 0
\(227\) 2834.12 0.828667 0.414333 0.910125i \(-0.364015\pi\)
0.414333 + 0.910125i \(0.364015\pi\)
\(228\) 0 0
\(229\) 3886.81 1.12161 0.560803 0.827949i \(-0.310493\pi\)
0.560803 + 0.827949i \(0.310493\pi\)
\(230\) 0 0
\(231\) −345.921 −0.0985279
\(232\) 0 0
\(233\) 568.968 0.159976 0.0799878 0.996796i \(-0.474512\pi\)
0.0799878 + 0.996796i \(0.474512\pi\)
\(234\) 0 0
\(235\) 503.229 0.139690
\(236\) 0 0
\(237\) −1035.35 −0.283768
\(238\) 0 0
\(239\) −4685.38 −1.26808 −0.634041 0.773299i \(-0.718605\pi\)
−0.634041 + 0.773299i \(0.718605\pi\)
\(240\) 0 0
\(241\) 6788.02 1.81433 0.907167 0.420770i \(-0.138240\pi\)
0.907167 + 0.420770i \(0.138240\pi\)
\(242\) 0 0
\(243\) −1862.72 −0.491743
\(244\) 0 0
\(245\) −400.938 −0.104551
\(246\) 0 0
\(247\) −243.037 −0.0626077
\(248\) 0 0
\(249\) 946.779 0.240962
\(250\) 0 0
\(251\) −888.807 −0.223510 −0.111755 0.993736i \(-0.535647\pi\)
−0.111755 + 0.993736i \(0.535647\pi\)
\(252\) 0 0
\(253\) 540.736 0.134371
\(254\) 0 0
\(255\) −3990.39 −0.979952
\(256\) 0 0
\(257\) 513.349 0.124599 0.0622993 0.998058i \(-0.480157\pi\)
0.0622993 + 0.998058i \(0.480157\pi\)
\(258\) 0 0
\(259\) 1366.80 0.327911
\(260\) 0 0
\(261\) 607.847 0.144156
\(262\) 0 0
\(263\) −2569.03 −0.602331 −0.301166 0.953572i \(-0.597376\pi\)
−0.301166 + 0.953572i \(0.597376\pi\)
\(264\) 0 0
\(265\) 5661.64 1.31242
\(266\) 0 0
\(267\) −1477.82 −0.338730
\(268\) 0 0
\(269\) −5056.44 −1.14608 −0.573042 0.819526i \(-0.694237\pi\)
−0.573042 + 0.819526i \(0.694237\pi\)
\(270\) 0 0
\(271\) −702.927 −0.157564 −0.0787818 0.996892i \(-0.525103\pi\)
−0.0787818 + 0.996892i \(0.525103\pi\)
\(272\) 0 0
\(273\) 190.935 0.0423293
\(274\) 0 0
\(275\) 638.532 0.140018
\(276\) 0 0
\(277\) −3032.51 −0.657783 −0.328891 0.944368i \(-0.606675\pi\)
−0.328891 + 0.944368i \(0.606675\pi\)
\(278\) 0 0
\(279\) 760.509 0.163192
\(280\) 0 0
\(281\) 5593.01 1.18737 0.593686 0.804697i \(-0.297672\pi\)
0.593686 + 0.804697i \(0.297672\pi\)
\(282\) 0 0
\(283\) −6042.44 −1.26921 −0.634604 0.772837i \(-0.718837\pi\)
−0.634604 + 0.772837i \(0.718837\pi\)
\(284\) 0 0
\(285\) −1471.43 −0.305824
\(286\) 0 0
\(287\) 1588.49 0.326710
\(288\) 0 0
\(289\) 6871.10 1.39856
\(290\) 0 0
\(291\) −7933.29 −1.59814
\(292\) 0 0
\(293\) 5871.31 1.17067 0.585334 0.810793i \(-0.300964\pi\)
0.585334 + 0.810793i \(0.300964\pi\)
\(294\) 0 0
\(295\) −1969.92 −0.388790
\(296\) 0 0
\(297\) −1671.17 −0.326503
\(298\) 0 0
\(299\) −298.465 −0.0577280
\(300\) 0 0
\(301\) −119.395 −0.0228632
\(302\) 0 0
\(303\) 4665.54 0.884582
\(304\) 0 0
\(305\) 5683.15 1.06694
\(306\) 0 0
\(307\) −3040.06 −0.565165 −0.282582 0.959243i \(-0.591191\pi\)
−0.282582 + 0.959243i \(0.591191\pi\)
\(308\) 0 0
\(309\) −7892.84 −1.45310
\(310\) 0 0
\(311\) 3692.41 0.673240 0.336620 0.941641i \(-0.390716\pi\)
0.336620 + 0.941641i \(0.390716\pi\)
\(312\) 0 0
\(313\) −5510.85 −0.995180 −0.497590 0.867412i \(-0.665782\pi\)
−0.497590 + 0.867412i \(0.665782\pi\)
\(314\) 0 0
\(315\) −390.490 −0.0698465
\(316\) 0 0
\(317\) 5290.26 0.937320 0.468660 0.883379i \(-0.344737\pi\)
0.468660 + 0.883379i \(0.344737\pi\)
\(318\) 0 0
\(319\) 980.743 0.172135
\(320\) 0 0
\(321\) 3185.09 0.553813
\(322\) 0 0
\(323\) 4345.31 0.748543
\(324\) 0 0
\(325\) −352.444 −0.0601542
\(326\) 0 0
\(327\) 2836.14 0.479629
\(328\) 0 0
\(329\) 430.510 0.0721422
\(330\) 0 0
\(331\) −9949.58 −1.65220 −0.826100 0.563523i \(-0.809446\pi\)
−0.826100 + 0.563523i \(0.809446\pi\)
\(332\) 0 0
\(333\) 1331.19 0.219065
\(334\) 0 0
\(335\) 3248.08 0.529736
\(336\) 0 0
\(337\) −626.780 −0.101314 −0.0506571 0.998716i \(-0.516132\pi\)
−0.0506571 + 0.998716i \(0.516132\pi\)
\(338\) 0 0
\(339\) 3119.03 0.499712
\(340\) 0 0
\(341\) 1227.06 0.194865
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −1807.00 −0.281988
\(346\) 0 0
\(347\) −2666.53 −0.412527 −0.206263 0.978496i \(-0.566130\pi\)
−0.206263 + 0.978496i \(0.566130\pi\)
\(348\) 0 0
\(349\) 11653.7 1.78742 0.893711 0.448643i \(-0.148093\pi\)
0.893711 + 0.448643i \(0.148093\pi\)
\(350\) 0 0
\(351\) 922.423 0.140271
\(352\) 0 0
\(353\) −3044.06 −0.458977 −0.229488 0.973311i \(-0.573705\pi\)
−0.229488 + 0.973311i \(0.573705\pi\)
\(354\) 0 0
\(355\) −1906.49 −0.285031
\(356\) 0 0
\(357\) −3413.76 −0.506093
\(358\) 0 0
\(359\) −4702.31 −0.691305 −0.345652 0.938363i \(-0.612342\pi\)
−0.345652 + 0.938363i \(0.612342\pi\)
\(360\) 0 0
\(361\) −5256.70 −0.766394
\(362\) 0 0
\(363\) −543.590 −0.0785981
\(364\) 0 0
\(365\) −354.945 −0.0509005
\(366\) 0 0
\(367\) 2435.50 0.346410 0.173205 0.984886i \(-0.444588\pi\)
0.173205 + 0.984886i \(0.444588\pi\)
\(368\) 0 0
\(369\) 1547.10 0.218263
\(370\) 0 0
\(371\) 4843.50 0.677795
\(372\) 0 0
\(373\) −8577.64 −1.19071 −0.595353 0.803464i \(-0.702988\pi\)
−0.595353 + 0.803464i \(0.702988\pi\)
\(374\) 0 0
\(375\) −6728.73 −0.926586
\(376\) 0 0
\(377\) −541.331 −0.0739522
\(378\) 0 0
\(379\) 1258.81 0.170609 0.0853045 0.996355i \(-0.472814\pi\)
0.0853045 + 0.996355i \(0.472814\pi\)
\(380\) 0 0
\(381\) 2543.41 0.342002
\(382\) 0 0
\(383\) 5723.93 0.763653 0.381826 0.924234i \(-0.375295\pi\)
0.381826 + 0.924234i \(0.375295\pi\)
\(384\) 0 0
\(385\) −630.045 −0.0834027
\(386\) 0 0
\(387\) −116.284 −0.0152741
\(388\) 0 0
\(389\) −14276.0 −1.86073 −0.930363 0.366640i \(-0.880508\pi\)
−0.930363 + 0.366640i \(0.880508\pi\)
\(390\) 0 0
\(391\) 5336.30 0.690201
\(392\) 0 0
\(393\) −2906.60 −0.373075
\(394\) 0 0
\(395\) −1885.73 −0.240206
\(396\) 0 0
\(397\) 1715.60 0.216886 0.108443 0.994103i \(-0.465414\pi\)
0.108443 + 0.994103i \(0.465414\pi\)
\(398\) 0 0
\(399\) −1258.80 −0.157942
\(400\) 0 0
\(401\) −14622.1 −1.82093 −0.910466 0.413583i \(-0.864277\pi\)
−0.910466 + 0.413583i \(0.864277\pi\)
\(402\) 0 0
\(403\) −677.288 −0.0837175
\(404\) 0 0
\(405\) 4078.48 0.500398
\(406\) 0 0
\(407\) 2147.83 0.261583
\(408\) 0 0
\(409\) 910.825 0.110116 0.0550580 0.998483i \(-0.482466\pi\)
0.0550580 + 0.998483i \(0.482466\pi\)
\(410\) 0 0
\(411\) 1866.13 0.223965
\(412\) 0 0
\(413\) −1685.25 −0.200789
\(414\) 0 0
\(415\) 1724.42 0.203972
\(416\) 0 0
\(417\) 9009.84 1.05807
\(418\) 0 0
\(419\) −13824.4 −1.61185 −0.805927 0.592015i \(-0.798332\pi\)
−0.805927 + 0.592015i \(0.798332\pi\)
\(420\) 0 0
\(421\) −6206.97 −0.718550 −0.359275 0.933232i \(-0.616976\pi\)
−0.359275 + 0.933232i \(0.616976\pi\)
\(422\) 0 0
\(423\) 419.292 0.0481955
\(424\) 0 0
\(425\) 6301.42 0.719208
\(426\) 0 0
\(427\) 4861.91 0.551017
\(428\) 0 0
\(429\) 300.040 0.0337671
\(430\) 0 0
\(431\) −13193.6 −1.47450 −0.737252 0.675618i \(-0.763877\pi\)
−0.737252 + 0.675618i \(0.763877\pi\)
\(432\) 0 0
\(433\) 1764.74 0.195861 0.0979306 0.995193i \(-0.468778\pi\)
0.0979306 + 0.995193i \(0.468778\pi\)
\(434\) 0 0
\(435\) −3277.40 −0.361240
\(436\) 0 0
\(437\) 1967.73 0.215398
\(438\) 0 0
\(439\) 403.375 0.0438543 0.0219271 0.999760i \(-0.493020\pi\)
0.0219271 + 0.999760i \(0.493020\pi\)
\(440\) 0 0
\(441\) −334.062 −0.0360720
\(442\) 0 0
\(443\) 4424.25 0.474498 0.237249 0.971449i \(-0.423754\pi\)
0.237249 + 0.971449i \(0.423754\pi\)
\(444\) 0 0
\(445\) −2691.63 −0.286731
\(446\) 0 0
\(447\) −5712.68 −0.604475
\(448\) 0 0
\(449\) −12791.4 −1.34446 −0.672230 0.740343i \(-0.734663\pi\)
−0.672230 + 0.740343i \(0.734663\pi\)
\(450\) 0 0
\(451\) 2496.20 0.260624
\(452\) 0 0
\(453\) −11920.6 −1.23637
\(454\) 0 0
\(455\) 347.760 0.0358313
\(456\) 0 0
\(457\) −14733.4 −1.50810 −0.754048 0.656819i \(-0.771902\pi\)
−0.754048 + 0.656819i \(0.771902\pi\)
\(458\) 0 0
\(459\) −16492.2 −1.67710
\(460\) 0 0
\(461\) 383.371 0.0387319 0.0193659 0.999812i \(-0.493835\pi\)
0.0193659 + 0.999812i \(0.493835\pi\)
\(462\) 0 0
\(463\) 17603.9 1.76700 0.883502 0.468428i \(-0.155179\pi\)
0.883502 + 0.468428i \(0.155179\pi\)
\(464\) 0 0
\(465\) −4100.53 −0.408941
\(466\) 0 0
\(467\) 2841.15 0.281526 0.140763 0.990043i \(-0.455044\pi\)
0.140763 + 0.990043i \(0.455044\pi\)
\(468\) 0 0
\(469\) 2778.72 0.273580
\(470\) 0 0
\(471\) −4432.79 −0.433656
\(472\) 0 0
\(473\) −187.621 −0.0182385
\(474\) 0 0
\(475\) 2323.61 0.224451
\(476\) 0 0
\(477\) 4717.30 0.452810
\(478\) 0 0
\(479\) −3302.93 −0.315062 −0.157531 0.987514i \(-0.550353\pi\)
−0.157531 + 0.987514i \(0.550353\pi\)
\(480\) 0 0
\(481\) −1185.52 −0.112381
\(482\) 0 0
\(483\) −1545.88 −0.145632
\(484\) 0 0
\(485\) −14449.3 −1.35280
\(486\) 0 0
\(487\) −11185.4 −1.04078 −0.520388 0.853930i \(-0.674213\pi\)
−0.520388 + 0.853930i \(0.674213\pi\)
\(488\) 0 0
\(489\) −3629.32 −0.335631
\(490\) 0 0
\(491\) −2930.79 −0.269379 −0.134689 0.990888i \(-0.543004\pi\)
−0.134689 + 0.990888i \(0.543004\pi\)
\(492\) 0 0
\(493\) 9678.56 0.884179
\(494\) 0 0
\(495\) −613.628 −0.0557182
\(496\) 0 0
\(497\) −1630.99 −0.147203
\(498\) 0 0
\(499\) 11809.6 1.05946 0.529732 0.848165i \(-0.322293\pi\)
0.529732 + 0.848165i \(0.322293\pi\)
\(500\) 0 0
\(501\) −10195.7 −0.909202
\(502\) 0 0
\(503\) 10205.3 0.904636 0.452318 0.891857i \(-0.350597\pi\)
0.452318 + 0.891857i \(0.350597\pi\)
\(504\) 0 0
\(505\) 8497.60 0.748789
\(506\) 0 0
\(507\) 9704.37 0.850072
\(508\) 0 0
\(509\) −6050.14 −0.526852 −0.263426 0.964680i \(-0.584852\pi\)
−0.263426 + 0.964680i \(0.584852\pi\)
\(510\) 0 0
\(511\) −303.654 −0.0262874
\(512\) 0 0
\(513\) −6081.37 −0.523390
\(514\) 0 0
\(515\) −14375.7 −1.23003
\(516\) 0 0
\(517\) 676.516 0.0575496
\(518\) 0 0
\(519\) 13612.1 1.15126
\(520\) 0 0
\(521\) 2309.38 0.194195 0.0970975 0.995275i \(-0.469044\pi\)
0.0970975 + 0.995275i \(0.469044\pi\)
\(522\) 0 0
\(523\) 11491.2 0.960753 0.480376 0.877063i \(-0.340500\pi\)
0.480376 + 0.877063i \(0.340500\pi\)
\(524\) 0 0
\(525\) −1825.47 −0.151752
\(526\) 0 0
\(527\) 12109.4 1.00093
\(528\) 0 0
\(529\) −9750.51 −0.801390
\(530\) 0 0
\(531\) −1641.34 −0.134140
\(532\) 0 0
\(533\) −1377.81 −0.111969
\(534\) 0 0
\(535\) 5801.17 0.468797
\(536\) 0 0
\(537\) 9044.61 0.726823
\(538\) 0 0
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 4.36215 0.000346661 0 0.000173330 1.00000i \(-0.499945\pi\)
0.000173330 1.00000i \(0.499945\pi\)
\(542\) 0 0
\(543\) −4033.83 −0.318799
\(544\) 0 0
\(545\) 5165.61 0.406001
\(546\) 0 0
\(547\) 2129.15 0.166428 0.0832139 0.996532i \(-0.473482\pi\)
0.0832139 + 0.996532i \(0.473482\pi\)
\(548\) 0 0
\(549\) 4735.22 0.368114
\(550\) 0 0
\(551\) 3568.90 0.275935
\(552\) 0 0
\(553\) −1613.23 −0.124054
\(554\) 0 0
\(555\) −7177.53 −0.548953
\(556\) 0 0
\(557\) 9651.66 0.734208 0.367104 0.930180i \(-0.380349\pi\)
0.367104 + 0.930180i \(0.380349\pi\)
\(558\) 0 0
\(559\) 103.560 0.00783560
\(560\) 0 0
\(561\) −5364.48 −0.403723
\(562\) 0 0
\(563\) −15382.2 −1.15148 −0.575740 0.817633i \(-0.695286\pi\)
−0.575740 + 0.817633i \(0.695286\pi\)
\(564\) 0 0
\(565\) 5680.85 0.423000
\(566\) 0 0
\(567\) 3489.12 0.258429
\(568\) 0 0
\(569\) −17553.4 −1.29328 −0.646640 0.762795i \(-0.723826\pi\)
−0.646640 + 0.762795i \(0.723826\pi\)
\(570\) 0 0
\(571\) −2243.19 −0.164404 −0.0822020 0.996616i \(-0.526195\pi\)
−0.0822020 + 0.996616i \(0.526195\pi\)
\(572\) 0 0
\(573\) −7753.47 −0.565281
\(574\) 0 0
\(575\) 2853.53 0.206957
\(576\) 0 0
\(577\) −10345.0 −0.746393 −0.373197 0.927752i \(-0.621738\pi\)
−0.373197 + 0.927752i \(0.621738\pi\)
\(578\) 0 0
\(579\) −12679.5 −0.910088
\(580\) 0 0
\(581\) 1475.23 0.105341
\(582\) 0 0
\(583\) 7611.22 0.540694
\(584\) 0 0
\(585\) 338.698 0.0239375
\(586\) 0 0
\(587\) 14295.9 1.00520 0.502601 0.864518i \(-0.332376\pi\)
0.502601 + 0.864518i \(0.332376\pi\)
\(588\) 0 0
\(589\) 4465.25 0.312372
\(590\) 0 0
\(591\) −10443.7 −0.726899
\(592\) 0 0
\(593\) 1637.20 0.113376 0.0566878 0.998392i \(-0.481946\pi\)
0.0566878 + 0.998392i \(0.481946\pi\)
\(594\) 0 0
\(595\) −6217.66 −0.428402
\(596\) 0 0
\(597\) −5487.82 −0.376217
\(598\) 0 0
\(599\) 12291.3 0.838415 0.419208 0.907890i \(-0.362308\pi\)
0.419208 + 0.907890i \(0.362308\pi\)
\(600\) 0 0
\(601\) 16840.4 1.14298 0.571492 0.820608i \(-0.306365\pi\)
0.571492 + 0.820608i \(0.306365\pi\)
\(602\) 0 0
\(603\) 2706.31 0.182769
\(604\) 0 0
\(605\) −990.070 −0.0665324
\(606\) 0 0
\(607\) −14037.1 −0.938627 −0.469313 0.883032i \(-0.655499\pi\)
−0.469313 + 0.883032i \(0.655499\pi\)
\(608\) 0 0
\(609\) −2803.80 −0.186561
\(610\) 0 0
\(611\) −373.410 −0.0247243
\(612\) 0 0
\(613\) −8255.31 −0.543929 −0.271965 0.962307i \(-0.587673\pi\)
−0.271965 + 0.962307i \(0.587673\pi\)
\(614\) 0 0
\(615\) −8341.69 −0.546942
\(616\) 0 0
\(617\) −25428.4 −1.65917 −0.829587 0.558377i \(-0.811424\pi\)
−0.829587 + 0.558377i \(0.811424\pi\)
\(618\) 0 0
\(619\) −15165.2 −0.984716 −0.492358 0.870393i \(-0.663865\pi\)
−0.492358 + 0.870393i \(0.663865\pi\)
\(620\) 0 0
\(621\) −7468.30 −0.482596
\(622\) 0 0
\(623\) −2302.67 −0.148081
\(624\) 0 0
\(625\) −4999.34 −0.319958
\(626\) 0 0
\(627\) −1978.12 −0.125994
\(628\) 0 0
\(629\) 21196.1 1.34363
\(630\) 0 0
\(631\) 30014.5 1.89359 0.946797 0.321832i \(-0.104299\pi\)
0.946797 + 0.321832i \(0.104299\pi\)
\(632\) 0 0
\(633\) −1776.69 −0.111559
\(634\) 0 0
\(635\) 4632.44 0.289501
\(636\) 0 0
\(637\) 297.507 0.0185049
\(638\) 0 0
\(639\) −1588.49 −0.0983410
\(640\) 0 0
\(641\) −24408.0 −1.50399 −0.751996 0.659168i \(-0.770909\pi\)
−0.751996 + 0.659168i \(0.770909\pi\)
\(642\) 0 0
\(643\) −27986.9 −1.71648 −0.858240 0.513248i \(-0.828442\pi\)
−0.858240 + 0.513248i \(0.828442\pi\)
\(644\) 0 0
\(645\) 626.984 0.0382751
\(646\) 0 0
\(647\) −13488.5 −0.819610 −0.409805 0.912173i \(-0.634403\pi\)
−0.409805 + 0.912173i \(0.634403\pi\)
\(648\) 0 0
\(649\) −2648.26 −0.160174
\(650\) 0 0
\(651\) −3507.98 −0.211196
\(652\) 0 0
\(653\) −19495.0 −1.16830 −0.584148 0.811647i \(-0.698571\pi\)
−0.584148 + 0.811647i \(0.698571\pi\)
\(654\) 0 0
\(655\) −5293.95 −0.315804
\(656\) 0 0
\(657\) −295.742 −0.0175616
\(658\) 0 0
\(659\) 13211.9 0.780978 0.390489 0.920608i \(-0.372306\pi\)
0.390489 + 0.920608i \(0.372306\pi\)
\(660\) 0 0
\(661\) 16876.6 0.993077 0.496539 0.868015i \(-0.334604\pi\)
0.496539 + 0.868015i \(0.334604\pi\)
\(662\) 0 0
\(663\) 2960.98 0.173446
\(664\) 0 0
\(665\) −2292.72 −0.133696
\(666\) 0 0
\(667\) 4382.83 0.254429
\(668\) 0 0
\(669\) 19228.7 1.11125
\(670\) 0 0
\(671\) 7640.14 0.439560
\(672\) 0 0
\(673\) 20616.1 1.18082 0.590411 0.807103i \(-0.298966\pi\)
0.590411 + 0.807103i \(0.298966\pi\)
\(674\) 0 0
\(675\) −8819.00 −0.502879
\(676\) 0 0
\(677\) −26690.2 −1.51519 −0.757597 0.652723i \(-0.773627\pi\)
−0.757597 + 0.652723i \(0.773627\pi\)
\(678\) 0 0
\(679\) −12361.3 −0.698651
\(680\) 0 0
\(681\) −12732.2 −0.716448
\(682\) 0 0
\(683\) 18297.1 1.02506 0.512532 0.858668i \(-0.328708\pi\)
0.512532 + 0.858668i \(0.328708\pi\)
\(684\) 0 0
\(685\) 3398.89 0.189584
\(686\) 0 0
\(687\) −17461.4 −0.969716
\(688\) 0 0
\(689\) −4201.09 −0.232292
\(690\) 0 0
\(691\) 11807.2 0.650022 0.325011 0.945710i \(-0.394632\pi\)
0.325011 + 0.945710i \(0.394632\pi\)
\(692\) 0 0
\(693\) −524.955 −0.0287755
\(694\) 0 0
\(695\) 16410.1 0.895641
\(696\) 0 0
\(697\) 24634.0 1.33871
\(698\) 0 0
\(699\) −2556.08 −0.138311
\(700\) 0 0
\(701\) −3279.56 −0.176701 −0.0883503 0.996089i \(-0.528159\pi\)
−0.0883503 + 0.996089i \(0.528159\pi\)
\(702\) 0 0
\(703\) 7815.93 0.419322
\(704\) 0 0
\(705\) −2260.75 −0.120773
\(706\) 0 0
\(707\) 7269.66 0.386709
\(708\) 0 0
\(709\) 5192.80 0.275063 0.137531 0.990497i \(-0.456083\pi\)
0.137531 + 0.990497i \(0.456083\pi\)
\(710\) 0 0
\(711\) −1571.20 −0.0828756
\(712\) 0 0
\(713\) 5483.59 0.288025
\(714\) 0 0
\(715\) 546.480 0.0285835
\(716\) 0 0
\(717\) 21049.0 1.09636
\(718\) 0 0
\(719\) 18770.1 0.973581 0.486791 0.873519i \(-0.338167\pi\)
0.486791 + 0.873519i \(0.338167\pi\)
\(720\) 0 0
\(721\) −12298.3 −0.635246
\(722\) 0 0
\(723\) −30495.1 −1.56864
\(724\) 0 0
\(725\) 5175.50 0.265122
\(726\) 0 0
\(727\) −10399.6 −0.530537 −0.265269 0.964175i \(-0.585461\pi\)
−0.265269 + 0.964175i \(0.585461\pi\)
\(728\) 0 0
\(729\) 21826.2 1.10889
\(730\) 0 0
\(731\) −1851.56 −0.0936831
\(732\) 0 0
\(733\) 22751.6 1.14645 0.573226 0.819397i \(-0.305692\pi\)
0.573226 + 0.819397i \(0.305692\pi\)
\(734\) 0 0
\(735\) 1801.20 0.0903924
\(736\) 0 0
\(737\) 4366.56 0.218242
\(738\) 0 0
\(739\) −15447.5 −0.768936 −0.384468 0.923138i \(-0.625615\pi\)
−0.384468 + 0.923138i \(0.625615\pi\)
\(740\) 0 0
\(741\) 1091.84 0.0541293
\(742\) 0 0
\(743\) 36291.9 1.79195 0.895976 0.444103i \(-0.146478\pi\)
0.895976 + 0.444103i \(0.146478\pi\)
\(744\) 0 0
\(745\) −10404.8 −0.511681
\(746\) 0 0
\(747\) 1436.79 0.0703741
\(748\) 0 0
\(749\) 4962.87 0.242108
\(750\) 0 0
\(751\) 21750.9 1.05686 0.528429 0.848978i \(-0.322781\pi\)
0.528429 + 0.848978i \(0.322781\pi\)
\(752\) 0 0
\(753\) 3992.95 0.193242
\(754\) 0 0
\(755\) −21711.5 −1.04657
\(756\) 0 0
\(757\) 13059.9 0.627040 0.313520 0.949582i \(-0.398492\pi\)
0.313520 + 0.949582i \(0.398492\pi\)
\(758\) 0 0
\(759\) −2429.25 −0.116174
\(760\) 0 0
\(761\) −6072.64 −0.289268 −0.144634 0.989485i \(-0.546200\pi\)
−0.144634 + 0.989485i \(0.546200\pi\)
\(762\) 0 0
\(763\) 4419.15 0.209678
\(764\) 0 0
\(765\) −6055.65 −0.286199
\(766\) 0 0
\(767\) 1461.73 0.0688137
\(768\) 0 0
\(769\) −7464.45 −0.350033 −0.175016 0.984566i \(-0.555998\pi\)
−0.175016 + 0.984566i \(0.555998\pi\)
\(770\) 0 0
\(771\) −2306.21 −0.107725
\(772\) 0 0
\(773\) −15112.2 −0.703165 −0.351583 0.936157i \(-0.614356\pi\)
−0.351583 + 0.936157i \(0.614356\pi\)
\(774\) 0 0
\(775\) 6475.34 0.300131
\(776\) 0 0
\(777\) −6140.34 −0.283505
\(778\) 0 0
\(779\) 9083.63 0.417786
\(780\) 0 0
\(781\) −2562.99 −0.117428
\(782\) 0 0
\(783\) −13545.4 −0.618228
\(784\) 0 0
\(785\) −8073.67 −0.367085
\(786\) 0 0
\(787\) −16109.1 −0.729642 −0.364821 0.931078i \(-0.618870\pi\)
−0.364821 + 0.931078i \(0.618870\pi\)
\(788\) 0 0
\(789\) 11541.3 0.520763
\(790\) 0 0
\(791\) 4859.94 0.218457
\(792\) 0 0
\(793\) −4217.06 −0.188842
\(794\) 0 0
\(795\) −25434.8 −1.13469
\(796\) 0 0
\(797\) 17206.3 0.764717 0.382358 0.924014i \(-0.375112\pi\)
0.382358 + 0.924014i \(0.375112\pi\)
\(798\) 0 0
\(799\) 6676.27 0.295606
\(800\) 0 0
\(801\) −2242.67 −0.0989275
\(802\) 0 0
\(803\) −477.170 −0.0209701
\(804\) 0 0
\(805\) −2815.60 −0.123276
\(806\) 0 0
\(807\) 22716.0 0.990880
\(808\) 0 0
\(809\) −23746.9 −1.03201 −0.516006 0.856585i \(-0.672582\pi\)
−0.516006 + 0.856585i \(0.672582\pi\)
\(810\) 0 0
\(811\) −23541.5 −1.01930 −0.509651 0.860381i \(-0.670225\pi\)
−0.509651 + 0.860381i \(0.670225\pi\)
\(812\) 0 0
\(813\) 3157.89 0.136226
\(814\) 0 0
\(815\) −6610.27 −0.284108
\(816\) 0 0
\(817\) −682.750 −0.0292367
\(818\) 0 0
\(819\) 289.755 0.0123625
\(820\) 0 0
\(821\) −28342.3 −1.20482 −0.602408 0.798188i \(-0.705792\pi\)
−0.602408 + 0.798188i \(0.705792\pi\)
\(822\) 0 0
\(823\) 21565.3 0.913388 0.456694 0.889624i \(-0.349033\pi\)
0.456694 + 0.889624i \(0.349033\pi\)
\(824\) 0 0
\(825\) −2868.59 −0.121056
\(826\) 0 0
\(827\) −46430.8 −1.95230 −0.976152 0.217087i \(-0.930344\pi\)
−0.976152 + 0.217087i \(0.930344\pi\)
\(828\) 0 0
\(829\) 11019.8 0.461679 0.230839 0.972992i \(-0.425853\pi\)
0.230839 + 0.972992i \(0.425853\pi\)
\(830\) 0 0
\(831\) 13623.5 0.568705
\(832\) 0 0
\(833\) −5319.18 −0.221247
\(834\) 0 0
\(835\) −18570.0 −0.769629
\(836\) 0 0
\(837\) −16947.4 −0.699864
\(838\) 0 0
\(839\) −19541.4 −0.804107 −0.402053 0.915616i \(-0.631703\pi\)
−0.402053 + 0.915616i \(0.631703\pi\)
\(840\) 0 0
\(841\) −16439.8 −0.674065
\(842\) 0 0
\(843\) −25126.5 −1.02658
\(844\) 0 0
\(845\) 17675.1 0.719576
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 0 0
\(849\) 27145.6 1.09733
\(850\) 0 0
\(851\) 9598.43 0.386639
\(852\) 0 0
\(853\) 5718.29 0.229532 0.114766 0.993393i \(-0.463388\pi\)
0.114766 + 0.993393i \(0.463388\pi\)
\(854\) 0 0
\(855\) −2232.98 −0.0893173
\(856\) 0 0
\(857\) 15047.3 0.599774 0.299887 0.953975i \(-0.403051\pi\)
0.299887 + 0.953975i \(0.403051\pi\)
\(858\) 0 0
\(859\) 5866.22 0.233007 0.116503 0.993190i \(-0.462831\pi\)
0.116503 + 0.993190i \(0.462831\pi\)
\(860\) 0 0
\(861\) −7136.27 −0.282466
\(862\) 0 0
\(863\) 662.351 0.0261260 0.0130630 0.999915i \(-0.495842\pi\)
0.0130630 + 0.999915i \(0.495842\pi\)
\(864\) 0 0
\(865\) 24792.5 0.974531
\(866\) 0 0
\(867\) −30868.3 −1.20916
\(868\) 0 0
\(869\) −2535.08 −0.0989606
\(870\) 0 0
\(871\) −2410.17 −0.0937605
\(872\) 0 0
\(873\) −12039.2 −0.466742
\(874\) 0 0
\(875\) −10484.4 −0.405072
\(876\) 0 0
\(877\) −24887.2 −0.958247 −0.479124 0.877747i \(-0.659045\pi\)
−0.479124 + 0.877747i \(0.659045\pi\)
\(878\) 0 0
\(879\) −26376.7 −1.01213
\(880\) 0 0
\(881\) −11782.4 −0.450577 −0.225289 0.974292i \(-0.572333\pi\)
−0.225289 + 0.974292i \(0.572333\pi\)
\(882\) 0 0
\(883\) 26577.4 1.01291 0.506456 0.862266i \(-0.330955\pi\)
0.506456 + 0.862266i \(0.330955\pi\)
\(884\) 0 0
\(885\) 8849.82 0.336140
\(886\) 0 0
\(887\) 40493.4 1.53285 0.766424 0.642335i \(-0.222034\pi\)
0.766424 + 0.642335i \(0.222034\pi\)
\(888\) 0 0
\(889\) 3963.03 0.149512
\(890\) 0 0
\(891\) 5482.90 0.206155
\(892\) 0 0
\(893\) 2461.83 0.0922530
\(894\) 0 0
\(895\) 16473.4 0.615247
\(896\) 0 0
\(897\) 1340.85 0.0499104
\(898\) 0 0
\(899\) 9945.70 0.368974
\(900\) 0 0
\(901\) 75112.1 2.77730
\(902\) 0 0
\(903\) 536.381 0.0197671
\(904\) 0 0
\(905\) −7347.02 −0.269860
\(906\) 0 0
\(907\) 160.206 0.00586498 0.00293249 0.999996i \(-0.499067\pi\)
0.00293249 + 0.999996i \(0.499067\pi\)
\(908\) 0 0
\(909\) 7080.23 0.258346
\(910\) 0 0
\(911\) 2990.04 0.108743 0.0543713 0.998521i \(-0.482685\pi\)
0.0543713 + 0.998521i \(0.482685\pi\)
\(912\) 0 0
\(913\) 2318.22 0.0840328
\(914\) 0 0
\(915\) −25531.5 −0.922453
\(916\) 0 0
\(917\) −4528.94 −0.163096
\(918\) 0 0
\(919\) 1276.07 0.0458036 0.0229018 0.999738i \(-0.492709\pi\)
0.0229018 + 0.999738i \(0.492709\pi\)
\(920\) 0 0
\(921\) 13657.4 0.488630
\(922\) 0 0
\(923\) 1414.67 0.0504490
\(924\) 0 0
\(925\) 11334.4 0.402889
\(926\) 0 0
\(927\) −11977.8 −0.424384
\(928\) 0 0
\(929\) 33935.0 1.19846 0.599231 0.800576i \(-0.295473\pi\)
0.599231 + 0.800576i \(0.295473\pi\)
\(930\) 0 0
\(931\) −1961.41 −0.0690469
\(932\) 0 0
\(933\) −16588.1 −0.582069
\(934\) 0 0
\(935\) −9770.61 −0.341747
\(936\) 0 0
\(937\) 22344.1 0.779029 0.389515 0.921020i \(-0.372643\pi\)
0.389515 + 0.921020i \(0.372643\pi\)
\(938\) 0 0
\(939\) 24757.4 0.860412
\(940\) 0 0
\(941\) −23429.8 −0.811677 −0.405839 0.913945i \(-0.633020\pi\)
−0.405839 + 0.913945i \(0.633020\pi\)
\(942\) 0 0
\(943\) 11155.3 0.385223
\(944\) 0 0
\(945\) 8701.77 0.299544
\(946\) 0 0
\(947\) −55034.4 −1.88847 −0.944234 0.329276i \(-0.893195\pi\)
−0.944234 + 0.329276i \(0.893195\pi\)
\(948\) 0 0
\(949\) 263.379 0.00900912
\(950\) 0 0
\(951\) −23766.4 −0.810387
\(952\) 0 0
\(953\) 8403.70 0.285648 0.142824 0.989748i \(-0.454382\pi\)
0.142824 + 0.989748i \(0.454382\pi\)
\(954\) 0 0
\(955\) −14121.8 −0.478504
\(956\) 0 0
\(957\) −4405.97 −0.148824
\(958\) 0 0
\(959\) 2907.73 0.0979098
\(960\) 0 0
\(961\) −17347.4 −0.582304
\(962\) 0 0
\(963\) 4833.55 0.161744
\(964\) 0 0
\(965\) −23093.8 −0.770379
\(966\) 0 0
\(967\) 42446.0 1.41155 0.705776 0.708435i \(-0.250598\pi\)
0.705776 + 0.708435i \(0.250598\pi\)
\(968\) 0 0
\(969\) −19521.2 −0.647175
\(970\) 0 0
\(971\) 23798.6 0.786544 0.393272 0.919422i \(-0.371343\pi\)
0.393272 + 0.919422i \(0.371343\pi\)
\(972\) 0 0
\(973\) 14038.8 0.462551
\(974\) 0 0
\(975\) 1583.35 0.0520080
\(976\) 0 0
\(977\) 8379.23 0.274386 0.137193 0.990544i \(-0.456192\pi\)
0.137193 + 0.990544i \(0.456192\pi\)
\(978\) 0 0
\(979\) −3618.48 −0.118128
\(980\) 0 0
\(981\) 4304.00 0.140078
\(982\) 0 0
\(983\) 36510.6 1.18464 0.592322 0.805701i \(-0.298211\pi\)
0.592322 + 0.805701i \(0.298211\pi\)
\(984\) 0 0
\(985\) −19021.7 −0.615312
\(986\) 0 0
\(987\) −1934.06 −0.0623726
\(988\) 0 0
\(989\) −838.459 −0.0269580
\(990\) 0 0
\(991\) −41796.2 −1.33976 −0.669880 0.742470i \(-0.733654\pi\)
−0.669880 + 0.742470i \(0.733654\pi\)
\(992\) 0 0
\(993\) 44698.3 1.42846
\(994\) 0 0
\(995\) −9995.27 −0.318464
\(996\) 0 0
\(997\) 31523.2 1.00136 0.500678 0.865634i \(-0.333084\pi\)
0.500678 + 0.865634i \(0.333084\pi\)
\(998\) 0 0
\(999\) −29664.5 −0.939483
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.4.a.u.1.1 4
4.3 odd 2 616.4.a.f.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
616.4.a.f.1.4 4 4.3 odd 2
1232.4.a.u.1.1 4 1.1 even 1 trivial