Properties

Label 1232.4.a.x.1.4
Level $1232$
Weight $4$
Character 1232.1
Self dual yes
Analytic conductor $72.690$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,4,Mod(1,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1232.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.6903531271\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 116x^{3} - 22x^{2} + 2859x - 2034 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 308)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(5.11231\) of defining polynomial
Character \(\chi\) \(=\) 1232.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.11231 q^{3} -17.6741 q^{5} -7.00000 q^{7} -10.0889 q^{9} +11.0000 q^{11} -38.6100 q^{13} -72.6815 q^{15} -68.4884 q^{17} -5.12965 q^{19} -28.7862 q^{21} -61.6628 q^{23} +187.375 q^{25} -152.521 q^{27} +103.792 q^{29} +15.5970 q^{31} +45.2354 q^{33} +123.719 q^{35} +201.963 q^{37} -158.776 q^{39} +335.950 q^{41} -267.787 q^{43} +178.313 q^{45} +17.5452 q^{47} +49.0000 q^{49} -281.645 q^{51} -505.495 q^{53} -194.416 q^{55} -21.0947 q^{57} +770.119 q^{59} -160.322 q^{61} +70.6225 q^{63} +682.400 q^{65} +33.8051 q^{67} -253.577 q^{69} -613.808 q^{71} +1137.42 q^{73} +770.546 q^{75} -77.0000 q^{77} -259.075 q^{79} -354.813 q^{81} +81.0856 q^{83} +1210.47 q^{85} +426.823 q^{87} -112.157 q^{89} +270.270 q^{91} +64.1398 q^{93} +90.6621 q^{95} +522.596 q^{97} -110.978 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{3} + 15 q^{5} - 35 q^{7} + 102 q^{9} + 55 q^{11} + 70 q^{13} - 17 q^{15} + 104 q^{17} + 94 q^{19} + 35 q^{21} - 73 q^{23} + 576 q^{25} - 365 q^{27} + 14 q^{29} - 457 q^{31} - 55 q^{33} - 105 q^{35}+ \cdots + 1122 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.11231 0.791414 0.395707 0.918377i \(-0.370500\pi\)
0.395707 + 0.918377i \(0.370500\pi\)
\(4\) 0 0
\(5\) −17.6741 −1.58082 −0.790412 0.612576i \(-0.790133\pi\)
−0.790412 + 0.612576i \(0.790133\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) −10.0889 −0.373664
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −38.6100 −0.823731 −0.411865 0.911245i \(-0.635123\pi\)
−0.411865 + 0.911245i \(0.635123\pi\)
\(14\) 0 0
\(15\) −72.6815 −1.25109
\(16\) 0 0
\(17\) −68.4884 −0.977110 −0.488555 0.872533i \(-0.662476\pi\)
−0.488555 + 0.872533i \(0.662476\pi\)
\(18\) 0 0
\(19\) −5.12965 −0.0619380 −0.0309690 0.999520i \(-0.509859\pi\)
−0.0309690 + 0.999520i \(0.509859\pi\)
\(20\) 0 0
\(21\) −28.7862 −0.299126
\(22\) 0 0
\(23\) −61.6628 −0.559026 −0.279513 0.960142i \(-0.590173\pi\)
−0.279513 + 0.960142i \(0.590173\pi\)
\(24\) 0 0
\(25\) 187.375 1.49900
\(26\) 0 0
\(27\) −152.521 −1.08714
\(28\) 0 0
\(29\) 103.792 0.664607 0.332304 0.943172i \(-0.392174\pi\)
0.332304 + 0.943172i \(0.392174\pi\)
\(30\) 0 0
\(31\) 15.5970 0.0903648 0.0451824 0.998979i \(-0.485613\pi\)
0.0451824 + 0.998979i \(0.485613\pi\)
\(32\) 0 0
\(33\) 45.2354 0.238620
\(34\) 0 0
\(35\) 123.719 0.597495
\(36\) 0 0
\(37\) 201.963 0.897367 0.448683 0.893691i \(-0.351893\pi\)
0.448683 + 0.893691i \(0.351893\pi\)
\(38\) 0 0
\(39\) −158.776 −0.651912
\(40\) 0 0
\(41\) 335.950 1.27967 0.639836 0.768512i \(-0.279002\pi\)
0.639836 + 0.768512i \(0.279002\pi\)
\(42\) 0 0
\(43\) −267.787 −0.949702 −0.474851 0.880066i \(-0.657498\pi\)
−0.474851 + 0.880066i \(0.657498\pi\)
\(44\) 0 0
\(45\) 178.313 0.590697
\(46\) 0 0
\(47\) 17.5452 0.0544516 0.0272258 0.999629i \(-0.491333\pi\)
0.0272258 + 0.999629i \(0.491333\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −281.645 −0.773299
\(52\) 0 0
\(53\) −505.495 −1.31010 −0.655048 0.755587i \(-0.727352\pi\)
−0.655048 + 0.755587i \(0.727352\pi\)
\(54\) 0 0
\(55\) −194.416 −0.476636
\(56\) 0 0
\(57\) −21.0947 −0.0490186
\(58\) 0 0
\(59\) 770.119 1.69934 0.849669 0.527317i \(-0.176802\pi\)
0.849669 + 0.527317i \(0.176802\pi\)
\(60\) 0 0
\(61\) −160.322 −0.336511 −0.168255 0.985743i \(-0.553813\pi\)
−0.168255 + 0.985743i \(0.553813\pi\)
\(62\) 0 0
\(63\) 70.6225 0.141232
\(64\) 0 0
\(65\) 682.400 1.30217
\(66\) 0 0
\(67\) 33.8051 0.0616411 0.0308205 0.999525i \(-0.490188\pi\)
0.0308205 + 0.999525i \(0.490188\pi\)
\(68\) 0 0
\(69\) −253.577 −0.442421
\(70\) 0 0
\(71\) −613.808 −1.02599 −0.512997 0.858390i \(-0.671465\pi\)
−0.512997 + 0.858390i \(0.671465\pi\)
\(72\) 0 0
\(73\) 1137.42 1.82363 0.911816 0.410600i \(-0.134681\pi\)
0.911816 + 0.410600i \(0.134681\pi\)
\(74\) 0 0
\(75\) 770.546 1.18633
\(76\) 0 0
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −259.075 −0.368965 −0.184483 0.982836i \(-0.559061\pi\)
−0.184483 + 0.982836i \(0.559061\pi\)
\(80\) 0 0
\(81\) −354.813 −0.486711
\(82\) 0 0
\(83\) 81.0856 0.107233 0.0536163 0.998562i \(-0.482925\pi\)
0.0536163 + 0.998562i \(0.482925\pi\)
\(84\) 0 0
\(85\) 1210.47 1.54464
\(86\) 0 0
\(87\) 426.823 0.525980
\(88\) 0 0
\(89\) −112.157 −0.133580 −0.0667898 0.997767i \(-0.521276\pi\)
−0.0667898 + 0.997767i \(0.521276\pi\)
\(90\) 0 0
\(91\) 270.270 0.311341
\(92\) 0 0
\(93\) 64.1398 0.0715159
\(94\) 0 0
\(95\) 90.6621 0.0979130
\(96\) 0 0
\(97\) 522.596 0.547027 0.273513 0.961868i \(-0.411814\pi\)
0.273513 + 0.961868i \(0.411814\pi\)
\(98\) 0 0
\(99\) −110.978 −0.112664
\(100\) 0 0
\(101\) −1013.32 −0.998305 −0.499153 0.866514i \(-0.666355\pi\)
−0.499153 + 0.866514i \(0.666355\pi\)
\(102\) 0 0
\(103\) 1764.71 1.68818 0.844089 0.536203i \(-0.180142\pi\)
0.844089 + 0.536203i \(0.180142\pi\)
\(104\) 0 0
\(105\) 508.771 0.472866
\(106\) 0 0
\(107\) 1226.42 1.10806 0.554029 0.832497i \(-0.313090\pi\)
0.554029 + 0.832497i \(0.313090\pi\)
\(108\) 0 0
\(109\) 1870.86 1.64400 0.821998 0.569490i \(-0.192859\pi\)
0.821998 + 0.569490i \(0.192859\pi\)
\(110\) 0 0
\(111\) 830.536 0.710189
\(112\) 0 0
\(113\) −414.741 −0.345270 −0.172635 0.984986i \(-0.555228\pi\)
−0.172635 + 0.984986i \(0.555228\pi\)
\(114\) 0 0
\(115\) 1089.84 0.883721
\(116\) 0 0
\(117\) 389.534 0.307798
\(118\) 0 0
\(119\) 479.419 0.369313
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 1381.53 1.01275
\(124\) 0 0
\(125\) −1102.43 −0.788837
\(126\) 0 0
\(127\) −1859.92 −1.29954 −0.649770 0.760131i \(-0.725135\pi\)
−0.649770 + 0.760131i \(0.725135\pi\)
\(128\) 0 0
\(129\) −1101.22 −0.751607
\(130\) 0 0
\(131\) 1550.55 1.03414 0.517069 0.855944i \(-0.327023\pi\)
0.517069 + 0.855944i \(0.327023\pi\)
\(132\) 0 0
\(133\) 35.9075 0.0234104
\(134\) 0 0
\(135\) 2695.68 1.71857
\(136\) 0 0
\(137\) 2480.88 1.54713 0.773563 0.633719i \(-0.218473\pi\)
0.773563 + 0.633719i \(0.218473\pi\)
\(138\) 0 0
\(139\) 892.408 0.544554 0.272277 0.962219i \(-0.412223\pi\)
0.272277 + 0.962219i \(0.412223\pi\)
\(140\) 0 0
\(141\) 72.1512 0.0430938
\(142\) 0 0
\(143\) −424.710 −0.248364
\(144\) 0 0
\(145\) −1834.43 −1.05063
\(146\) 0 0
\(147\) 201.503 0.113059
\(148\) 0 0
\(149\) −2886.72 −1.58718 −0.793588 0.608456i \(-0.791789\pi\)
−0.793588 + 0.608456i \(0.791789\pi\)
\(150\) 0 0
\(151\) −2088.91 −1.12578 −0.562890 0.826532i \(-0.690311\pi\)
−0.562890 + 0.826532i \(0.690311\pi\)
\(152\) 0 0
\(153\) 690.974 0.365111
\(154\) 0 0
\(155\) −275.664 −0.142851
\(156\) 0 0
\(157\) −807.585 −0.410524 −0.205262 0.978707i \(-0.565805\pi\)
−0.205262 + 0.978707i \(0.565805\pi\)
\(158\) 0 0
\(159\) −2078.75 −1.03683
\(160\) 0 0
\(161\) 431.640 0.211292
\(162\) 0 0
\(163\) 2274.59 1.09300 0.546501 0.837458i \(-0.315959\pi\)
0.546501 + 0.837458i \(0.315959\pi\)
\(164\) 0 0
\(165\) −799.497 −0.377217
\(166\) 0 0
\(167\) −638.140 −0.295693 −0.147847 0.989010i \(-0.547234\pi\)
−0.147847 + 0.989010i \(0.547234\pi\)
\(168\) 0 0
\(169\) −706.265 −0.321468
\(170\) 0 0
\(171\) 51.7526 0.0231440
\(172\) 0 0
\(173\) 3426.83 1.50599 0.752996 0.658025i \(-0.228608\pi\)
0.752996 + 0.658025i \(0.228608\pi\)
\(174\) 0 0
\(175\) −1311.63 −0.566570
\(176\) 0 0
\(177\) 3166.97 1.34488
\(178\) 0 0
\(179\) −467.573 −0.195241 −0.0976203 0.995224i \(-0.531123\pi\)
−0.0976203 + 0.995224i \(0.531123\pi\)
\(180\) 0 0
\(181\) 1525.94 0.626641 0.313320 0.949647i \(-0.398559\pi\)
0.313320 + 0.949647i \(0.398559\pi\)
\(182\) 0 0
\(183\) −659.294 −0.266319
\(184\) 0 0
\(185\) −3569.53 −1.41858
\(186\) 0 0
\(187\) −753.372 −0.294610
\(188\) 0 0
\(189\) 1067.65 0.410899
\(190\) 0 0
\(191\) −420.374 −0.159253 −0.0796263 0.996825i \(-0.525373\pi\)
−0.0796263 + 0.996825i \(0.525373\pi\)
\(192\) 0 0
\(193\) −830.253 −0.309653 −0.154826 0.987942i \(-0.549482\pi\)
−0.154826 + 0.987942i \(0.549482\pi\)
\(194\) 0 0
\(195\) 2806.24 1.03056
\(196\) 0 0
\(197\) 461.652 0.166961 0.0834806 0.996509i \(-0.473396\pi\)
0.0834806 + 0.996509i \(0.473396\pi\)
\(198\) 0 0
\(199\) −4811.55 −1.71398 −0.856990 0.515333i \(-0.827668\pi\)
−0.856990 + 0.515333i \(0.827668\pi\)
\(200\) 0 0
\(201\) 139.017 0.0487836
\(202\) 0 0
\(203\) −726.541 −0.251198
\(204\) 0 0
\(205\) −5937.63 −2.02294
\(206\) 0 0
\(207\) 622.112 0.208888
\(208\) 0 0
\(209\) −56.4261 −0.0186750
\(210\) 0 0
\(211\) 689.791 0.225058 0.112529 0.993648i \(-0.464105\pi\)
0.112529 + 0.993648i \(0.464105\pi\)
\(212\) 0 0
\(213\) −2524.17 −0.811986
\(214\) 0 0
\(215\) 4732.91 1.50131
\(216\) 0 0
\(217\) −109.179 −0.0341547
\(218\) 0 0
\(219\) 4677.43 1.44325
\(220\) 0 0
\(221\) 2644.34 0.804876
\(222\) 0 0
\(223\) 2263.55 0.679725 0.339863 0.940475i \(-0.389619\pi\)
0.339863 + 0.940475i \(0.389619\pi\)
\(224\) 0 0
\(225\) −1890.42 −0.560124
\(226\) 0 0
\(227\) −671.396 −0.196309 −0.0981545 0.995171i \(-0.531294\pi\)
−0.0981545 + 0.995171i \(0.531294\pi\)
\(228\) 0 0
\(229\) 4019.93 1.16002 0.580010 0.814610i \(-0.303049\pi\)
0.580010 + 0.814610i \(0.303049\pi\)
\(230\) 0 0
\(231\) −316.648 −0.0901900
\(232\) 0 0
\(233\) 1292.78 0.363488 0.181744 0.983346i \(-0.441826\pi\)
0.181744 + 0.983346i \(0.441826\pi\)
\(234\) 0 0
\(235\) −310.096 −0.0860785
\(236\) 0 0
\(237\) −1065.40 −0.292004
\(238\) 0 0
\(239\) −4517.42 −1.22263 −0.611313 0.791389i \(-0.709359\pi\)
−0.611313 + 0.791389i \(0.709359\pi\)
\(240\) 0 0
\(241\) 2297.08 0.613975 0.306988 0.951714i \(-0.400679\pi\)
0.306988 + 0.951714i \(0.400679\pi\)
\(242\) 0 0
\(243\) 2658.97 0.701947
\(244\) 0 0
\(245\) −866.033 −0.225832
\(246\) 0 0
\(247\) 198.056 0.0510202
\(248\) 0 0
\(249\) 333.449 0.0848653
\(250\) 0 0
\(251\) −7628.70 −1.91840 −0.959202 0.282723i \(-0.908762\pi\)
−0.959202 + 0.282723i \(0.908762\pi\)
\(252\) 0 0
\(253\) −678.291 −0.168553
\(254\) 0 0
\(255\) 4977.84 1.22245
\(256\) 0 0
\(257\) 6925.57 1.68095 0.840477 0.541848i \(-0.182275\pi\)
0.840477 + 0.541848i \(0.182275\pi\)
\(258\) 0 0
\(259\) −1413.74 −0.339173
\(260\) 0 0
\(261\) −1047.15 −0.248340
\(262\) 0 0
\(263\) −5692.15 −1.33457 −0.667287 0.744801i \(-0.732544\pi\)
−0.667287 + 0.744801i \(0.732544\pi\)
\(264\) 0 0
\(265\) 8934.20 2.07103
\(266\) 0 0
\(267\) −461.223 −0.105717
\(268\) 0 0
\(269\) −5606.13 −1.27068 −0.635338 0.772234i \(-0.719139\pi\)
−0.635338 + 0.772234i \(0.719139\pi\)
\(270\) 0 0
\(271\) 1984.56 0.444847 0.222424 0.974950i \(-0.428603\pi\)
0.222424 + 0.974950i \(0.428603\pi\)
\(272\) 0 0
\(273\) 1111.43 0.246400
\(274\) 0 0
\(275\) 2061.13 0.451967
\(276\) 0 0
\(277\) 5968.02 1.29453 0.647263 0.762267i \(-0.275914\pi\)
0.647263 + 0.762267i \(0.275914\pi\)
\(278\) 0 0
\(279\) −157.357 −0.0337660
\(280\) 0 0
\(281\) −581.065 −0.123357 −0.0616787 0.998096i \(-0.519645\pi\)
−0.0616787 + 0.998096i \(0.519645\pi\)
\(282\) 0 0
\(283\) 1844.26 0.387385 0.193693 0.981062i \(-0.437954\pi\)
0.193693 + 0.981062i \(0.437954\pi\)
\(284\) 0 0
\(285\) 372.831 0.0774897
\(286\) 0 0
\(287\) −2351.65 −0.483670
\(288\) 0 0
\(289\) −222.340 −0.0452553
\(290\) 0 0
\(291\) 2149.08 0.432925
\(292\) 0 0
\(293\) −1233.40 −0.245926 −0.122963 0.992411i \(-0.539240\pi\)
−0.122963 + 0.992411i \(0.539240\pi\)
\(294\) 0 0
\(295\) −13611.2 −2.68635
\(296\) 0 0
\(297\) −1677.73 −0.327784
\(298\) 0 0
\(299\) 2380.80 0.460487
\(300\) 0 0
\(301\) 1874.51 0.358954
\(302\) 0 0
\(303\) −4167.07 −0.790073
\(304\) 0 0
\(305\) 2833.56 0.531964
\(306\) 0 0
\(307\) −3818.52 −0.709884 −0.354942 0.934888i \(-0.615499\pi\)
−0.354942 + 0.934888i \(0.615499\pi\)
\(308\) 0 0
\(309\) 7257.04 1.33605
\(310\) 0 0
\(311\) 7872.68 1.43543 0.717715 0.696337i \(-0.245188\pi\)
0.717715 + 0.696337i \(0.245188\pi\)
\(312\) 0 0
\(313\) 8834.84 1.59545 0.797723 0.603024i \(-0.206037\pi\)
0.797723 + 0.603024i \(0.206037\pi\)
\(314\) 0 0
\(315\) −1248.19 −0.223262
\(316\) 0 0
\(317\) 6393.43 1.13278 0.566389 0.824138i \(-0.308340\pi\)
0.566389 + 0.824138i \(0.308340\pi\)
\(318\) 0 0
\(319\) 1141.71 0.200387
\(320\) 0 0
\(321\) 5043.40 0.876932
\(322\) 0 0
\(323\) 351.321 0.0605202
\(324\) 0 0
\(325\) −7234.57 −1.23478
\(326\) 0 0
\(327\) 7693.54 1.30108
\(328\) 0 0
\(329\) −122.816 −0.0205808
\(330\) 0 0
\(331\) −3793.39 −0.629920 −0.314960 0.949105i \(-0.601991\pi\)
−0.314960 + 0.949105i \(0.601991\pi\)
\(332\) 0 0
\(333\) −2037.59 −0.335314
\(334\) 0 0
\(335\) −597.477 −0.0974437
\(336\) 0 0
\(337\) 3321.51 0.536896 0.268448 0.963294i \(-0.413489\pi\)
0.268448 + 0.963294i \(0.413489\pi\)
\(338\) 0 0
\(339\) −1705.54 −0.273251
\(340\) 0 0
\(341\) 171.567 0.0272460
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 4481.75 0.699389
\(346\) 0 0
\(347\) −4850.73 −0.750434 −0.375217 0.926937i \(-0.622432\pi\)
−0.375217 + 0.926937i \(0.622432\pi\)
\(348\) 0 0
\(349\) 3178.58 0.487522 0.243761 0.969835i \(-0.421619\pi\)
0.243761 + 0.969835i \(0.421619\pi\)
\(350\) 0 0
\(351\) 5888.84 0.895508
\(352\) 0 0
\(353\) −12138.9 −1.83029 −0.915143 0.403130i \(-0.867922\pi\)
−0.915143 + 0.403130i \(0.867922\pi\)
\(354\) 0 0
\(355\) 10848.5 1.62192
\(356\) 0 0
\(357\) 1971.52 0.292279
\(358\) 0 0
\(359\) 4039.89 0.593920 0.296960 0.954890i \(-0.404027\pi\)
0.296960 + 0.954890i \(0.404027\pi\)
\(360\) 0 0
\(361\) −6832.69 −0.996164
\(362\) 0 0
\(363\) 497.589 0.0719467
\(364\) 0 0
\(365\) −20102.9 −2.88284
\(366\) 0 0
\(367\) 5765.75 0.820081 0.410041 0.912067i \(-0.365515\pi\)
0.410041 + 0.912067i \(0.365515\pi\)
\(368\) 0 0
\(369\) −3389.37 −0.478167
\(370\) 0 0
\(371\) 3538.47 0.495170
\(372\) 0 0
\(373\) 9444.30 1.31101 0.655506 0.755190i \(-0.272456\pi\)
0.655506 + 0.755190i \(0.272456\pi\)
\(374\) 0 0
\(375\) −4533.55 −0.624297
\(376\) 0 0
\(377\) −4007.40 −0.547457
\(378\) 0 0
\(379\) 10942.6 1.48308 0.741538 0.670911i \(-0.234097\pi\)
0.741538 + 0.670911i \(0.234097\pi\)
\(380\) 0 0
\(381\) −7648.58 −1.02847
\(382\) 0 0
\(383\) −6614.65 −0.882488 −0.441244 0.897387i \(-0.645463\pi\)
−0.441244 + 0.897387i \(0.645463\pi\)
\(384\) 0 0
\(385\) 1360.91 0.180152
\(386\) 0 0
\(387\) 2701.69 0.354869
\(388\) 0 0
\(389\) 4425.60 0.576830 0.288415 0.957505i \(-0.406872\pi\)
0.288415 + 0.957505i \(0.406872\pi\)
\(390\) 0 0
\(391\) 4223.19 0.546230
\(392\) 0 0
\(393\) 6376.33 0.818431
\(394\) 0 0
\(395\) 4578.94 0.583269
\(396\) 0 0
\(397\) 3940.19 0.498116 0.249058 0.968489i \(-0.419879\pi\)
0.249058 + 0.968489i \(0.419879\pi\)
\(398\) 0 0
\(399\) 147.663 0.0185273
\(400\) 0 0
\(401\) −2686.28 −0.334530 −0.167265 0.985912i \(-0.553493\pi\)
−0.167265 + 0.985912i \(0.553493\pi\)
\(402\) 0 0
\(403\) −602.202 −0.0744362
\(404\) 0 0
\(405\) 6271.01 0.769405
\(406\) 0 0
\(407\) 2221.60 0.270566
\(408\) 0 0
\(409\) −7641.24 −0.923801 −0.461901 0.886932i \(-0.652832\pi\)
−0.461901 + 0.886932i \(0.652832\pi\)
\(410\) 0 0
\(411\) 10202.2 1.22442
\(412\) 0 0
\(413\) −5390.83 −0.642289
\(414\) 0 0
\(415\) −1433.12 −0.169516
\(416\) 0 0
\(417\) 3669.86 0.430968
\(418\) 0 0
\(419\) −1814.36 −0.211545 −0.105773 0.994390i \(-0.533732\pi\)
−0.105773 + 0.994390i \(0.533732\pi\)
\(420\) 0 0
\(421\) 10705.0 1.23927 0.619634 0.784891i \(-0.287281\pi\)
0.619634 + 0.784891i \(0.287281\pi\)
\(422\) 0 0
\(423\) −177.012 −0.0203466
\(424\) 0 0
\(425\) −12833.0 −1.46469
\(426\) 0 0
\(427\) 1122.26 0.127189
\(428\) 0 0
\(429\) −1746.54 −0.196559
\(430\) 0 0
\(431\) 15741.5 1.75926 0.879631 0.475656i \(-0.157789\pi\)
0.879631 + 0.475656i \(0.157789\pi\)
\(432\) 0 0
\(433\) 10532.0 1.16890 0.584450 0.811429i \(-0.301310\pi\)
0.584450 + 0.811429i \(0.301310\pi\)
\(434\) 0 0
\(435\) −7543.73 −0.831481
\(436\) 0 0
\(437\) 316.308 0.0346249
\(438\) 0 0
\(439\) −6780.12 −0.737124 −0.368562 0.929603i \(-0.620150\pi\)
−0.368562 + 0.929603i \(0.620150\pi\)
\(440\) 0 0
\(441\) −494.357 −0.0533805
\(442\) 0 0
\(443\) 8625.58 0.925087 0.462544 0.886597i \(-0.346937\pi\)
0.462544 + 0.886597i \(0.346937\pi\)
\(444\) 0 0
\(445\) 1982.27 0.211166
\(446\) 0 0
\(447\) −11871.1 −1.25611
\(448\) 0 0
\(449\) −15570.0 −1.63651 −0.818257 0.574853i \(-0.805059\pi\)
−0.818257 + 0.574853i \(0.805059\pi\)
\(450\) 0 0
\(451\) 3695.45 0.385836
\(452\) 0 0
\(453\) −8590.23 −0.890958
\(454\) 0 0
\(455\) −4776.80 −0.492175
\(456\) 0 0
\(457\) −6885.93 −0.704837 −0.352418 0.935843i \(-0.614641\pi\)
−0.352418 + 0.935843i \(0.614641\pi\)
\(458\) 0 0
\(459\) 10445.9 1.06225
\(460\) 0 0
\(461\) −9806.71 −0.990768 −0.495384 0.868674i \(-0.664973\pi\)
−0.495384 + 0.868674i \(0.664973\pi\)
\(462\) 0 0
\(463\) −16156.6 −1.62173 −0.810863 0.585236i \(-0.801002\pi\)
−0.810863 + 0.585236i \(0.801002\pi\)
\(464\) 0 0
\(465\) −1133.62 −0.113054
\(466\) 0 0
\(467\) −14714.2 −1.45801 −0.729006 0.684507i \(-0.760018\pi\)
−0.729006 + 0.684507i \(0.760018\pi\)
\(468\) 0 0
\(469\) −236.636 −0.0232981
\(470\) 0 0
\(471\) −3321.04 −0.324894
\(472\) 0 0
\(473\) −2945.66 −0.286346
\(474\) 0 0
\(475\) −961.170 −0.0928453
\(476\) 0 0
\(477\) 5099.90 0.489536
\(478\) 0 0
\(479\) −7513.08 −0.716663 −0.358331 0.933594i \(-0.616654\pi\)
−0.358331 + 0.933594i \(0.616654\pi\)
\(480\) 0 0
\(481\) −7797.81 −0.739189
\(482\) 0 0
\(483\) 1775.04 0.167219
\(484\) 0 0
\(485\) −9236.44 −0.864753
\(486\) 0 0
\(487\) 2434.28 0.226505 0.113253 0.993566i \(-0.463873\pi\)
0.113253 + 0.993566i \(0.463873\pi\)
\(488\) 0 0
\(489\) 9353.80 0.865017
\(490\) 0 0
\(491\) −16178.6 −1.48703 −0.743513 0.668721i \(-0.766842\pi\)
−0.743513 + 0.668721i \(0.766842\pi\)
\(492\) 0 0
\(493\) −7108.52 −0.649395
\(494\) 0 0
\(495\) 1961.44 0.178102
\(496\) 0 0
\(497\) 4296.65 0.387789
\(498\) 0 0
\(499\) −3060.57 −0.274569 −0.137284 0.990532i \(-0.543837\pi\)
−0.137284 + 0.990532i \(0.543837\pi\)
\(500\) 0 0
\(501\) −2624.23 −0.234016
\(502\) 0 0
\(503\) 17466.1 1.54826 0.774129 0.633028i \(-0.218188\pi\)
0.774129 + 0.633028i \(0.218188\pi\)
\(504\) 0 0
\(505\) 17909.5 1.57814
\(506\) 0 0
\(507\) −2904.38 −0.254414
\(508\) 0 0
\(509\) −6519.58 −0.567731 −0.283866 0.958864i \(-0.591617\pi\)
−0.283866 + 0.958864i \(0.591617\pi\)
\(510\) 0 0
\(511\) −7961.95 −0.689268
\(512\) 0 0
\(513\) 782.379 0.0673350
\(514\) 0 0
\(515\) −31189.8 −2.66871
\(516\) 0 0
\(517\) 192.997 0.0164178
\(518\) 0 0
\(519\) 14092.2 1.19186
\(520\) 0 0
\(521\) −7476.59 −0.628705 −0.314352 0.949306i \(-0.601787\pi\)
−0.314352 + 0.949306i \(0.601787\pi\)
\(522\) 0 0
\(523\) 2830.39 0.236643 0.118321 0.992975i \(-0.462249\pi\)
0.118321 + 0.992975i \(0.462249\pi\)
\(524\) 0 0
\(525\) −5393.82 −0.448392
\(526\) 0 0
\(527\) −1068.21 −0.0882963
\(528\) 0 0
\(529\) −8364.70 −0.687490
\(530\) 0 0
\(531\) −7769.67 −0.634981
\(532\) 0 0
\(533\) −12971.0 −1.05410
\(534\) 0 0
\(535\) −21675.9 −1.75164
\(536\) 0 0
\(537\) −1922.80 −0.154516
\(538\) 0 0
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −21924.3 −1.74233 −0.871165 0.490990i \(-0.836635\pi\)
−0.871165 + 0.490990i \(0.836635\pi\)
\(542\) 0 0
\(543\) 6275.12 0.495932
\(544\) 0 0
\(545\) −33065.8 −2.59887
\(546\) 0 0
\(547\) −10489.7 −0.819937 −0.409969 0.912100i \(-0.634460\pi\)
−0.409969 + 0.912100i \(0.634460\pi\)
\(548\) 0 0
\(549\) 1617.48 0.125742
\(550\) 0 0
\(551\) −532.414 −0.0411644
\(552\) 0 0
\(553\) 1813.53 0.139456
\(554\) 0 0
\(555\) −14679.0 −1.12268
\(556\) 0 0
\(557\) 19390.1 1.47502 0.737508 0.675338i \(-0.236002\pi\)
0.737508 + 0.675338i \(0.236002\pi\)
\(558\) 0 0
\(559\) 10339.3 0.782298
\(560\) 0 0
\(561\) −3098.10 −0.233158
\(562\) 0 0
\(563\) 18053.0 1.35141 0.675703 0.737174i \(-0.263840\pi\)
0.675703 + 0.737174i \(0.263840\pi\)
\(564\) 0 0
\(565\) 7330.18 0.545811
\(566\) 0 0
\(567\) 2483.69 0.183960
\(568\) 0 0
\(569\) −19010.3 −1.40062 −0.700311 0.713838i \(-0.746955\pi\)
−0.700311 + 0.713838i \(0.746955\pi\)
\(570\) 0 0
\(571\) 10933.2 0.801296 0.400648 0.916232i \(-0.368785\pi\)
0.400648 + 0.916232i \(0.368785\pi\)
\(572\) 0 0
\(573\) −1728.71 −0.126035
\(574\) 0 0
\(575\) −11554.1 −0.837981
\(576\) 0 0
\(577\) 5529.42 0.398948 0.199474 0.979903i \(-0.436077\pi\)
0.199474 + 0.979903i \(0.436077\pi\)
\(578\) 0 0
\(579\) −3414.26 −0.245063
\(580\) 0 0
\(581\) −567.599 −0.0405301
\(582\) 0 0
\(583\) −5560.45 −0.395009
\(584\) 0 0
\(585\) −6884.68 −0.486575
\(586\) 0 0
\(587\) 1775.79 0.124863 0.0624316 0.998049i \(-0.480114\pi\)
0.0624316 + 0.998049i \(0.480114\pi\)
\(588\) 0 0
\(589\) −80.0072 −0.00559701
\(590\) 0 0
\(591\) 1898.46 0.132135
\(592\) 0 0
\(593\) 21576.6 1.49418 0.747088 0.664725i \(-0.231451\pi\)
0.747088 + 0.664725i \(0.231451\pi\)
\(594\) 0 0
\(595\) −8473.32 −0.583819
\(596\) 0 0
\(597\) −19786.6 −1.35647
\(598\) 0 0
\(599\) −24669.6 −1.68276 −0.841379 0.540446i \(-0.818255\pi\)
−0.841379 + 0.540446i \(0.818255\pi\)
\(600\) 0 0
\(601\) 7791.77 0.528840 0.264420 0.964408i \(-0.414819\pi\)
0.264420 + 0.964408i \(0.414819\pi\)
\(602\) 0 0
\(603\) −341.057 −0.0230330
\(604\) 0 0
\(605\) −2138.57 −0.143711
\(606\) 0 0
\(607\) −15801.6 −1.05662 −0.528309 0.849052i \(-0.677174\pi\)
−0.528309 + 0.849052i \(0.677174\pi\)
\(608\) 0 0
\(609\) −2987.76 −0.198802
\(610\) 0 0
\(611\) −677.420 −0.0448535
\(612\) 0 0
\(613\) 26965.8 1.77674 0.888368 0.459132i \(-0.151839\pi\)
0.888368 + 0.459132i \(0.151839\pi\)
\(614\) 0 0
\(615\) −24417.3 −1.60098
\(616\) 0 0
\(617\) 12991.7 0.847690 0.423845 0.905735i \(-0.360680\pi\)
0.423845 + 0.905735i \(0.360680\pi\)
\(618\) 0 0
\(619\) −10646.4 −0.691302 −0.345651 0.938363i \(-0.612342\pi\)
−0.345651 + 0.938363i \(0.612342\pi\)
\(620\) 0 0
\(621\) 9404.88 0.607737
\(622\) 0 0
\(623\) 785.097 0.0504883
\(624\) 0 0
\(625\) −3937.37 −0.251991
\(626\) 0 0
\(627\) −232.042 −0.0147797
\(628\) 0 0
\(629\) −13832.1 −0.876826
\(630\) 0 0
\(631\) 30473.4 1.92255 0.961273 0.275597i \(-0.0888757\pi\)
0.961273 + 0.275597i \(0.0888757\pi\)
\(632\) 0 0
\(633\) 2836.63 0.178114
\(634\) 0 0
\(635\) 32872.6 2.05434
\(636\) 0 0
\(637\) −1891.89 −0.117676
\(638\) 0 0
\(639\) 6192.66 0.383377
\(640\) 0 0
\(641\) −11802.0 −0.727225 −0.363613 0.931550i \(-0.618457\pi\)
−0.363613 + 0.931550i \(0.618457\pi\)
\(642\) 0 0
\(643\) −21675.7 −1.32940 −0.664700 0.747110i \(-0.731441\pi\)
−0.664700 + 0.747110i \(0.731441\pi\)
\(644\) 0 0
\(645\) 19463.2 1.18816
\(646\) 0 0
\(647\) −20491.7 −1.24515 −0.622575 0.782560i \(-0.713913\pi\)
−0.622575 + 0.782560i \(0.713913\pi\)
\(648\) 0 0
\(649\) 8471.31 0.512370
\(650\) 0 0
\(651\) −448.978 −0.0270305
\(652\) 0 0
\(653\) −7670.49 −0.459677 −0.229839 0.973229i \(-0.573820\pi\)
−0.229839 + 0.973229i \(0.573820\pi\)
\(654\) 0 0
\(655\) −27404.6 −1.63479
\(656\) 0 0
\(657\) −11475.4 −0.681425
\(658\) 0 0
\(659\) −4241.73 −0.250735 −0.125367 0.992110i \(-0.540011\pi\)
−0.125367 + 0.992110i \(0.540011\pi\)
\(660\) 0 0
\(661\) 33241.0 1.95602 0.978008 0.208567i \(-0.0668800\pi\)
0.978008 + 0.208567i \(0.0668800\pi\)
\(662\) 0 0
\(663\) 10874.3 0.636990
\(664\) 0 0
\(665\) −634.635 −0.0370076
\(666\) 0 0
\(667\) −6400.08 −0.371532
\(668\) 0 0
\(669\) 9308.43 0.537944
\(670\) 0 0
\(671\) −1763.54 −0.101462
\(672\) 0 0
\(673\) −14244.4 −0.815869 −0.407934 0.913011i \(-0.633751\pi\)
−0.407934 + 0.913011i \(0.633751\pi\)
\(674\) 0 0
\(675\) −28578.7 −1.62962
\(676\) 0 0
\(677\) 26689.5 1.51516 0.757578 0.652745i \(-0.226383\pi\)
0.757578 + 0.652745i \(0.226383\pi\)
\(678\) 0 0
\(679\) −3658.17 −0.206757
\(680\) 0 0
\(681\) −2760.99 −0.155362
\(682\) 0 0
\(683\) 21550.1 1.20731 0.603653 0.797247i \(-0.293711\pi\)
0.603653 + 0.797247i \(0.293711\pi\)
\(684\) 0 0
\(685\) −43847.5 −2.44573
\(686\) 0 0
\(687\) 16531.2 0.918055
\(688\) 0 0
\(689\) 19517.2 1.07917
\(690\) 0 0
\(691\) 8736.96 0.480998 0.240499 0.970649i \(-0.422689\pi\)
0.240499 + 0.970649i \(0.422689\pi\)
\(692\) 0 0
\(693\) 776.847 0.0425829
\(694\) 0 0
\(695\) −15772.5 −0.860844
\(696\) 0 0
\(697\) −23008.7 −1.25038
\(698\) 0 0
\(699\) 5316.30 0.287669
\(700\) 0 0
\(701\) 7377.01 0.397469 0.198735 0.980053i \(-0.436317\pi\)
0.198735 + 0.980053i \(0.436317\pi\)
\(702\) 0 0
\(703\) −1036.00 −0.0555811
\(704\) 0 0
\(705\) −1275.21 −0.0681237
\(706\) 0 0
\(707\) 7093.22 0.377324
\(708\) 0 0
\(709\) 36663.7 1.94208 0.971041 0.238914i \(-0.0767915\pi\)
0.971041 + 0.238914i \(0.0767915\pi\)
\(710\) 0 0
\(711\) 2613.79 0.137869
\(712\) 0 0
\(713\) −961.756 −0.0505162
\(714\) 0 0
\(715\) 7506.40 0.392620
\(716\) 0 0
\(717\) −18577.0 −0.967604
\(718\) 0 0
\(719\) −17416.8 −0.903390 −0.451695 0.892173i \(-0.649180\pi\)
−0.451695 + 0.892173i \(0.649180\pi\)
\(720\) 0 0
\(721\) −12353.0 −0.638071
\(722\) 0 0
\(723\) 9446.31 0.485909
\(724\) 0 0
\(725\) 19448.0 0.996249
\(726\) 0 0
\(727\) −15872.3 −0.809725 −0.404863 0.914378i \(-0.632681\pi\)
−0.404863 + 0.914378i \(0.632681\pi\)
\(728\) 0 0
\(729\) 20514.4 1.04224
\(730\) 0 0
\(731\) 18340.3 0.927963
\(732\) 0 0
\(733\) −21946.8 −1.10590 −0.552950 0.833215i \(-0.686498\pi\)
−0.552950 + 0.833215i \(0.686498\pi\)
\(734\) 0 0
\(735\) −3561.40 −0.178727
\(736\) 0 0
\(737\) 371.856 0.0185855
\(738\) 0 0
\(739\) 15934.2 0.793165 0.396583 0.917999i \(-0.370196\pi\)
0.396583 + 0.917999i \(0.370196\pi\)
\(740\) 0 0
\(741\) 814.467 0.0403781
\(742\) 0 0
\(743\) −17728.9 −0.875384 −0.437692 0.899125i \(-0.644204\pi\)
−0.437692 + 0.899125i \(0.644204\pi\)
\(744\) 0 0
\(745\) 51020.3 2.50905
\(746\) 0 0
\(747\) −818.067 −0.0400689
\(748\) 0 0
\(749\) −8584.92 −0.418806
\(750\) 0 0
\(751\) 6806.02 0.330699 0.165350 0.986235i \(-0.447125\pi\)
0.165350 + 0.986235i \(0.447125\pi\)
\(752\) 0 0
\(753\) −31371.6 −1.51825
\(754\) 0 0
\(755\) 36919.7 1.77966
\(756\) 0 0
\(757\) −1527.50 −0.0733395 −0.0366697 0.999327i \(-0.511675\pi\)
−0.0366697 + 0.999327i \(0.511675\pi\)
\(758\) 0 0
\(759\) −2789.34 −0.133395
\(760\) 0 0
\(761\) 23250.9 1.10755 0.553774 0.832667i \(-0.313187\pi\)
0.553774 + 0.832667i \(0.313187\pi\)
\(762\) 0 0
\(763\) −13096.0 −0.621372
\(764\) 0 0
\(765\) −12212.4 −0.577176
\(766\) 0 0
\(767\) −29734.3 −1.39980
\(768\) 0 0
\(769\) −3388.31 −0.158889 −0.0794444 0.996839i \(-0.525315\pi\)
−0.0794444 + 0.996839i \(0.525315\pi\)
\(770\) 0 0
\(771\) 28480.1 1.33033
\(772\) 0 0
\(773\) 21704.4 1.00990 0.504951 0.863148i \(-0.331511\pi\)
0.504951 + 0.863148i \(0.331511\pi\)
\(774\) 0 0
\(775\) 2922.50 0.135457
\(776\) 0 0
\(777\) −5813.75 −0.268426
\(778\) 0 0
\(779\) −1723.30 −0.0792603
\(780\) 0 0
\(781\) −6751.89 −0.309349
\(782\) 0 0
\(783\) −15830.4 −0.722519
\(784\) 0 0
\(785\) 14273.4 0.648966
\(786\) 0 0
\(787\) 31201.3 1.41322 0.706612 0.707602i \(-0.250223\pi\)
0.706612 + 0.707602i \(0.250223\pi\)
\(788\) 0 0
\(789\) −23407.9 −1.05620
\(790\) 0 0
\(791\) 2903.18 0.130500
\(792\) 0 0
\(793\) 6190.05 0.277194
\(794\) 0 0
\(795\) 36740.2 1.63904
\(796\) 0 0
\(797\) 28099.4 1.24885 0.624424 0.781085i \(-0.285334\pi\)
0.624424 + 0.781085i \(0.285334\pi\)
\(798\) 0 0
\(799\) −1201.64 −0.0532053
\(800\) 0 0
\(801\) 1131.54 0.0499139
\(802\) 0 0
\(803\) 12511.6 0.549845
\(804\) 0 0
\(805\) −7628.87 −0.334015
\(806\) 0 0
\(807\) −23054.1 −1.00563
\(808\) 0 0
\(809\) 10856.4 0.471804 0.235902 0.971777i \(-0.424196\pi\)
0.235902 + 0.971777i \(0.424196\pi\)
\(810\) 0 0
\(811\) 42422.7 1.83682 0.918412 0.395626i \(-0.129472\pi\)
0.918412 + 0.395626i \(0.129472\pi\)
\(812\) 0 0
\(813\) 8161.13 0.352058
\(814\) 0 0
\(815\) −40201.4 −1.72784
\(816\) 0 0
\(817\) 1373.65 0.0588226
\(818\) 0 0
\(819\) −2726.74 −0.116337
\(820\) 0 0
\(821\) 7592.23 0.322741 0.161371 0.986894i \(-0.448409\pi\)
0.161371 + 0.986894i \(0.448409\pi\)
\(822\) 0 0
\(823\) 10393.5 0.440214 0.220107 0.975476i \(-0.429359\pi\)
0.220107 + 0.975476i \(0.429359\pi\)
\(824\) 0 0
\(825\) 8476.00 0.357693
\(826\) 0 0
\(827\) 35799.1 1.50527 0.752634 0.658439i \(-0.228783\pi\)
0.752634 + 0.658439i \(0.228783\pi\)
\(828\) 0 0
\(829\) −16267.6 −0.681543 −0.340771 0.940146i \(-0.610688\pi\)
−0.340771 + 0.940146i \(0.610688\pi\)
\(830\) 0 0
\(831\) 24542.3 1.02451
\(832\) 0 0
\(833\) −3355.93 −0.139587
\(834\) 0 0
\(835\) 11278.6 0.467439
\(836\) 0 0
\(837\) −2378.87 −0.0982389
\(838\) 0 0
\(839\) −45586.0 −1.87581 −0.937905 0.346894i \(-0.887237\pi\)
−0.937905 + 0.346894i \(0.887237\pi\)
\(840\) 0 0
\(841\) −13616.3 −0.558297
\(842\) 0 0
\(843\) −2389.52 −0.0976267
\(844\) 0 0
\(845\) 12482.6 0.508184
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 0 0
\(849\) 7584.18 0.306582
\(850\) 0 0
\(851\) −12453.6 −0.501651
\(852\) 0 0
\(853\) −10013.8 −0.401952 −0.200976 0.979596i \(-0.564411\pi\)
−0.200976 + 0.979596i \(0.564411\pi\)
\(854\) 0 0
\(855\) −914.683 −0.0365866
\(856\) 0 0
\(857\) −15420.1 −0.614633 −0.307316 0.951607i \(-0.599431\pi\)
−0.307316 + 0.951607i \(0.599431\pi\)
\(858\) 0 0
\(859\) 1411.56 0.0560673 0.0280336 0.999607i \(-0.491075\pi\)
0.0280336 + 0.999607i \(0.491075\pi\)
\(860\) 0 0
\(861\) −9670.70 −0.382784
\(862\) 0 0
\(863\) −42553.1 −1.67848 −0.839238 0.543765i \(-0.816998\pi\)
−0.839238 + 0.543765i \(0.816998\pi\)
\(864\) 0 0
\(865\) −60566.2 −2.38071
\(866\) 0 0
\(867\) −914.329 −0.0358157
\(868\) 0 0
\(869\) −2849.83 −0.111247
\(870\) 0 0
\(871\) −1305.22 −0.0507757
\(872\) 0 0
\(873\) −5272.43 −0.204404
\(874\) 0 0
\(875\) 7717.03 0.298152
\(876\) 0 0
\(877\) 35063.1 1.35005 0.675026 0.737794i \(-0.264132\pi\)
0.675026 + 0.737794i \(0.264132\pi\)
\(878\) 0 0
\(879\) −5072.14 −0.194629
\(880\) 0 0
\(881\) 8276.97 0.316525 0.158262 0.987397i \(-0.449411\pi\)
0.158262 + 0.987397i \(0.449411\pi\)
\(882\) 0 0
\(883\) 10791.2 0.411273 0.205636 0.978628i \(-0.434074\pi\)
0.205636 + 0.978628i \(0.434074\pi\)
\(884\) 0 0
\(885\) −55973.4 −2.12602
\(886\) 0 0
\(887\) 31684.7 1.19940 0.599701 0.800224i \(-0.295286\pi\)
0.599701 + 0.800224i \(0.295286\pi\)
\(888\) 0 0
\(889\) 13019.5 0.491180
\(890\) 0 0
\(891\) −3902.94 −0.146749
\(892\) 0 0
\(893\) −90.0006 −0.00337262
\(894\) 0 0
\(895\) 8263.96 0.308641
\(896\) 0 0
\(897\) 9790.60 0.364435
\(898\) 0 0
\(899\) 1618.84 0.0600571
\(900\) 0 0
\(901\) 34620.6 1.28011
\(902\) 0 0
\(903\) 7708.57 0.284081
\(904\) 0 0
\(905\) −26969.6 −0.990608
\(906\) 0 0
\(907\) 7562.45 0.276854 0.138427 0.990373i \(-0.455795\pi\)
0.138427 + 0.990373i \(0.455795\pi\)
\(908\) 0 0
\(909\) 10223.3 0.373031
\(910\) 0 0
\(911\) 37906.2 1.37858 0.689292 0.724484i \(-0.257922\pi\)
0.689292 + 0.724484i \(0.257922\pi\)
\(912\) 0 0
\(913\) 891.942 0.0323318
\(914\) 0 0
\(915\) 11652.5 0.421004
\(916\) 0 0
\(917\) −10853.8 −0.390867
\(918\) 0 0
\(919\) 17758.3 0.637422 0.318711 0.947852i \(-0.396750\pi\)
0.318711 + 0.947852i \(0.396750\pi\)
\(920\) 0 0
\(921\) −15702.9 −0.561812
\(922\) 0 0
\(923\) 23699.1 0.845143
\(924\) 0 0
\(925\) 37843.0 1.34516
\(926\) 0 0
\(927\) −17804.1 −0.630811
\(928\) 0 0
\(929\) −6018.33 −0.212546 −0.106273 0.994337i \(-0.533892\pi\)
−0.106273 + 0.994337i \(0.533892\pi\)
\(930\) 0 0
\(931\) −251.353 −0.00884828
\(932\) 0 0
\(933\) 32374.9 1.13602
\(934\) 0 0
\(935\) 13315.2 0.465726
\(936\) 0 0
\(937\) 24122.9 0.841046 0.420523 0.907282i \(-0.361847\pi\)
0.420523 + 0.907282i \(0.361847\pi\)
\(938\) 0 0
\(939\) 36331.6 1.26266
\(940\) 0 0
\(941\) −34974.2 −1.21161 −0.605806 0.795612i \(-0.707149\pi\)
−0.605806 + 0.795612i \(0.707149\pi\)
\(942\) 0 0
\(943\) −20715.6 −0.715369
\(944\) 0 0
\(945\) −18869.8 −0.649559
\(946\) 0 0
\(947\) −12841.9 −0.440662 −0.220331 0.975425i \(-0.570714\pi\)
−0.220331 + 0.975425i \(0.570714\pi\)
\(948\) 0 0
\(949\) −43915.9 −1.50218
\(950\) 0 0
\(951\) 26291.7 0.896497
\(952\) 0 0
\(953\) −41627.2 −1.41494 −0.707469 0.706744i \(-0.750163\pi\)
−0.707469 + 0.706744i \(0.750163\pi\)
\(954\) 0 0
\(955\) 7429.76 0.251750
\(956\) 0 0
\(957\) 4695.05 0.158589
\(958\) 0 0
\(959\) −17366.2 −0.584759
\(960\) 0 0
\(961\) −29547.7 −0.991834
\(962\) 0 0
\(963\) −12373.2 −0.414041
\(964\) 0 0
\(965\) 14674.0 0.489506
\(966\) 0 0
\(967\) 47798.8 1.58956 0.794780 0.606897i \(-0.207586\pi\)
0.794780 + 0.606897i \(0.207586\pi\)
\(968\) 0 0
\(969\) 1444.74 0.0478966
\(970\) 0 0
\(971\) −3328.28 −0.110000 −0.0549998 0.998486i \(-0.517516\pi\)
−0.0549998 + 0.998486i \(0.517516\pi\)
\(972\) 0 0
\(973\) −6246.86 −0.205822
\(974\) 0 0
\(975\) −29750.8 −0.977219
\(976\) 0 0
\(977\) −16672.8 −0.545967 −0.272984 0.962019i \(-0.588010\pi\)
−0.272984 + 0.962019i \(0.588010\pi\)
\(978\) 0 0
\(979\) −1233.72 −0.0402758
\(980\) 0 0
\(981\) −18874.9 −0.614302
\(982\) 0 0
\(983\) −3509.00 −0.113855 −0.0569276 0.998378i \(-0.518130\pi\)
−0.0569276 + 0.998378i \(0.518130\pi\)
\(984\) 0 0
\(985\) −8159.31 −0.263936
\(986\) 0 0
\(987\) −505.058 −0.0162879
\(988\) 0 0
\(989\) 16512.5 0.530908
\(990\) 0 0
\(991\) 17767.4 0.569524 0.284762 0.958598i \(-0.408085\pi\)
0.284762 + 0.958598i \(0.408085\pi\)
\(992\) 0 0
\(993\) −15599.6 −0.498528
\(994\) 0 0
\(995\) 85040.1 2.70950
\(996\) 0 0
\(997\) 29983.0 0.952428 0.476214 0.879329i \(-0.342009\pi\)
0.476214 + 0.879329i \(0.342009\pi\)
\(998\) 0 0
\(999\) −30803.7 −0.975561
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.4.a.x.1.4 5
4.3 odd 2 308.4.a.e.1.2 5
28.27 even 2 2156.4.a.g.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.4.a.e.1.2 5 4.3 odd 2
1232.4.a.x.1.4 5 1.1 even 1 trivial
2156.4.a.g.1.4 5 28.27 even 2