Properties

Label 1248.2.a.g.1.1
Level $1248$
Weight $2$
Character 1248.1
Self dual yes
Analytic conductor $9.965$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1248,2,Mod(1,1248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1248.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.96533017226\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1248.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -2.00000 q^{5} +2.00000 q^{7} +1.00000 q^{9} -6.00000 q^{11} -1.00000 q^{13} -2.00000 q^{15} -2.00000 q^{17} -6.00000 q^{19} +2.00000 q^{21} -1.00000 q^{25} +1.00000 q^{27} -6.00000 q^{29} +6.00000 q^{31} -6.00000 q^{33} -4.00000 q^{35} +2.00000 q^{37} -1.00000 q^{39} -10.0000 q^{41} +8.00000 q^{43} -2.00000 q^{45} +6.00000 q^{47} -3.00000 q^{49} -2.00000 q^{51} +6.00000 q^{53} +12.0000 q^{55} -6.00000 q^{57} -6.00000 q^{59} -10.0000 q^{61} +2.00000 q^{63} +2.00000 q^{65} +2.00000 q^{67} -14.0000 q^{71} -14.0000 q^{73} -1.00000 q^{75} -12.0000 q^{77} +4.00000 q^{79} +1.00000 q^{81} +6.00000 q^{83} +4.00000 q^{85} -6.00000 q^{87} +6.00000 q^{89} -2.00000 q^{91} +6.00000 q^{93} +12.0000 q^{95} -14.0000 q^{97} -6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −6.00000 −1.80907 −0.904534 0.426401i \(-0.859781\pi\)
−0.904534 + 0.426401i \(0.859781\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −2.00000 −0.516398
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) 0 0
\(33\) −6.00000 −1.04447
\(34\) 0 0
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 12.0000 1.61808
\(56\) 0 0
\(57\) −6.00000 −0.794719
\(58\) 0 0
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 0 0
\(63\) 2.00000 0.251976
\(64\) 0 0
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −14.0000 −1.66149 −0.830747 0.556650i \(-0.812086\pi\)
−0.830747 + 0.556650i \(0.812086\pi\)
\(72\) 0 0
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) −12.0000 −1.36753
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) 0 0
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 0 0
\(93\) 6.00000 0.622171
\(94\) 0 0
\(95\) 12.0000 1.23117
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) −4.00000 −0.390360
\(106\) 0 0
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 0 0
\(123\) −10.0000 −0.901670
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 8.00000 0.704361
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) −12.0000 −1.04053
\(134\) 0 0
\(135\) −2.00000 −0.172133
\(136\) 0 0
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 0 0
\(143\) 6.00000 0.501745
\(144\) 0 0
\(145\) 12.0000 0.996546
\(146\) 0 0
\(147\) −3.00000 −0.247436
\(148\) 0 0
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 0 0
\(153\) −2.00000 −0.161690
\(154\) 0 0
\(155\) −12.0000 −0.963863
\(156\) 0 0
\(157\) 18.0000 1.43656 0.718278 0.695756i \(-0.244931\pi\)
0.718278 + 0.695756i \(0.244931\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 14.0000 1.09656 0.548282 0.836293i \(-0.315282\pi\)
0.548282 + 0.836293i \(0.315282\pi\)
\(164\) 0 0
\(165\) 12.0000 0.934199
\(166\) 0 0
\(167\) 22.0000 1.70241 0.851206 0.524832i \(-0.175872\pi\)
0.851206 + 0.524832i \(0.175872\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 0 0
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) 0 0
\(175\) −2.00000 −0.151186
\(176\) 0 0
\(177\) −6.00000 −0.450988
\(178\) 0 0
\(179\) 16.0000 1.19590 0.597948 0.801535i \(-0.295983\pi\)
0.597948 + 0.801535i \(0.295983\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) −10.0000 −0.739221
\(184\) 0 0
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) 12.0000 0.877527
\(188\) 0 0
\(189\) 2.00000 0.145479
\(190\) 0 0
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) 0 0
\(195\) 2.00000 0.143223
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 2.00000 0.141069
\(202\) 0 0
\(203\) −12.0000 −0.842235
\(204\) 0 0
\(205\) 20.0000 1.39686
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 36.0000 2.49017
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 0 0
\(213\) −14.0000 −0.959264
\(214\) 0 0
\(215\) −16.0000 −1.09119
\(216\) 0 0
\(217\) 12.0000 0.814613
\(218\) 0 0
\(219\) −14.0000 −0.946032
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) 0 0
\(223\) 22.0000 1.47323 0.736614 0.676313i \(-0.236423\pi\)
0.736614 + 0.676313i \(0.236423\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 6.00000 0.398234 0.199117 0.979976i \(-0.436193\pi\)
0.199117 + 0.979976i \(0.436193\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) −12.0000 −0.789542
\(232\) 0 0
\(233\) 2.00000 0.131024 0.0655122 0.997852i \(-0.479132\pi\)
0.0655122 + 0.997852i \(0.479132\pi\)
\(234\) 0 0
\(235\) −12.0000 −0.782794
\(236\) 0 0
\(237\) 4.00000 0.259828
\(238\) 0 0
\(239\) −14.0000 −0.905585 −0.452792 0.891616i \(-0.649572\pi\)
−0.452792 + 0.891616i \(0.649572\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 6.00000 0.383326
\(246\) 0 0
\(247\) 6.00000 0.381771
\(248\) 0 0
\(249\) 6.00000 0.380235
\(250\) 0 0
\(251\) −24.0000 −1.51487 −0.757433 0.652913i \(-0.773547\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 4.00000 0.250490
\(256\) 0 0
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) −4.00000 −0.246651 −0.123325 0.992366i \(-0.539356\pi\)
−0.123325 + 0.992366i \(0.539356\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) 6.00000 0.367194
\(268\) 0 0
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) −6.00000 −0.364474 −0.182237 0.983255i \(-0.558334\pi\)
−0.182237 + 0.983255i \(0.558334\pi\)
\(272\) 0 0
\(273\) −2.00000 −0.121046
\(274\) 0 0
\(275\) 6.00000 0.361814
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 0 0
\(279\) 6.00000 0.359211
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 0 0
\(283\) −24.0000 −1.42665 −0.713326 0.700832i \(-0.752812\pi\)
−0.713326 + 0.700832i \(0.752812\pi\)
\(284\) 0 0
\(285\) 12.0000 0.710819
\(286\) 0 0
\(287\) −20.0000 −1.18056
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −14.0000 −0.820695
\(292\) 0 0
\(293\) 30.0000 1.75262 0.876309 0.481749i \(-0.159998\pi\)
0.876309 + 0.481749i \(0.159998\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 0 0
\(297\) −6.00000 −0.348155
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 16.0000 0.922225
\(302\) 0 0
\(303\) 6.00000 0.344691
\(304\) 0 0
\(305\) 20.0000 1.14520
\(306\) 0 0
\(307\) 14.0000 0.799022 0.399511 0.916728i \(-0.369180\pi\)
0.399511 + 0.916728i \(0.369180\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 0 0
\(315\) −4.00000 −0.225374
\(316\) 0 0
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 0 0
\(319\) 36.0000 2.01561
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) 0 0
\(323\) 12.0000 0.667698
\(324\) 0 0
\(325\) 1.00000 0.0554700
\(326\) 0 0
\(327\) −14.0000 −0.774202
\(328\) 0 0
\(329\) 12.0000 0.661581
\(330\) 0 0
\(331\) 26.0000 1.42909 0.714545 0.699590i \(-0.246634\pi\)
0.714545 + 0.699590i \(0.246634\pi\)
\(332\) 0 0
\(333\) 2.00000 0.109599
\(334\) 0 0
\(335\) −4.00000 −0.218543
\(336\) 0 0
\(337\) 6.00000 0.326841 0.163420 0.986557i \(-0.447747\pi\)
0.163420 + 0.986557i \(0.447747\pi\)
\(338\) 0 0
\(339\) 14.0000 0.760376
\(340\) 0 0
\(341\) −36.0000 −1.94951
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.0000 1.07366 0.536828 0.843692i \(-0.319622\pi\)
0.536828 + 0.843692i \(0.319622\pi\)
\(348\) 0 0
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) 30.0000 1.59674 0.798369 0.602168i \(-0.205696\pi\)
0.798369 + 0.602168i \(0.205696\pi\)
\(354\) 0 0
\(355\) 28.0000 1.48609
\(356\) 0 0
\(357\) −4.00000 −0.211702
\(358\) 0 0
\(359\) −18.0000 −0.950004 −0.475002 0.879985i \(-0.657553\pi\)
−0.475002 + 0.879985i \(0.657553\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 25.0000 1.31216
\(364\) 0 0
\(365\) 28.0000 1.46559
\(366\) 0 0
\(367\) 20.0000 1.04399 0.521996 0.852948i \(-0.325188\pi\)
0.521996 + 0.852948i \(0.325188\pi\)
\(368\) 0 0
\(369\) −10.0000 −0.520579
\(370\) 0 0
\(371\) 12.0000 0.623009
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 0 0
\(375\) 12.0000 0.619677
\(376\) 0 0
\(377\) 6.00000 0.309016
\(378\) 0 0
\(379\) −30.0000 −1.54100 −0.770498 0.637442i \(-0.779993\pi\)
−0.770498 + 0.637442i \(0.779993\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) 10.0000 0.510976 0.255488 0.966812i \(-0.417764\pi\)
0.255488 + 0.966812i \(0.417764\pi\)
\(384\) 0 0
\(385\) 24.0000 1.22315
\(386\) 0 0
\(387\) 8.00000 0.406663
\(388\) 0 0
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −12.0000 −0.605320
\(394\) 0 0
\(395\) −8.00000 −0.402524
\(396\) 0 0
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) 0 0
\(399\) −12.0000 −0.600751
\(400\) 0 0
\(401\) −10.0000 −0.499376 −0.249688 0.968326i \(-0.580328\pi\)
−0.249688 + 0.968326i \(0.580328\pi\)
\(402\) 0 0
\(403\) −6.00000 −0.298881
\(404\) 0 0
\(405\) −2.00000 −0.0993808
\(406\) 0 0
\(407\) −12.0000 −0.594818
\(408\) 0 0
\(409\) −38.0000 −1.87898 −0.939490 0.342578i \(-0.888700\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 0 0
\(411\) −2.00000 −0.0986527
\(412\) 0 0
\(413\) −12.0000 −0.590481
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 0 0
\(417\) 12.0000 0.587643
\(418\) 0 0
\(419\) −4.00000 −0.195413 −0.0977064 0.995215i \(-0.531151\pi\)
−0.0977064 + 0.995215i \(0.531151\pi\)
\(420\) 0 0
\(421\) 34.0000 1.65706 0.828529 0.559946i \(-0.189178\pi\)
0.828529 + 0.559946i \(0.189178\pi\)
\(422\) 0 0
\(423\) 6.00000 0.291730
\(424\) 0 0
\(425\) 2.00000 0.0970143
\(426\) 0 0
\(427\) −20.0000 −0.967868
\(428\) 0 0
\(429\) 6.00000 0.289683
\(430\) 0 0
\(431\) −22.0000 −1.05970 −0.529851 0.848091i \(-0.677752\pi\)
−0.529851 + 0.848091i \(0.677752\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 12.0000 0.575356
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) −12.0000 −0.568855
\(446\) 0 0
\(447\) −18.0000 −0.851371
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) 60.0000 2.82529
\(452\) 0 0
\(453\) 2.00000 0.0939682
\(454\) 0 0
\(455\) 4.00000 0.187523
\(456\) 0 0
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) 0 0
\(459\) −2.00000 −0.0933520
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) −14.0000 −0.650635 −0.325318 0.945605i \(-0.605471\pi\)
−0.325318 + 0.945605i \(0.605471\pi\)
\(464\) 0 0
\(465\) −12.0000 −0.556487
\(466\) 0 0
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) 18.0000 0.829396
\(472\) 0 0
\(473\) −48.0000 −2.20704
\(474\) 0 0
\(475\) 6.00000 0.275299
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) 14.0000 0.639676 0.319838 0.947472i \(-0.396371\pi\)
0.319838 + 0.947472i \(0.396371\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 28.0000 1.27141
\(486\) 0 0
\(487\) −42.0000 −1.90320 −0.951601 0.307337i \(-0.900562\pi\)
−0.951601 + 0.307337i \(0.900562\pi\)
\(488\) 0 0
\(489\) 14.0000 0.633102
\(490\) 0 0
\(491\) 40.0000 1.80517 0.902587 0.430507i \(-0.141665\pi\)
0.902587 + 0.430507i \(0.141665\pi\)
\(492\) 0 0
\(493\) 12.0000 0.540453
\(494\) 0 0
\(495\) 12.0000 0.539360
\(496\) 0 0
\(497\) −28.0000 −1.25597
\(498\) 0 0
\(499\) −6.00000 −0.268597 −0.134298 0.990941i \(-0.542878\pi\)
−0.134298 + 0.990941i \(0.542878\pi\)
\(500\) 0 0
\(501\) 22.0000 0.982888
\(502\) 0 0
\(503\) −28.0000 −1.24846 −0.624229 0.781241i \(-0.714587\pi\)
−0.624229 + 0.781241i \(0.714587\pi\)
\(504\) 0 0
\(505\) −12.0000 −0.533993
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 0 0
\(509\) −34.0000 −1.50702 −0.753512 0.657434i \(-0.771642\pi\)
−0.753512 + 0.657434i \(0.771642\pi\)
\(510\) 0 0
\(511\) −28.0000 −1.23865
\(512\) 0 0
\(513\) −6.00000 −0.264906
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −36.0000 −1.58328
\(518\) 0 0
\(519\) −18.0000 −0.790112
\(520\) 0 0
\(521\) −26.0000 −1.13908 −0.569540 0.821963i \(-0.692879\pi\)
−0.569540 + 0.821963i \(0.692879\pi\)
\(522\) 0 0
\(523\) −28.0000 −1.22435 −0.612177 0.790721i \(-0.709706\pi\)
−0.612177 + 0.790721i \(0.709706\pi\)
\(524\) 0 0
\(525\) −2.00000 −0.0872872
\(526\) 0 0
\(527\) −12.0000 −0.522728
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) 0 0
\(533\) 10.0000 0.433148
\(534\) 0 0
\(535\) 8.00000 0.345870
\(536\) 0 0
\(537\) 16.0000 0.690451
\(538\) 0 0
\(539\) 18.0000 0.775315
\(540\) 0 0
\(541\) 42.0000 1.80572 0.902861 0.429934i \(-0.141463\pi\)
0.902861 + 0.429934i \(0.141463\pi\)
\(542\) 0 0
\(543\) 10.0000 0.429141
\(544\) 0 0
\(545\) 28.0000 1.19939
\(546\) 0 0
\(547\) 20.0000 0.855138 0.427569 0.903983i \(-0.359370\pi\)
0.427569 + 0.903983i \(0.359370\pi\)
\(548\) 0 0
\(549\) −10.0000 −0.426790
\(550\) 0 0
\(551\) 36.0000 1.53365
\(552\) 0 0
\(553\) 8.00000 0.340195
\(554\) 0 0
\(555\) −4.00000 −0.169791
\(556\) 0 0
\(557\) −42.0000 −1.77960 −0.889799 0.456354i \(-0.849155\pi\)
−0.889799 + 0.456354i \(0.849155\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 12.0000 0.506640
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) −28.0000 −1.17797
\(566\) 0 0
\(567\) 2.00000 0.0839921
\(568\) 0 0
\(569\) 2.00000 0.0838444 0.0419222 0.999121i \(-0.486652\pi\)
0.0419222 + 0.999121i \(0.486652\pi\)
\(570\) 0 0
\(571\) 8.00000 0.334790 0.167395 0.985890i \(-0.446465\pi\)
0.167395 + 0.985890i \(0.446465\pi\)
\(572\) 0 0
\(573\) 4.00000 0.167102
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −38.0000 −1.58196 −0.790980 0.611842i \(-0.790429\pi\)
−0.790980 + 0.611842i \(0.790429\pi\)
\(578\) 0 0
\(579\) −6.00000 −0.249351
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) −36.0000 −1.49097
\(584\) 0 0
\(585\) 2.00000 0.0826898
\(586\) 0 0
\(587\) −2.00000 −0.0825488 −0.0412744 0.999148i \(-0.513142\pi\)
−0.0412744 + 0.999148i \(0.513142\pi\)
\(588\) 0 0
\(589\) −36.0000 −1.48335
\(590\) 0 0
\(591\) −18.0000 −0.740421
\(592\) 0 0
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) 8.00000 0.327968
\(596\) 0 0
\(597\) −8.00000 −0.327418
\(598\) 0 0
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) 2.00000 0.0814463
\(604\) 0 0
\(605\) −50.0000 −2.03279
\(606\) 0 0
\(607\) −20.0000 −0.811775 −0.405887 0.913923i \(-0.633038\pi\)
−0.405887 + 0.913923i \(0.633038\pi\)
\(608\) 0 0
\(609\) −12.0000 −0.486265
\(610\) 0 0
\(611\) −6.00000 −0.242734
\(612\) 0 0
\(613\) −14.0000 −0.565455 −0.282727 0.959200i \(-0.591239\pi\)
−0.282727 + 0.959200i \(0.591239\pi\)
\(614\) 0 0
\(615\) 20.0000 0.806478
\(616\) 0 0
\(617\) −10.0000 −0.402585 −0.201292 0.979531i \(-0.564514\pi\)
−0.201292 + 0.979531i \(0.564514\pi\)
\(618\) 0 0
\(619\) −26.0000 −1.04503 −0.522514 0.852631i \(-0.675006\pi\)
−0.522514 + 0.852631i \(0.675006\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.0000 0.480770
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 36.0000 1.43770
\(628\) 0 0
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) −30.0000 −1.19428 −0.597141 0.802137i \(-0.703697\pi\)
−0.597141 + 0.802137i \(0.703697\pi\)
\(632\) 0 0
\(633\) −20.0000 −0.794929
\(634\) 0 0
\(635\) −16.0000 −0.634941
\(636\) 0 0
\(637\) 3.00000 0.118864
\(638\) 0 0
\(639\) −14.0000 −0.553831
\(640\) 0 0
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) 0 0
\(643\) 26.0000 1.02534 0.512670 0.858586i \(-0.328656\pi\)
0.512670 + 0.858586i \(0.328656\pi\)
\(644\) 0 0
\(645\) −16.0000 −0.629999
\(646\) 0 0
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) 12.0000 0.470317
\(652\) 0 0
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) 0 0
\(655\) 24.0000 0.937758
\(656\) 0 0
\(657\) −14.0000 −0.546192
\(658\) 0 0
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) −30.0000 −1.16686 −0.583432 0.812162i \(-0.698291\pi\)
−0.583432 + 0.812162i \(0.698291\pi\)
\(662\) 0 0
\(663\) 2.00000 0.0776736
\(664\) 0 0
\(665\) 24.0000 0.930680
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 22.0000 0.850569
\(670\) 0 0
\(671\) 60.0000 2.31627
\(672\) 0 0
\(673\) 22.0000 0.848038 0.424019 0.905653i \(-0.360619\pi\)
0.424019 + 0.905653i \(0.360619\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −26.0000 −0.999261 −0.499631 0.866239i \(-0.666531\pi\)
−0.499631 + 0.866239i \(0.666531\pi\)
\(678\) 0 0
\(679\) −28.0000 −1.07454
\(680\) 0 0
\(681\) 6.00000 0.229920
\(682\) 0 0
\(683\) −22.0000 −0.841807 −0.420903 0.907106i \(-0.638287\pi\)
−0.420903 + 0.907106i \(0.638287\pi\)
\(684\) 0 0
\(685\) 4.00000 0.152832
\(686\) 0 0
\(687\) 10.0000 0.381524
\(688\) 0 0
\(689\) −6.00000 −0.228582
\(690\) 0 0
\(691\) 10.0000 0.380418 0.190209 0.981744i \(-0.439083\pi\)
0.190209 + 0.981744i \(0.439083\pi\)
\(692\) 0 0
\(693\) −12.0000 −0.455842
\(694\) 0 0
\(695\) −24.0000 −0.910372
\(696\) 0 0
\(697\) 20.0000 0.757554
\(698\) 0 0
\(699\) 2.00000 0.0756469
\(700\) 0 0
\(701\) 50.0000 1.88847 0.944237 0.329267i \(-0.106802\pi\)
0.944237 + 0.329267i \(0.106802\pi\)
\(702\) 0 0
\(703\) −12.0000 −0.452589
\(704\) 0 0
\(705\) −12.0000 −0.451946
\(706\) 0 0
\(707\) 12.0000 0.451306
\(708\) 0 0
\(709\) −14.0000 −0.525781 −0.262891 0.964826i \(-0.584676\pi\)
−0.262891 + 0.964826i \(0.584676\pi\)
\(710\) 0 0
\(711\) 4.00000 0.150012
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −12.0000 −0.448775
\(716\) 0 0
\(717\) −14.0000 −0.522840
\(718\) 0 0
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −22.0000 −0.818189
\(724\) 0 0
\(725\) 6.00000 0.222834
\(726\) 0 0
\(727\) −40.0000 −1.48352 −0.741759 0.670667i \(-0.766008\pi\)
−0.741759 + 0.670667i \(0.766008\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −16.0000 −0.591781
\(732\) 0 0
\(733\) −30.0000 −1.10808 −0.554038 0.832492i \(-0.686914\pi\)
−0.554038 + 0.832492i \(0.686914\pi\)
\(734\) 0 0
\(735\) 6.00000 0.221313
\(736\) 0 0
\(737\) −12.0000 −0.442026
\(738\) 0 0
\(739\) −26.0000 −0.956425 −0.478213 0.878244i \(-0.658715\pi\)
−0.478213 + 0.878244i \(0.658715\pi\)
\(740\) 0 0
\(741\) 6.00000 0.220416
\(742\) 0 0
\(743\) 26.0000 0.953847 0.476924 0.878945i \(-0.341752\pi\)
0.476924 + 0.878945i \(0.341752\pi\)
\(744\) 0 0
\(745\) 36.0000 1.31894
\(746\) 0 0
\(747\) 6.00000 0.219529
\(748\) 0 0
\(749\) −8.00000 −0.292314
\(750\) 0 0
\(751\) −16.0000 −0.583848 −0.291924 0.956441i \(-0.594295\pi\)
−0.291924 + 0.956441i \(0.594295\pi\)
\(752\) 0 0
\(753\) −24.0000 −0.874609
\(754\) 0 0
\(755\) −4.00000 −0.145575
\(756\) 0 0
\(757\) −34.0000 −1.23575 −0.617876 0.786276i \(-0.712006\pi\)
−0.617876 + 0.786276i \(0.712006\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14.0000 0.507500 0.253750 0.967270i \(-0.418336\pi\)
0.253750 + 0.967270i \(0.418336\pi\)
\(762\) 0 0
\(763\) −28.0000 −1.01367
\(764\) 0 0
\(765\) 4.00000 0.144620
\(766\) 0 0
\(767\) 6.00000 0.216647
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) −6.00000 −0.216085
\(772\) 0 0
\(773\) −10.0000 −0.359675 −0.179838 0.983696i \(-0.557557\pi\)
−0.179838 + 0.983696i \(0.557557\pi\)
\(774\) 0 0
\(775\) −6.00000 −0.215526
\(776\) 0 0
\(777\) 4.00000 0.143499
\(778\) 0 0
\(779\) 60.0000 2.14972
\(780\) 0 0
\(781\) 84.0000 3.00576
\(782\) 0 0
\(783\) −6.00000 −0.214423
\(784\) 0 0
\(785\) −36.0000 −1.28490
\(786\) 0 0
\(787\) −26.0000 −0.926800 −0.463400 0.886149i \(-0.653371\pi\)
−0.463400 + 0.886149i \(0.653371\pi\)
\(788\) 0 0
\(789\) −4.00000 −0.142404
\(790\) 0 0
\(791\) 28.0000 0.995565
\(792\) 0 0
\(793\) 10.0000 0.355110
\(794\) 0 0
\(795\) −12.0000 −0.425596
\(796\) 0 0
\(797\) 50.0000 1.77109 0.885545 0.464553i \(-0.153785\pi\)
0.885545 + 0.464553i \(0.153785\pi\)
\(798\) 0 0
\(799\) −12.0000 −0.424529
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) 84.0000 2.96430
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −6.00000 −0.211210
\(808\) 0 0
\(809\) −26.0000 −0.914111 −0.457056 0.889438i \(-0.651096\pi\)
−0.457056 + 0.889438i \(0.651096\pi\)
\(810\) 0 0
\(811\) 50.0000 1.75574 0.877869 0.478901i \(-0.158965\pi\)
0.877869 + 0.478901i \(0.158965\pi\)
\(812\) 0 0
\(813\) −6.00000 −0.210429
\(814\) 0 0
\(815\) −28.0000 −0.980797
\(816\) 0 0
\(817\) −48.0000 −1.67931
\(818\) 0 0
\(819\) −2.00000 −0.0698857
\(820\) 0 0
\(821\) 54.0000 1.88461 0.942306 0.334751i \(-0.108652\pi\)
0.942306 + 0.334751i \(0.108652\pi\)
\(822\) 0 0
\(823\) 32.0000 1.11545 0.557725 0.830026i \(-0.311674\pi\)
0.557725 + 0.830026i \(0.311674\pi\)
\(824\) 0 0
\(825\) 6.00000 0.208893
\(826\) 0 0
\(827\) 2.00000 0.0695468 0.0347734 0.999395i \(-0.488929\pi\)
0.0347734 + 0.999395i \(0.488929\pi\)
\(828\) 0 0
\(829\) −50.0000 −1.73657 −0.868286 0.496064i \(-0.834778\pi\)
−0.868286 + 0.496064i \(0.834778\pi\)
\(830\) 0 0
\(831\) 22.0000 0.763172
\(832\) 0 0
\(833\) 6.00000 0.207888
\(834\) 0 0
\(835\) −44.0000 −1.52268
\(836\) 0 0
\(837\) 6.00000 0.207390
\(838\) 0 0
\(839\) −34.0000 −1.17381 −0.586905 0.809656i \(-0.699654\pi\)
−0.586905 + 0.809656i \(0.699654\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 22.0000 0.757720
\(844\) 0 0
\(845\) −2.00000 −0.0688021
\(846\) 0 0
\(847\) 50.0000 1.71802
\(848\) 0 0
\(849\) −24.0000 −0.823678
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) 0 0
\(855\) 12.0000 0.410391
\(856\) 0 0
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) 0 0
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) 0 0
\(861\) −20.0000 −0.681598
\(862\) 0 0
\(863\) 10.0000 0.340404 0.170202 0.985409i \(-0.445558\pi\)
0.170202 + 0.985409i \(0.445558\pi\)
\(864\) 0 0
\(865\) 36.0000 1.22404
\(866\) 0 0
\(867\) −13.0000 −0.441503
\(868\) 0 0
\(869\) −24.0000 −0.814144
\(870\) 0 0
\(871\) −2.00000 −0.0677674
\(872\) 0 0
\(873\) −14.0000 −0.473828
\(874\) 0 0
\(875\) 24.0000 0.811348
\(876\) 0 0
\(877\) 34.0000 1.14810 0.574049 0.818821i \(-0.305372\pi\)
0.574049 + 0.818821i \(0.305372\pi\)
\(878\) 0 0
\(879\) 30.0000 1.01187
\(880\) 0 0
\(881\) −6.00000 −0.202145 −0.101073 0.994879i \(-0.532227\pi\)
−0.101073 + 0.994879i \(0.532227\pi\)
\(882\) 0 0
\(883\) −40.0000 −1.34611 −0.673054 0.739594i \(-0.735018\pi\)
−0.673054 + 0.739594i \(0.735018\pi\)
\(884\) 0 0
\(885\) 12.0000 0.403376
\(886\) 0 0
\(887\) 28.0000 0.940148 0.470074 0.882627i \(-0.344227\pi\)
0.470074 + 0.882627i \(0.344227\pi\)
\(888\) 0 0
\(889\) 16.0000 0.536623
\(890\) 0 0
\(891\) −6.00000 −0.201008
\(892\) 0 0
\(893\) −36.0000 −1.20469
\(894\) 0 0
\(895\) −32.0000 −1.06964
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −36.0000 −1.20067
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 16.0000 0.532447
\(904\) 0 0
\(905\) −20.0000 −0.664822
\(906\) 0 0
\(907\) −24.0000 −0.796907 −0.398453 0.917189i \(-0.630453\pi\)
−0.398453 + 0.917189i \(0.630453\pi\)
\(908\) 0 0
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) −36.0000 −1.19143
\(914\) 0 0
\(915\) 20.0000 0.661180
\(916\) 0 0
\(917\) −24.0000 −0.792550
\(918\) 0 0
\(919\) 36.0000 1.18753 0.593765 0.804638i \(-0.297641\pi\)
0.593765 + 0.804638i \(0.297641\pi\)
\(920\) 0 0
\(921\) 14.0000 0.461316
\(922\) 0 0
\(923\) 14.0000 0.460816
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −34.0000 −1.11550 −0.557752 0.830008i \(-0.688336\pi\)
−0.557752 + 0.830008i \(0.688336\pi\)
\(930\) 0 0
\(931\) 18.0000 0.589926
\(932\) 0 0
\(933\) 8.00000 0.261908
\(934\) 0 0
\(935\) −24.0000 −0.784884
\(936\) 0 0
\(937\) 10.0000 0.326686 0.163343 0.986569i \(-0.447772\pi\)
0.163343 + 0.986569i \(0.447772\pi\)
\(938\) 0 0
\(939\) 6.00000 0.195803
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −4.00000 −0.130120
\(946\) 0 0
\(947\) 34.0000 1.10485 0.552426 0.833562i \(-0.313702\pi\)
0.552426 + 0.833562i \(0.313702\pi\)
\(948\) 0 0
\(949\) 14.0000 0.454459
\(950\) 0 0
\(951\) −2.00000 −0.0648544
\(952\) 0 0
\(953\) 2.00000 0.0647864 0.0323932 0.999475i \(-0.489687\pi\)
0.0323932 + 0.999475i \(0.489687\pi\)
\(954\) 0 0
\(955\) −8.00000 −0.258874
\(956\) 0 0
\(957\) 36.0000 1.16371
\(958\) 0 0
\(959\) −4.00000 −0.129167
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) −4.00000 −0.128898
\(964\) 0 0
\(965\) 12.0000 0.386294
\(966\) 0 0
\(967\) 22.0000 0.707472 0.353736 0.935345i \(-0.384911\pi\)
0.353736 + 0.935345i \(0.384911\pi\)
\(968\) 0 0
\(969\) 12.0000 0.385496
\(970\) 0 0
\(971\) −36.0000 −1.15529 −0.577647 0.816286i \(-0.696029\pi\)
−0.577647 + 0.816286i \(0.696029\pi\)
\(972\) 0 0
\(973\) 24.0000 0.769405
\(974\) 0 0
\(975\) 1.00000 0.0320256
\(976\) 0 0
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) 0 0
\(979\) −36.0000 −1.15056
\(980\) 0 0
\(981\) −14.0000 −0.446986
\(982\) 0 0
\(983\) −42.0000 −1.33959 −0.669796 0.742545i \(-0.733618\pi\)
−0.669796 + 0.742545i \(0.733618\pi\)
\(984\) 0 0
\(985\) 36.0000 1.14706
\(986\) 0 0
\(987\) 12.0000 0.381964
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 0 0
\(993\) 26.0000 0.825085
\(994\) 0 0
\(995\) 16.0000 0.507234
\(996\) 0 0
\(997\) −34.0000 −1.07679 −0.538395 0.842692i \(-0.680969\pi\)
−0.538395 + 0.842692i \(0.680969\pi\)
\(998\) 0 0
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.2.a.g.1.1 yes 1
3.2 odd 2 3744.2.a.p.1.1 1
4.3 odd 2 1248.2.a.a.1.1 1
8.3 odd 2 2496.2.a.z.1.1 1
8.5 even 2 2496.2.a.m.1.1 1
12.11 even 2 3744.2.a.k.1.1 1
24.5 odd 2 7488.2.a.q.1.1 1
24.11 even 2 7488.2.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1248.2.a.a.1.1 1 4.3 odd 2
1248.2.a.g.1.1 yes 1 1.1 even 1 trivial
2496.2.a.m.1.1 1 8.5 even 2
2496.2.a.z.1.1 1 8.3 odd 2
3744.2.a.k.1.1 1 12.11 even 2
3744.2.a.p.1.1 1 3.2 odd 2
7488.2.a.l.1.1 1 24.11 even 2
7488.2.a.q.1.1 1 24.5 odd 2